Skip to main content

The Regulation of Alginate Biosynthesis via Cyclic di-GMP Signaling

  • Chapter
  • First Online:
Microbial Cyclic Di-Nucleotide Signaling

Abstract

Bacterial alginates are anionic exopolysaccharides, which are produced by Pseudomonas and Azotobacter species. Bacterial cells embedded in extracellular polymeric substances such as alginates have a survival advantage as they are protected against various physical and chemical stresses as well as the immune system. In the model organism P. aeruginosa, alginate is polymerized and secreted by a multiprotein complex spanning the entire bacterial envelope. The ubiquitous second messenger cyclic di-GMP is required for activation of alginate production. In this chapter, after a brief overview on alginates, their general properties, biological functions and applications, we will discuss the importance of alginate production and its regulation via cyclic di-GMP signaling during bacterial pathogenesis, which implies biofilm formation coinciding with chronic infection. We will review the current understanding of the molecular pathways controlling the cyclic di-GMP-dependent regulation of alginate production including (1) diguanylate cyclases and phosphodiesterases, which control cellular levels of cyclic di-GMP, (2) the cyclic di-GMP receptor/effector protein Alg44 that senses cyclic di-GMP, while it interacts with other protein subunits to constitute the alginate biosynthesis/modification/secretion multiprotein complex at the bacterial envelope, (3) insights into structural elucidation of PilZ domain-containing Alg44 including mechanistic insights into cyclic di-GMP binding and activation of alginate polymerization, and (4) other regulator proteins whose functions are controlled by cyclic di-GMP levels and impact on alginate production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stanford E (1883) On Align: a new substance obtained from some of the commoner species of marine algae. Chem News 47:254–257

    Google Scholar 

  2. Linker A, Jones RS (1964) A polysaccharide resembling alginic acid from a Pseudomonas microorganism. Nature 204:187–188

    Article  CAS  PubMed  Google Scholar 

  3. Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from Pseudomonads. J Biol Chem 241(16):3845–3851

    CAS  PubMed  Google Scholar 

  4. Darzins A, Chakrabarty AM (1984) Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 159(1):9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Merighi M, T Lee V, Hyodo M, Hayakawa Y, Lory S (2007) The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65:876–895. https://doi.org/10.1111/j.1365-2958.2007.05817.x

    Article  CAS  PubMed  Google Scholar 

  6. Mørch ÝA, Donati I, Strand BL (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480. https://doi.org/10.1021/bm060010d

    Article  CAS  PubMed  Google Scholar 

  7. Helgerud T, Gåserød O, Fjæreide T, Andersen PO, Larsen CK (2009) Alginates. Food stabilisers, thickeners and gelling agents. https://doi.org/10.1002/9781444314724.ch4

  8. Moradali MF, Ghods S, Rehm BHA (2018) Alginate biosynthesis and biotechnological production. In: BHA R, Moradali MF (eds) Alginates and their biomedical applications. Springer series in biomaterials science and engineering, vol 11. Springer, Singapore

    Google Scholar 

  9. Rehm B, Moradali MF (2018) Alginates and their biomedical applications. Springer series in biomaterials science and engineering, vol 11. Springer, Singapore

    Book  Google Scholar 

  10. Rehm BH, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48(3):281–288

    Article  CAS  PubMed  Google Scholar 

  11. Skaugrud O, Hagen A, Borgersen B, Dornish M (1999) Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnol Genet Eng Rev 16:23–40

    Article  CAS  PubMed  Google Scholar 

  12. Clementi F (1997) Alginate production by Azotobacter Vinelandii. Crit Rev Biotechnol 17(4):327–361. https://doi.org/10.3109/07388559709146618

    Article  CAS  PubMed  Google Scholar 

  13. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464. https://doi.org/10.1146/annurev.mi.41.100187.002251

    Article  CAS  PubMed  Google Scholar 

  14. Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11(3):217–221. https://doi.org/10.1016/S0924-8579(99)00018-7

    Article  CAS  PubMed  Google Scholar 

  15. Hay ID, Gatland K, Campisano A, Jordens JZ, Rehm BHA (2009a) Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Appl Environ Microbiol 75(18):6022–6025. https://doi.org/10.1128/AEM.01078-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McDaniel CT, Panmanee W, Hassett DJ (2015) An overview of infections in cystic fibrosis airways and the role of environmental conditions on Pseudomonas aeruginosa biofilm formation and viability. In: Cystic fibrosis in the light of new research. doi:https://doi.org/10.5772/60897

    Google Scholar 

  17. Strempel N, Neidig A, Nusser M, Geffers R, Vieillard J, Lesouhaitier O, Brenner-Weiss G, Overhage J (2013) Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One 8(12):e82240. https://doi.org/10.1371/journal.pone.0082240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BH (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol 16(10):2997–3011. https://doi.org/10.1111/1462-2920.12389

    Article  CAS  PubMed  Google Scholar 

  19. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592. https://doi.org/10.1038/nrmicro2354

    Article  CAS  PubMed  Google Scholar 

  20. Remminghorst U, Rehm BH (2006b) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28(21):1701–1712. https://doi.org/10.1007/s10529-006-9156-x

    Article  CAS  PubMed  Google Scholar 

  21. Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BH (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6(6):637–650. https://doi.org/10.1111/1751-7915.12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mathee K, McPherson CJ, Ohman DE (1997) Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179(11):3711–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schurr MJ, Martin DW, Mudd MH, Hibler NS, Boucher JC, Deretic V (1993) The algD promoter: regulation of alginate production by Pseudomonas aeruginosa in cystic fibrosis. Cell Mol Biol Res 39(4):371–376

    CAS  PubMed  Google Scholar 

  24. Okkotsu Y, Little AS, Schurr MJ (2014) The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 4:82. https://doi.org/10.3389/fcimb.2014.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hay ID, Schmidt O, Filitcheva J, Rehm BH (2012) Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Appl Microbiol Biotechnol 93(1):215–227. https://doi.org/10.1007/s00253-011-3430-0

    Article  CAS  PubMed  Google Scholar 

  26. Moradali MF, Donati I, Sims IM, Ghods S, Rehm BH (2015) Alginate polymerization and modification are linked in Pseudomonas aeruginosa. mBio 6(3):e00453–e00415. https://doi.org/10.1128/mBio.00453-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rehman ZU, Wang Y, Moradali MF, Hay ID, Rehm BH (2013) Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 79(10):3264–3272. https://doi.org/10.1128/AEM.00460-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baker P, Ricer T, Moynihan PJ, Kitova EN, Walvoort MT, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H, Ohman DE, Codée JD, Klassen JS, Clarke AJ, Howell PL (2014) P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Pathog 10(8):e1004334. https://doi.org/10.1371/journal.ppat.1004334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franklin MJ, Ohman DE (2002) Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 184(11):3000–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gimmestad M, Sletta H, Ertesvåg H, Bakkevig K, Jain S, S-j S, Skjåk-Bræk G, Ellingsen TE, Ohman DE, Valla S (2003) The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol 185(12):3515–3523. https://doi.org/10.1128/JB.185.12.3515-3523.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jain S, Franklin MJ, Ertesvåg H, Valla S, Ohman DE (2003) The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Mol Microbiol 47(4):1123–1133

    Article  CAS  PubMed  Google Scholar 

  32. Hay ID, Rehman ZU, Rehm BH (2010) Membrane topology of outer membrane protein AlgE, which is required for alginate production in Pseudomonas aeruginosa. Appl Environ Microbiol 76(6):1806–1812. https://doi.org/10.1128/AEM.02945-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keiski CL, Harwich M, Jain S, Neculai AM, Yip P, Robinson H, Whitney JC, Riley L, Burrows LL, Ohman DE, Howell PL (2010) AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18(2):265–273. https://doi.org/10.1016/j.str.2009.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Whitney JC, Hay ID, Li C, Eckford PD, Robinson H, Amaya MF, Wood LF, Ohman DE, Bear CE, Rehm BH, Howell PL (2011) Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci U S A 108(32):13083–13088. https://doi.org/10.1073/pnas.1104984108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jain S, Ohman DE (1998) Deletion of algK in mucoid Pseudomonas aeruginosa blocks alginate polymer formation and results in uronic acid secretion. J Bacteriol 180(3):634–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan J, Rouse SL, Li D, Pye VE, Vogeley L, Brinth AR, El Arnaout T, Whitney JC, Howell PL, Sansom MS, Caffrey M (2014) A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr 70(Pt 8):2054–2068. https://doi.org/10.1107/S1399004714001850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rehm BH (1996) The Azotobacter vinelandii gene algJ encodes an outer-membrane protein presumably involved in export of alginate. Microbiology 142(Pt 4):873–880. https://doi.org/10.1099/00221287-142-4-873

    Article  CAS  PubMed  Google Scholar 

  38. Rehm BH, Boheim G, Tommassen J, Winkler UK (1994a) Overexpression of algE in Escherichia coli: subcellular localization, purification, and ion channel properties. J Bacteriol 176(18):5639–5647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rehm BH, Grabert E, Hein J, Winkler UK (1994b) Antibody response of rabbits and cystic fibrosis patients to an alginate-specific outer membrane protein of a mucoid strain of Pseudomonas aeruginosa. Microb Pathog 16(1):43–51. https://doi.org/10.1006/mpat.1994.1004

    Article  CAS  PubMed  Google Scholar 

  40. Rehman ZU, Rehm BH (2013) Dual roles of Pseudomonas aeruginosa AlgE in secretion of the virulence factor alginate and formation of the secretion complex. Appl Environ Microbiol 79(6):2002–2011. https://doi.org/10.1128/AEM.03960-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jain S, Ohman DE (2005) Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73(10):6429–6436. https://doi.org/10.1128/IAI.73.10.6429-6436.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Moradali MF, Goudarztalejerdi A, Sims IM, Rehm BH (2016) Biological function of a polysaccharide degrading enzyme in the periplasm. Sci Rep 6:31249. https://doi.org/10.1038/srep31249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. https://doi.org/10.1128/MMBR.00043-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53(4):1123–1134. https://doi.org/10.1111/j.1365-2958.2004.04206.x

    Article  CAS  PubMed  Google Scholar 

  45. Moradali MF, Ghods S, Rehm BH (2017a) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39. https://doi.org/10.3389/fcimb.2017.00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279. https://doi.org/10.1038/325279a0

    Article  CAS  PubMed  Google Scholar 

  47. Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM (2010) Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A 107(13):5989–5994. https://doi.org/10.1073/pnas.0912839107

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H, Cohen A, Sapir S, Ohana P, Benziman M (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180(17):4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ryan RP, Fouhy Y, Lucey JF, Dow JM (2006) Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188(24):8327–8334. https://doi.org/10.1128/JB.01079-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103(8):2839–2844. https://doi.org/10.1073/pnas.0511090103

    Article  CAS  PubMed  Google Scholar 

  51. Pultz IS, Christen M, Kulasekara HD, Kennard A, Kulasekara B, Miller SI (2012) The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP. Mol Microbiol 86(6):1424–1440. https://doi.org/10.1111/mmi.12066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI (2010) Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328(5983):1295–1297. https://doi.org/10.1126/science.1188658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kulasekara BR, Kamischke C, Kulasekara HD, Christen M, Wiggins PA, Miller SI (2013) c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. Elife 2:e01402. https://doi.org/10.7554/eLife.01402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moradali MF, Ghods S, Rehm BHA (2017b) Activation mechanism and cellular localization of membrane-anchored alginate polymerase in Pseudomonas aeruginosa. Appl Environ Microbiol 83(9):e03499–e03416. https://doi.org/10.1128/AEM.03499-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102(40):14422–14427. https://doi.org/10.1073/pnas.0507170102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Porter SL, Wadhams GH, Armitage JP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9(3):153–165. https://doi.org/10.1038/nrmicro2505

    Article  CAS  PubMed  Google Scholar 

  57. Kuchma SL, Connolly JP, O'Toole GA (2005) A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187(4):1441–1454. https://doi.org/10.1128/JB.187.4.1441-1454.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rao F, Yang Y, Qi Y, Liang Z-X (2008) Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. J Bacteriol 190(10):3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hay ID, Remminghorst U, Rehm BH (2009b) MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 75(4):1110–1120. https://doi.org/10.1128/AEM.02416-08

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N (2013) NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol 195(16):3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Galperin MY, Gaidenko TA, Mulkidjanian AY, Nakano M, Price CW (2001) MHYT, a new integral membrane sensor domain. FEMS Microbiol Lett 205(1):17–23

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Hay ID, Rehman ZU, Rehm BH (2015) Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 99(17):7253–7265. https://doi.org/10.1007/s00253-015-6591-4

    Article  CAS  PubMed  Google Scholar 

  63. Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191(23):7333–7342. https://doi.org/10.1128/JB.00975-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6. https://doi.org/10.1093/bioinformatics/bti739

    Article  CAS  PubMed  Google Scholar 

  65. Remminghorst U, Rehm BH (2006a) Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett 580(16):3883–3888. https://doi.org/10.1016/j.febslet.2006.05.077

    Article  CAS  PubMed  Google Scholar 

  66. Habazettl J, Allan MG, Jenal U, Grzesiek S (2011) Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout. J Biol Chem 286(16):14304–14314. https://doi.org/10.1074/jbc.M110.209007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ko J, Ryu KS, Kim H, Shin JS, Lee JO, Cheong C, Choi BS (2010) Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by Pilz domain proteins. J Mol Biol 398(1):97–110. https://doi.org/10.1016/j.jmb.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  68. Ramelot TA, Yee A, Cort JR, Semesi A, Arrowsmith CH, Kennedy MA (2007) NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein. Proteins 66(2):266–271. https://doi.org/10.1002/prot.21199

    Article  CAS  PubMed  Google Scholar 

  69. Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186. https://doi.org/10.1038/nature11744

    Article  CAS  PubMed  Google Scholar 

  70. Shin JS, Ryu KS, Ko J, Lee A, Choi BS (2011) Structural characterization reveals that a PilZ domain protein undergoes substantial conformational change upon binding to cyclic dimeric guanosine monophosphate. Protein Sci 20(2):270–277. https://doi.org/10.1002/pro.557

    Article  CAS  PubMed  Google Scholar 

  71. Steiner S, Lori C, Boehm A, Jenal U (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32(3):354–368. https://doi.org/10.1038/emboj.2012.315

    Article  CAS  PubMed  Google Scholar 

  72. Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868. https://doi.org/10.1126/science.1181185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li W, Li M, Hu L, Zhu J, Xie Z, Chen J, He ZG (2018) HpoR, a novel c-di-GMP effective transcription factor, links the second messenger’s regulatory function to the mycobacterial antioxidant defense. Nucleic Acids Res 46(7):3595–3611. https://doi.org/10.1093/nar/gky146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413. https://doi.org/10.1126/science.1159519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21(5):489–496. https://doi.org/10.1038/nsmb.2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saxena IM, Brown RM, Fevre M, Geremia RA, Henrissat B (1995) Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol 177(6):1419–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oglesby LL, Jain S, Ohman DE (2008) Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154(Pt 6):1605–1615. https://doi.org/10.1099/mic.0.2007/015305-0

    Article  CAS  PubMed  Google Scholar 

  78. Whitney JC, Whitfield GB, Marmont LS, Yip P, Neculai AM, Lobsanov YD, Robinson H, Ohman DE, Howell PL (2015) Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa. J Biol Chem 290(20):12451–12462. https://doi.org/10.1074/jbc.M115.645051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chou SH, Galperin MY (2016) Diversity of cyclic di-GMP-binding proteins and mechanisms. J Bacteriol 198(1):32–46. https://doi.org/10.1128/JB.00333-15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported in part by the Deutsche Forschungsgemeinschaft (Germany) and Massey University (New Zealand). The authors are grateful to the current and former members of the Rehm research group for their invaluable contributions providing insight into alginate biosynthesis by bacteria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd H. A. Rehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moradali, M.F., Rehm, B.H.A. (2020). The Regulation of Alginate Biosynthesis via Cyclic di-GMP Signaling. In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_14

Download citation

Publish with us

Policies and ethics