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Summary.  When operators T, exist such that for sums S n of n i.i.d, copies of 
a finite-dimensional random vector X we have T,S, is shift-convergent in 
distribution to a standard Gaussian law, a necessary and sufficient con- 
dition on the distribution of X is given for the appropriate  law of the 
iterated logarithm using the operators T, to hold. Our result extends certain 
well-known real line L.I.L.'s; it utilizes a necessary and sufficient condition 
due to Hahn  and Klass for T, to exist giving a Gaussian limit law, and 
employs a second moment  technique due to Kuelbs and Zinn. 

1. Introduction 

Let X, X1, X 2 . . . .  , be independent, identically distributed (i.i.d.) r andom vari- 
ables taking values in F, d equipped with the usual inner product ( . , - )  and 
induced norm II'H. Let S = { x ~ N a :  ]lxil =1}. When we wish to emphasize the 
role of OeS as a linear functional, we may write O(x) for (0, x). Put S , = X  1 +. . .  
+Xn, n > l .  

When X is full (i.e., the distribution 5f(X) of X is not supported on any 
( d - l )  dimensional hyperplane), Hahn and Klass (1980a) established a necessary 
and sufficient condition for the existence of linear operators {T,} and shifts {bn} 
such that s w, 7, where '~,  denotes weak convergence and y is 
the d-dimensional standard normal  (i.e., Gaussian with identity covariance). 
Their condition is 

t~P(IO(X)l > t) 
lira sup ~ -  ~ =u,  (1) 
t-+co o~s E(O (X) At  ) 

where s/x t denotes the minimum of s and t. 
When (1) holds, Hahn  and Klass provide a construction of canonical {T,} 

which we will utilize extensively here. When EX=O, it is possible to take 
b~-O. (It can be shown that (1) implies E/IX][ < oo, so that E X  exists.) 

When Y ( T , ( S , - b , ) )  ~ > 7 we say X belongs to the generalized domain of 
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attraction of 7, and write XeGDA(7,  {Tn}, {b,}). Operator normalization be- 
comes necessary when different projections of X have different growth rates for 
their truncated variance functions. Examples were provided in Hahn and 
Klass' paper showing that the GDA of a full Gaussian is strictly larger than 
the (ordinary) domain of attraction obtained via normalizing constants (as 
opposed to operators). 

It is clear that for full Gaussian limit laws it will suffice to consider the 
standard version 7, for if/~ is Gaussian with mean vector b and nonsingular 
covariance operator Z and XeGDA(/~, {Tn}, {b.}), then X~GDA(~, {Z -1/2 T.}, 
{T~- lb+b,}) .  

It is well known that central limit behavior of sums derived from X can 
imply strong limit theorems, in particular, laws of the iterated logarithm, for 
these sums. In the domain of attraction case (when Y ( S n / d n ) ~ ? ;  here E X = 0 )  
in results of Kesten (1972), Klass (1976 and 1977) and Kuelbs and Zinn (1983) 
it was shown that almost-sure boundedness of {SJ~;~} was equivalent to a 

certain moment-condition, namely ~ P([IXII >7~)<o0, where we may take ?n 
n = l  

= L L n d ( [ n / L L n ] ) .  Here, L x = m a x ( 1 , 1 o g x ) ,  L 2 x = L L x = L ( L x ) ,  and so on, 
and [x] denotes the greatest integer in x. 

Thus one conjectures that operator-normalization CLT behavior should 
imply a similar equivalence of the a.s. boundedness of the sequence {F~S,}, 

with F , = L ~ n  T[L_~,], to the condition P(lll'~Xll > 1)< oo. The "correctness" 

of these normalizations is demonstrated by proving, as in the constant normal- 
izers case, that {F,S,} has a nontrivial cluster set, and thus that 
0 < l i m  I[F, Sn]k<oe, a.s. Here also, the cluster set ought to have nonempty 

n---~ oo 

interior in addition to being compact. 
That this conjecture holds depends a great deal on the regularity of the 

normalizing sequence {F,}, which in turn derives directly from the regularity of 
the CLT normalizers, {Tn}. This regularity allows us to work in blocks of 
length n k = 2 k, where the normalizing operator is fixed, e.g. {F,S~: n k_ 1 < n <__ rig}. 
Thus when X is symmetric, standard inequalities such as L6vy's maximal and 
the Hoffmann-Jorgensen apply. In addition, the correct necessary condition also 
depends on regularity of {F,}. 

The required regularity of {T,} was proved in Hudson, Veeh and Weiner 
(1984) for general operator-stable limits. When applied here to the standard 
Gaussian case the result sharpens a great deal. In their Lemma 2, if we let/~ = 7 
denote standard Gaussian measure on IR d, then one exponent for 7 is B =�89 1 (I 

being the identity on N d) so that f iB=l/~.  The group S(/~) is the familiar 
compact orthogonal group. 

Our Theorem 1 is the main result, but as the proof is quite long, various 
technical lemmas and some straightforward but peripheral calculations have 
been deferred to the last section. However, the main proof is to be found in the 
next section. We note that the verification of the highly useful Kuelbs-Zinn 
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Doubly Truncated Second Moment  Condition (see (17) and (20)ff.) forms the 
heart of the proof, and is, besides the regularity techniques, the main new 
feature of our proof. 

The results in this paper form a portion of author's Ph.D. dissertation at 
the University of Wisconsin-Madison, under the direction of Professor James 
Kuelbs. The author wishes to acknowledge his indebtedness to Professor Kuelbs, 
and wishes also to thank Professor Alejandro de Acosta for many useful and 
stimulating conversations during this investigation. 

2. The Main Theorem and Proof 
1 

Z , Here is our main result. Recall F . - -L~n  [~L~J" 

Theorem 1. Let X~GDA(? ,  {T,}, {b,}), where y is standard normal on flU. Then, 
there exists a finite constant C with 

lim [IF,(S.-b,)LI = C a.s. (2) 
n--+ c~ 

if and only if 

P(kLF, X[[ > e ) <  o% for some (for every) e>0.  (3) 
n 

When (3) holds, the cluster set of {F,(Sn-b,) } almost surely contains 
{xG~ a: IIx[I <=]/2}, and thus 1/2<1=~ lIF,(S -bn)lL = C <  o% a.s. 

n - - c o o  

Proof In order not to obscure the main outline of the proof, after carefully 
constructing a canonical version of F, and describing the main regularity and 
moment tools we will need, we will prove the theorem directly, deferring the 
proofs of various technical lemmas until the end. 

The proof of Hahn and Klass' Theorem (1980a) shows that when 
XGGDA(?,{T,},  {b,}), EX exists and b , - n E X ~ O .  By replacing X by X 
- E X ,  we may therefore assume without loss of generality that EX=O and 

b,---0. 
It is clear that the statement of the theorem is independent of the choice of 

the normalizing sequence {T,,} giving Gaussian convergence, for if 5~(U,S,) 
w ~7 as well as •(T,S,) w> 7, then {U,T, -1} is precompact with only orthogo- 

hal limits (by the Convergence of Types Theorem, Billingsley (1966)), since the 
group preserving ? is precisely the orthogonal group, so that 

I ~  1 c C[T~.] TE~-L] LCn [T~.] 

LLn I - ~ ]  

Therefore we will always assume {T,} is the canonical Hahn-Klass sequence 
constructed below. 
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For  OsS and t>0 ,  define 

c (o, t)= co(O= o2(x)I (IO(X)l _-<0, 
(4) 

M (O, t)= Mo(t )-- E(O 2(X) A t2), 

where I denotes indicator function. 
Hahn and Klass prove that there exists u* such that for each t__> u* there is 

a unique number d(O, t)= do(t ) satisfying 

d 2(t) = t M  o(d o(t)). (5) 

Moreover, the function d: S x[u*,ov)  is jointly continuous and satisfies 
lira infd(0, t )= oe. For  each 0, d(O, n) is the correct one-dimensional normaliz- 
t ~ c ~  O~S 

ing sequence for the sums O(S,), i.e., under (1) we have for each OES, 

, N(O, 1) 
LP \do(n) ] 

For t>u* we construct an orthonormal basis for IR d as follows: since d(-, t) 
is continuous and S is compact, choose 01t satisfying d(Olt, t)=infd(O,t ). In- 
ductively, having chosen 0jr (1 < j  < k__< d), choose 0kt so that o~s 

d(Okt , t)= inf {d(O, t): OeS, 0 1 {Ott, ..., O(k_ l)t} }. 

Then {Ojt" 1 <j<d}  is called a preferred o.n. basis (PONB) at time t. 
The operators T, accomplishing ~ ( T ,  Sn) w,  7 are constructed by setting 

TtOjt = OJd(Ojt, t), j = 1 . . . .  , d, (6) 

and extending T t linearly to all of IRe. 
Note that T t is well-defined even if t is not an integer. 
There are two LIL-appropriate normalizers which we will demonstrate are 

equivalent, but at different times one is more convenient than the other. 
1 1 

Certainly F~=~-~n T [ ~ ]  will be equivalent to ~ T ~ .  The other useful 

possibility is to write (following Kuelbs and Zinn) c~(t)=t/LLt, noting that 
c~-l(t) is asymptotic to tLLt ,  and construct 7: S x [col(u*), oo) by writing 7(0, t) 
=?o(t)=a-l(do(~(t)) ). Then we define F(Ojt)=Ojt/y(Oit, t) (j= 1 . . . . .  d), extended 
linearly. But from (21) below we will see that F,F, 1~I ,  so we may use the two 
interchangeably. 

The utilization of the basic inequalities required in LIL  proofs depends on 
regular behavior of the normalizing sequence. In Hudson, Veeh and Weiner 
(1984), Lemmas 2 through 4, the necessary regularity theorems were proved in 
the general setting of operator-stable convergence. We apply them here to the 
Gaussian case (where, in their notation, we have S(#) is the orthogonal group 

of linear operators on ~d, and B=�89 is an exponent of #, revealing fiB=lffi). 
We refer the reader there for the proofs and details. Recall that F n 

_ 1 T , , where LLn and ~ each vary regularly. In what follows 
LLn [ ~ ]  

let ~ denote standard Gaussian measure on N d. 
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Lemma 2 (Regularity for Gaussian Convergence). Suppose 5~(T,S,) w , 7. Let 
I (K)=  {n~N: ng_ 1 <n<=nK}, where ng=2  K. Then 

(a) lim HF.F.-_~ [I = 1. 

(b) / f  {c.}, {d.}c]N with c.~oo, d.--*oo and d./c ~c~[O, ov), then 

lim ]L~ Fa~llL =]//~. 
n ~ o D  

(c) lim max LIF.FGI[I=If2, lira rain HF,,,F,-III=I/]//2. 
K ~ o o  n~I(K) K ~ o o  n~I(K) 1 

(d) I f  {c, ,},{d.}cN with c.--*oo and dffc.~o% then lim log(d./c. ). 
log II T~ Ts = 1/2. " ' ~  

We remark that (d) implies F,S, P>O ( P, denotes convergence in proba- 
bility), since with G=[n/LLn] and d,=n we have for 0 < 8 < � 8 9  

< (LLn) ~+ 
1 ]ITr . qT_~I [ HT.S.II= L ~ n  HT.S,,][ P,O. Ik/',s, II <[IF,T.-lll IIT, S, IL =LLnn L ~ J  

This fact will be crucial in applying Hoffmann-Jorgensen's inequalities and in 
the proof of clustering. 

We will require several equivalent formulations of condition (3), proof for 
which we defer to Sect. 3. The technique is standard (cf. Stout (1974)) once 
Lemma 2 is known. 

1 
w ;. T .  n , Lemma3  (Moment Equivalences). When 5P(T~S,) ~ and F,=LL n- [ ~ ]  

the following are equivalent: 

(a) ~ P(lIF, XIL>e)< oo, for some e > 0  
n 

(b) ~ P([IF, XI[>e)< oo, for every e > 0  
n 

(c) ~ supP(lO(X)l>7(O, t ))dt< oo (7) 
u* OES 

(d) For some A<oo, lim klr.X, LI <A, a.s. 
n 

(e) F ,X,~O a.s. 

(f) With nK=2 ~, ~ nKP(I[F,~,XI[ >~)<  oo for every e>0.  
K 

We remark that (c) will be used in the crucial verification of a series 
condition whose sufficiency for our purposes derives from the technique of 
Kuelbs and Zinn (1979), and which verification is the main new technique of 
our proof. 

To prove the necessity of (3) for (2), observe that Lemma 2(a) shows that (2) 
implies lira IIr, X.lt _<_lira IIr.S.II +lira IIr.s,_~l[ (by the triangle inequality) < C 

n---~ oo n n 

+(lim llF, F~2~ll) lim I I r ,_ lG_~l l<2C,  a.s., so that Lemma3 ((d) implies (a)) 
n n - ~ o o  

shows (3) holds. 
The proof of the sufficiency of (3) for (2) is achieved using the regularity 
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lemma, classical truncation levels adapted to the operator case, and several by 
now standard inequalities and tools developed in past LIL proofs. New in- 
gredients include the technique for final elimination of the middle part of the 
sums, which depends on using the uniform regularity of the functions 7(0, t) to 
verify a sufficient condition due to Kuelbs and Zinn (1979). Previous verifi- 
cations of this condition in related situations (see Goodman, Kuelbs and Zinn 
(1981); Kuelbs and Zinn (1983), for example) have involved a counting argu- 
ment and reversal of summation which is rather inappropriate in the operator 
setting. 

In what follows let nK=n(K)=2 K, and denote by I(K) the block of integers 
{n: n ( K - 1 ) < n < n ( K ) } .  We assume that X is symmetric; we will show later that 
desymmetrization can be arranged in a manner similar to that of Kuelbs and 
Zinn (1983). 

For K > 1 and j < n K, put 

uj = uj(K) = Xj I  (IIF, KXjN <= 1/LLnK) 

vj=vj(K)= XjI  (L~L~K< , f ,  KXi[I < I ) (8) 

wj = wj(K) = XjI (ItF,,,Xjll > 1). 

In what follows, repeated use of the regularity lemma will allow us to work 
in the blocks I(K) where the normalizing operators are held fixed, so that 
familiar maximal inequalities can be applied. 

Note 
m a x  HF, S.]I <__max HF.F~]I ]f,~(S.- S.~_)H 
nel(K) neI(K) 

+(max  ]]FnF~I 11)[]F,K ~S~_~I[. (9) 
nel(K) 

Now the regularity lemma gives max l[FnF~lH-*l~ as K--,oe, while 
nEI(K) 

max I[F,,F,,-~I_ I ]I --,1. But symmetry and L6vy's inequality imply, for any t>0,  
nEI(K) 

P(max ][F,~(S,-S,~,_ 1)11 >t)=< 2P(]IF,~,(S,~,-S . . . .  )ll >t). 
neI(K) 

Thus, if we can show that for some t > 0, 

F. P(llF,~(S,K -S,K_ 1)II > t) < oo. (10) 
K 

we will obtain lim ][F,S,[] __<lf2t+lim ]]F~,_IS,K 111, a.s. via the Borel-Cantelli 
n k 

lemma, along with  l im IIF, K(S,, , - S  . . . .  )H < t ,  a.s. 
K 

But the identity 
K 

r. s .  = 2 
j = l  
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(with S.o=0), together with Lemma 7 in Sect. 3, shows that lim/f,K(S.,, 

im t a.s. Thus, (9) and the verifi- -S,~,_~)LI =<t a.s. implies 1,~ II/%,S~ 1 
cation of (10) will give us 

l i I  IIF"S"H <t (lf2 + ~ - I  a.s. 

Now, because of the triangle inequality, to verify (10) it suffices to show there 
exist A>0, B>0  and C>0  such that 

and 

The easiest of these, 

EP(llr.,, ~ u~(K)rl>A)<oo (11) 
K jeI(K)  

EIIP([IF.~ ~ %(g)ll>B)<oo (12) 
K j~I(K) 

EP(I[C~, ~ wj(K)H>C)<oo. (13) 
K j~I(K) 

(13), holds for any C>0  due to (3), Lemma 3(0, and 

P([IF.~ ~ wj(K)ll > C ) ~  nK_IP(IEFnXII > 1)< ~ ,  
K jel(K) K 

so that in fact we have F~ ~ w:--, O, a.s. 
jEI(Kt 

Rather than verifying (11), we will instead show 

( "" % ( K ) >  ) 

which will imply (11) because of Levy's inequality. 
The following argument adapts to our situation a new method introduced 

by Kuelbs and Ledoux (1984). We remark that this method improves on the 
earlier technique of Pisier (1975) in dealing with the "small" random variables 
in the double truncation scheme usually employed. 

To verify (11% we will utilize an exponential inequality found in de Acosta 
(1980), which we restate here for reference. 

Lemma4 (de Acosta (1980)). Let {Yj:j=I, ..., n} be an independent sequence of 

symmetric random vectors such that 
2>0  and t>0,  

Yj][ <c, and put Z,= i YJ Then, for each 
j = l  

Before applying Lemma 4, let us introduce the following notation: 

mK= [nK/LLnK], PK = [nK/m~c], 

AK= T,,,K =(LLnK)F,,K, V~ t = i us(K)" 
j = s  

eP~t 

E exp (2 HZ.H) < 1 -2e*(t+c)P(NZ,,][ > t)" (14) 
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We observe that PK~LLnK, pKmK~nK, SO that the regularity lemma and 
L6vy's inequality give tightness of 

{ A -  V (j+l)mK" : <  K >  I}w{AKV'ym �9 K ~ I } .  1( jmK " J =PK, -- P~: K" -- 

Choose t > 1 so large that, uniformly in K, 

v(J + I )mK max(maxP([IAr ~,~ [[ >t), P([IA~V~,~m~]I >t))<=e-2/3. 
J<=PK 

Then, letting 2 > 0 be a constant to be determined later, we have 

) P Ilr~ ~ ~?1 >A 
j = l  

(15) 

_<exp(- ALLnK) exp A  uj) 
j = l  

PK 

__< exp ( -2ALLnK)  [I  E exp ()~ I[ AK g j ~ ;  1)ink ]l) 
j = l  

x E exp (2 H A~: V~,~m,, II) 
= exp ( -2ALLnx) (E  exp (2 tlmKrg'Kll))e"g exp (2 II AKV?~,.fi). 

(16) 

Using (15) and Lemma4 we can estimate the exponential moments above: 
Notice IIAKuj(K)I I _<_ 1 (j=<nK), so in the lemma take c =  1, Yj=AKu~, to obtain 

[ 2e~'l)e-2/3 
aK-- max(E exp(X IIAK 1~o KII), E exp(;. [I V~mKII))=< e ~t ~1 -~ 

1 

Now let 2 =  1/t, and use the inequality 1 +x<=e ~ to obtain from (16) (recall- 
ing t > 1) for large K, 

" (  F~Kj=I ~ uj >ALLnK)<__ex p (--rALLnK)aPK r~+l 

which is summable over K provided A > 4t. 
Thus (11') and hence (11) hold for some A > 0 ;  we remark that the argu- 

ment above can be tightened slightly to give an estimate of the best choice of 
A above, as in, for example, Kuelbs and Zinn (1983). However, even in the 
constants case the estimate obtained in this way is far from the true value of 

1/2 on the line implicit in Klass (1977, p. 154). In Kuelbs (1984) (again, using 

constant normalizations in Banach space) the correct value of 1/~ is obtained 
using linear functionals and the real result, but in the case of operator normal- 
izations this approach does not work, at least in a natural way, since if O~S, 
then (0, F~S~) is not a normalized i.i.d, sum derived from one real r.v., but 
rather a mixture, and so the correct value of lira I(0, F~S,)[ us not at all obvious 

n 
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from the real line result. Thus we will omit any upper estimate of lim ]]F,,S,]I 
n 

(aside from its finiteness), although we will provide the lower estimate of 1/~ 
later on. 

Finally, that the value of lira IIr,~s.II is actually a constant almost surely 
n 

(i.e., is nonrandom) follows from the zero-one law, which applies since 
lim sup IIF,01[ =0  so that for any N, lira FnSx=O a.s. 

n ~ o o  11011=1 n ~ c o  

The verification of (12), which is the heart of our proof, depends on a 
sufficient condition developed by Kuelbs and Zinn (1979). We will adapt their 
technique to the operators case, and then proceed to verify their condition (let 
us refer to it as the Kuelbs-Zinn Doubly Truncated Second Moment Con- 
dition, or KZDTSMC) using a strong uniform regularity property of the 
functions 7(0, t) which we will establish, We remark that double truncation 
itself was introduced by Erd6s. (1 ) 

Let L~=nK_IE LIF,~XL[2I L~-~n < IIF,~X[I < 1 . We  assert that to verify (12) 

(still assuming (3)) it suffices to show that for some r >0  we have the 

(KZDTSMC) ~ EK< o9. (17) 
K 

To see that (17) implies (12) we use a device introduced by Kuelbs and 
Ledoux (1984). Observe that IIF, K@[ < 1 for jet(K), so that P(max II/'n,,v~ll > 2) 
= 0 for 2 > 1. j~I(K) 

With r as in (17), let m be an integer large enough that 2m>r. Choose B so 
large that B > 3  ~, and then put 2 = B 3  -"~, so that 2>1.  

Iterating Hoffmann-Jorgensen's inequality m times yields 

P(HF,~, ~ vj(K)H>B)=P(IIF, K ~ vj.lL>3"2) 
jsI(K) jeI(K) 

_-<(const)PZm(llF, K ~ vjH>2) 
jeI(K) 

<(const)P~(lIF,~, ~ @ > 2 ) .  (18) 
jel(K) 

But independence and symmetry give (since It" II is Euclidean) 

EIIF.~ Z @1 z= Z EII r . , , v / I  2 
jeI(K) jeI(K) 

=nK_IE,,FnKX,,2I ( 1 .~I[FnKX]I<I ) = , 

and hence by Markov's inequality, 

s K ~ @ > 2 ) < ~ g  K. (19) 
jeI(K) 

Combining (18), (19) and (17) gives us (12). 
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The standard verifications of the KZDTS MC (17), as appearing in Good- 
man, Kuelbs and Zinn (1981) and Kuelbs and Zinn (1983), are applied to the 
case r = 2  using a counting/summation-reversal argument; we were unable to 
apply it here. Instead, we verify (17) for any r>3 ,  and as any r > 0  would 
suffice, our proof of lira IIFnS, I I < oo in the symmetric case will be complete. 

n 

First, we claim we can replace (17) by the condition in Rd 

( 1 sup U~176 U~176 (20) 
\LLnk o~s Mo(7o(nK)/LLnK) ] co. 

Before showing that (20) actually implies the K ZD TS MC (17), we remark that 
although the proof until now has been worked almost exclusively using oper- 
ators without utilization of the Hahn-Klass canonical form (5) and (6), the 
remainder will be worked directly in terms of functionats, starting from con- 
dition (7) instead of (3), and depends on uniform regularity of {70(t): OsS} 
rather than regularity of {T,: n > l } .  Thus condition (1), which allows these 
uniformity lemmas to be proved, now becomes essential to the argument. 

The key identity to keep in mind is this consequence of (5): 

;)~ (t) = (c~-1 do e(t))2 ~ t (LL t) Mo(T~(t)/LL t), (21) 

where the notation ao(t)~bo(t ) means lim sup a~  =0. ~oo o~s b ~  We know that do(t ) 

grows uniformly at least as fast as t t/2, but Lemma 5 in Hahn and Klass 
do(t) 

(1980b) (see next paragraph) shows that for each 6>0 ,  we have lira sup t~+~ 
t ~ o o  O~S =0. Thus LLdo( t )~LL t ,  and (21) holds. 

To see that (20) implies the K Z D T S M C  (17), we recall the canonical 
definitions of F, and /~,. It is clear that since F,, /~, are each diagonal with 
respect to the same basis (the PONB at time n/LLn) with entries 
LLndo(n/LLn ) versus yo(n), we see that (21) and Lemma 3 allow us to assume 
that vj was defined in (8) with respect to iO rather than F,, our error involving 
at most a constant factor introduced on the left hand side of (17) and (20). For, 

Lemma5 in Hahn and Klass (1980b) and (21) provide that lim sup 7~ 
, ~  o~s 70(t) 

- c  ~/2 =0,  since they prove the corresponding statement with d o replacing 7o, 

for each c > 0. 
Thus, we are asked to show that (20) implies that 

To ease the notation we just write F~ for/~,,, and only give the proof in the 
case d (the dimension of our space) is two, for the general case follows exactly 
the same way. 
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On the event [[F,/,X[[ ~ ( L ~ K ,  1], we have 

l 01(X)2 02 (X)2 <1, (23) 
(LLnK)2 < I[CKXI[ 2 ----,/ol(nK)2 ~-O/o=(nK) 2 = 

where we let {01, 02} = {0i(K), O2(K)} denote the PONB at time nx/LLn K. 
IO,(X)l 

But (23) implies __< 1 (i= 1, 2) and also that at least for one i we have 
IOz(X)l 1 7~ 
- -  > - - .  Therefore 
7o~(nk) 2LLnk 

E 1(X)2 " (,,F. Xf, ~ (L~_k, 1] ) 
<~ O~(X) 2 ( lO~(X)l  

+E 
70,(nk-~ 1 \70~(nk) =2LLnk 70~(nk) 2LLnk 

E 02(X) " ('0(X)I c ( 2 L ~ ,  1])  <<_sup ' 

1 (102(X)l e l 
+4(LLnk)2 P I ~  (2LLn~ '1])" (24) 

B u t  

(10=(X)l E x . . . . .  2 ,. 02(x) 2 I/102(x)ie 1 
P \ ~  (2LLnK 1 ] ) <  70~(nK ) \,02(nK) 

(by Markov's inequality) 

<4(LLnK) 2sup L ~ \Yo(nK ) 

and so (23), (24), and the same argument of (24) applied to 02 instead of 01 , lead 
to 

EHF,,KXI,2I(I[F,,KXI[e(L~K , 1]) 

<_A o2(x) . (o (x) l  
~ s u p t : ~ ,  1]). (25) 

- o~s 70(nK) \70(nK) \2LLn K' 

Now (21) shows that 7o(nK)2~d~(nK/LLnK)LLnK, so the right hand side of (25) is 
dominated by some constant times 

1 EO2(X) I (]O(X)] 1 
- -  sup , (26) 

nKLLnK o~S Mo(do(nK/LLni~)) 

by using (4) and (5). 
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But of course, 

(do  
Thus, (20) implies (17), as desired. 

To verify (20) we recall that by Lemma 3, (3) implies (7), 

o:9 

sup P([O(X)L> Yo(t))dt < oo. 
1 OES 

3 
Fix r > 3  and choose 6 > 0  so that r > l ~ .  Now from Lemma8 in the last 
section we see that 

Uo(?o(nK) ) - Uo(Yo(nK)/d LLnK) 
lira sup 
K-+o~ o~s (LLnK)'~M(?o(nK)/LLnK) 

~< lim sup UO(7~ =0. 
- -  K ~  co O~S (LLnK) ~ Uo(?o(nK)/LLnK) 

A closer look at the functions ?0(t) is required. The definition of ~o(t) 
implies that ?0(n) is a suitable normalization for 0(S,); indeed the reaMine LIL 

(e.g., Feller (1968)) and Lemma 3 (c) imply lim [0(S,)l i f  ~ , - ~  70(n)-= a.s. Now (4) and (5) 

amount to saying that 70 is the inverse function of 7ol(t)=c~-lgoCfft), where 
go(t)=tZ/Mo(t). It is well-known (see, e.g., Hahn and Klass (1980a)) that for 
sufficiently large t, uniformly in OeS, we have 7o1(0 well-defined and con- 
tinuous (in both 0 and t). Bearing in mind (21), note that for s tending to o% 

S 2 1 S 2 

?o 1 (s) ~ LLsgo(s/LLs) = (LLs) (LLs)2 Mo(s/LLs ) - LLs Mo(s/LLs )" (27) 

Putting s=?o(nK)/dLLn K in (27) shows there exists a positive constant C a such 
that, uniformly in O~S, for all sufficiently large K, we have (see (21)) 

- 1 C1 nKMo(?o(nK)/LL nK) nK 
YO (7o(nK)/dLLnK) >(LLnK)2 Mo(?o(nr)/(LLnr)2) > C1 (LLnK)2. (28) 

Inequality (28) is vital in proving (20) (hence (17), the KZDTSMC). To use 
it we let inK= C1G/(LLnK) 2. Then (28) becomes 

Y o(nK)/d LL nK->-- ?0(mK); (29) 

note that m K / ~  OC strictly, and mK--mK-1 ~, 1. 
m g _ l  

In the following C 2, C 3, C 4 . . . . .  are unimportant positive constants re- 
quired to use the asymptotic statements mentioned above. 
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Recalling (7), we have (since 7o(0/ ')  

oo > }~ sup P(]O(X)I >?o(t))dt 
1 O~S 

>C2 ~ sup P(lO(X)l> 7o(O)dt 
K= 1 m K -  1 0 ~ S  

>C2 f K=I 

>C3 f 

>C3 f 
K = I  

(inK--inK- 1) sup P(lO(x)l > ?o(mK)) 
OES 

m K sup P(?o(nK) >= I O(X)I > 70(mK)) 
OeS 

m K sup P(7o(nK)> 10(X)l > 7o(nK)/dLLnK), by (29). (30) 
OeS 

Let F o denote the cumulative distribution function of 10(X)I. Then (30) gives, 
recalling (21), 

m ylK 1 •O(nK) 

oo >K~__ sup ~ xZdfo(X) 
= a (LLnK) 2 o~s 70(nK) 2 ~o(.K)/aLL.K 

1 Uo(?o(nK) ) -- Uo(?o(nK)/dLLnK) 
> = C4 2., sup 

K=I (LLnK) 3 o~s Mo(?o(nK)/LLnK) 

=Cr  f 1 t sup  Uo(?o(nK))-Uo(Yo(nK)/dLLn~:)" ~ 
k = l  (LLnK) 3-~ [ o~s ( L ~ @ n K ) a ~ I ~  J 

> C5 f 1 Isup Uo(?o(nK))-Uo(7o(n~)/dLLnK)~ r 
= K= 1 (LLnK) 3.a [. oes (LLnK)aMo(ro(nK)/LLnK) J 

(using the fact that {. } --+ O) 

= C  s f 1 t sup  Uo(Yo(ni~))--go(~o(nK)/dLgnK)~r 
K =  1 (LLnK) 3- e,+ra k oes Mo(Yo(nK)/LLnK) J 

>C6 f ~ l ~ s u p  U~176176176 ~ (31) 
= K=t [LLnK o~s Mo(Yo(nK)/LLnK) J 

3 
since r > ~ 6 _  6 implies r > 3 + r 6 > 3 - - 6 + r 6 .  Thus (20), hence (17) holds, and the 

proof that lim ]IF, S,]I < oo a.s. holds is complete in the symmetric case. 
n 

For the general case, we let X', X'I, X 2 . . . . .  be i.i.d, copies of X, independent 
of X, X 1, X 2 . . . .  , and we put S' n = X '  1 + . . .  + X',. We suppose that X satisfies (3); 
then 

P(HF,(X -X')II > e ) < 2  ~ P(IIF, X]I > c/2) < oc 
n 

(via Lemma 3), so that X - X '  satisfies (3) as well. By the symmetric result, 
lim IIFn(S,-S'~)II=M<oo a.s., for some constant M. We claim that 

n 
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lim I[F~S.II < 2 M  a.s., and we accomplish the proof by showing for each f i>0 
n 

(i) lira I1F.(S. -ngXI(llF.Xll </~))ll <__2M a.s. and 
Pl 

(ii) lim nEF, XI(IIF, XII >fi )=0,  recalling that EX =0. 
n ~ c o  

For (i), by Fubini's theorem we have vectors {c.} with lim IIF.(S.-c.)[I =M 

a.s. We claim that F,(S,--nEXI(IIF, XN <fi)) P, 0 for each fi>0. Assuming this 
for the moment, and given e>0,  we have existence of sample points co, with 
IIF.(S.(co.)-c.)ll<M+~ (true for almost all sample points) and []F.(S.(co.) 
-nEXI(IlF.XI[ <fl))ll <=e (true for a set of sample points of large probability) 
for all sufficiently large n. 

It follows that lim [IF.(c.-nEXI([IF.Xll <fi))ll < m + e + ~ = m + 2 e ,  and thus 
that 

lira HF.(S. -nEXI(IiF.XI[ ~ p))~lim [IF.(S n -c.)ll +lim b[F.(c. -nEXI(I[F~XI] ~ P))/I 

GM+(M+2~)=2M+2e, a.s. 

Letting e ~ 0  gives (i), modulo the fact that Fn(Sn-nEXI(i[F,,X[[ <fl)) P> O. 
We already know that F.(S.-S'~) P,0 (because of Lemma2(d) and ~C.q~(T~(S~ 

-S'.)) w.v*7,  where * denotes convolution), so let fi>0, E>0, and recall that 
(3) implies, by Lemma 3 (f) and an easy filling-in argument, that 
lim nP(][F,~XI] > 2 ) = 0  for each ).>0. Thus, 

n 

P(  F. ~ (Xit([IF.Xj[I<fl)-XjI([IF,,XjH<fl)) >e)  
j = l  

- -  / ~  "1 <P(NF.(S.-N'.)II > ~ ) + P  (for some j_<n, either ][F.XjL[ >fi or 1[ .Xj[[ >fi) 

<P(I[F.(S.-S'.)[[ >e)+2nP(l[~XIh >fl) 4 0 ,  as n~oo .  (32) 

Now (32) implies that Y~=F. ~, (XjI(IlFnXj[[ <=fl)-X~I(IIF~X~II <~)) ~, O. 

Thus J Y,, -*0 as n--*oo, and an application of Lemma 6.1 in Kuelbs 

and Zinn (1983) with r = 2  to the r.v.'s ~(Xjl(ll~xjIp<~)-xj1(ll~xjll<p)) 
(which are uniformly bounded by 2fi in norm) gives E II Y, II 2< 18(4J(Y,, 1/72) 
+(2fi)z)--.72fi z, as n~oo.  Since Y, P >0, standard uniform integrability results 
(see, e.g., Chung (1968), Theorem 4.5.2) give EII Y.II-,0. 

But Jensen's inequality and the independence of {Xj}, {X~.} show that 

E II Y,[I ~ (X~I(IIF, XjI[ <fl)-EXjI(IIF, XjN <fi)) , 
J 

and thus by Markov's inequality we see 
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But then, 

P(NF,(S.-nEXI(IlF.XII <fl))[I >e) 

<=P ( r, ( ~j= XjI(I]r, Xj]l <=fi)-nEXl(l,r,,xlt <__fi)) >e) +nP(lLs > fi)~O, 

completing the proof of (i). 
To prove (ii), we will show, in analogy with constant normalizations case, 

that lira nE II T, XH I(11T, XN >/3) = O. That this will suffice follows from 
n ~ c o  

F{ 
nE II/;,X II I(llr,,S II >/~) =L~-d E I{ Tw~.~/II SUI ~./~.~ / II > flLLn) 

n 
< - -  N H TE.//~L.a X II S (11 T~./LL.~ X ll >/~) - ,  o. =LLn 

Now 
oo 

nEItT~XI[I(NT~XII >f i )=n  ~ P(HT~XH I(IIT~XII >fi)>t)dr 
0 

03 

=flnf(HT.XH >f l ) + n  y P(HT.XII >t)dt. (33) 

But nP(llrnxll>fi)-~O because of the Central Limit Theorem for Gaussian 
limits. 

To estimate the last term in (33), let {0i: l<_i<_d} denote the PONB at 
time n, and observe that for n sufficiently large, 

n P(Hr.xH>t)dt<n y P [Oi(X)l>~doi(n) dt 
~ i =  

=n y, IO~(X)l>ddo,(n ) dt 
i = J .  ~ 

<dnsup  P [O(X)l>~do(n ) dt 
OeS 

= d2n sup P(I O(X)I > u)du/do(n ) 
O~S ~do )/d 

2 1 ~ (34) --d n s u p - -  ~ u2p(lo(x)l>u)M~ ~ 
o~s G(n) ~do(.)/d Mo(u) ~ .u. 

In (34) we use the Hahn-Klass Condition (1) and the fact that do(n)--,oQ 
uniformly in OeS (indeed, for large n, do(n)>lfn ) to see that we need only show 

l imsupsup n 7 Mo(u) 
OeS d ~ )  H2 du < oo. 

n ~ oo Ifdo(n)/d 

Now the "uniformly slowly varying" property of Mo(" ), which derives from 
the Hahn-Klass Condition (1), can be used to adapt the proof of Lemma 8 
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(q.v.) to show that given 6 >0  and C > 0, there exist n o and D >0  such that for 
all n>no, all j >  i and all O~S, 

Mo( C2J do(n)) < D2Ja Mo(do(n)). 

Choose 8 < 1 ; then for n > n o, 

n oo Mo(u ) n oo 2Jfldo(n)/d 
d ~ n )  ~ ~ du = ~=1 f Mo(u) /u  2 du 

fldo(n)/d d ~  j 2 j _ a fldo(n)/d 

< ~ nMo(2Jfido(n)/d)d/(fl2Jd2(n)) (35) 
j = l  

(using the monotonicity property of Mo(.)) 

Dd 
< ~ -  ~ 2J~nMo(do(n))/(21dZ(n)) 

j = l  

(uniformly in O~S) 
Dd c o  

(21-a) - ;<  ~ ,  
fl j = l  

where in the last line of (35) we used the defining property (5) of d o , namely 
d~(n)=nMo(do(n)). Thus desymmetrization is complete, and lira LIF, SnJ ] <oo in 
the general case. n 

It remains to show that lira IkFnSn] I >0,  and that the cluster set of {FnS } 
n 

contains {x~lRe: JLxl] <lf2}.  The technique depends on the following moderate 
deviations lemma patterned after de Acosta and Kuelbs (1983), Lemma3.1. 
Because the clustering result does not depend on the refined regularity in 
Lemma (3), we remark that the proof we present can be extended easily to the 
Banach space case, under the additional assumption due to Urbanik (1978) 
that {T, Tm 1" re<n} is precompact, where 5~(TnSn) w ~ 7 in the Banach space. 
Since the proof does assume boundedness of ILF, Snl[, however, we prefer to 
proceed only in the finite-dimensional case. In Proposition 5 the additional 
assumption a4,/n 3-~0 is required for infinite dimensions, to compensate for the 
"unknown" fact there that FnS n p > O, as the reader may easily check. 

Proposition 5. Assume EX=O, X~GDA(7,  {Tn} ). Let U be convex and open in 
a 2 

an -'n /~ 2 2 IR a. Suppose that 0 < - - ~ 0 ,  but oo. Let b , = [ n  ~an]. Then 
n n 

n (n ) 1 
l imin f2~ l~  2~ = t ~  " Tb Sn~U >limsup)5-1ogy(tU) 

n ~ o  a n a n  n 

Proof Let e>O, t>O, put U~={y: inf Ily-ujl>~}. Then U s is open and con- 

vex. Write p, = ~ , q, = . (Note In -p ,q , I  =O(bn) if a4/n3--+O.) 
t a n ]  
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Then, using independence and stationarity, 

P ~ T b .  Sp~qn~U ~ = P  S p ~ q ~ U  ~ 
a n 

2 q~ 

> P (T b Sp e a~ U ~] . (37) 
- -  \ " , nqn ! 

2 
a n Since qn~nt  ~ and pn/bn-~t 2, it is easy to see that 6((ZoJp, ) w, 7~, and 7~(E) 

=7(tE) for Borel sets E. An easy way to see this is Donsker's Invariance 
Principle. Thus (37), after taking logarithms and letting n ~ o% yields 

lim_ ~ l o g P ( - ~ T  n Sv q ~U~)>l im~2q ,  logP(Tb Sv a2 U ~) 
a n an " " " =--2- a n \ " nq n 

= t~- lira log 

1 

= t~- log 7(t U"). (38) 

Letting e ~ 0, t-~ o9 gives the result, after observing that independence gives 

l~  (a@, Tb.S .~U)>l~ (a~ n Tb.Sp.q.~U~)+logP (~z [IZo.Sin-p.q.iH <e), 

and that the latter term goes to zero using n-pnq,=o(n) ,  Lemma2(d)  (which 
n T_ I < n  [ n ~ + ~  

states that ~-Tban ~ =25a, \ ~ ]  , for any 0<(3<1/2 and all large n, ~ 0  

since a an/n--, o9), and again for simplicity Donsker's Invariance Principle. 

Lemma 6. Under the assumptions of Proposition 5, 

l l m i n f ~ P  T b S , - b  <e > 
,-.~ a n " = 2 ' 

for every e > O. 
1 

Proof The Cameron-Martin formula allows evaluation of lim~21ogv(tU), 

where U={yEIRd: I]y-bll<~}. For proof see deAcosta and Kuelbs (1983), 
Lemma 3.2, noting that the "Reproducing Kernel Hilbert Space" induced by 7 
is just (IR d, 11" []), since V is standardized normal, and [l" [[ is Euclidean. 

Now to show that ]lbl] <lf2 implies b is in the cluster set of {FnSn} a.s., it 

suffices to assume I]b]l < I f 2  (since the cluster set is closed). It is easy to see that 
/,/ 

the proof of Proposition 5 applies to ~ - T  b Sen , as long as dn-n=O(b,) .  
am n 

SO let nr~ = K  K, and note that n~--nK_ 1 =O(bn~,). Thus, from Lemma 8 we have, 
IIbH2+(3< 

given (3>0 such that ~ 1 and putting aZ=nLLn,  ~>0, that for K o 
sufficiently large, 
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K>_Ko 

= Z ( K l o g K ) - ( ~ + 0 = o o .  (39) 
K>Ko 

Thus the Borel-Cantelli lemma applies to the independent sequence {F,~(S~ 
-S,~_,):  K__> 1} to show that b is almost surely a cluster point. But Lemma2(d) 
shows that II_Co,fU~_,ll-->0, and together with lim IlroS.]l < co a.s., we use [IF,,,S,,, 

n---~ mo 

-bll < IIF,~,(S,,,-S,,,_~)-bll + IIF~KF~7,1x[I IIF~,,_,S,,, ~ll to complete the proof of 
Theorem 1. 

3. Technical Lemmas and Their Proofs 

In this section we state and prove technical results used (with proof deferred) 
in the proof of Theorem 1. 

Lemma 7. Given {xj} c l t  d with lim II/'.jxsLI = C <  oo, we have 
j ~ o o  

lim F,,, j ~  x s < C 
K ~  oo 

Proof We use 

F.KF.;I(F.jxj) < lIF.~,F.]lll C + O +  F.~, s FnN j J= 

where e>0,  and N is so larg that j > N  implies IIr.jxjN < c + a  We claim 

V5 lim ~ 1It. r . ] l l l<  , which, since IIr.KIl-+0 as K-+oo, will complete the 
K~oo  j = I  =]/2-1 
proof. 

Choose M so large that (by Lemma2(b) ) j>_M implies IIF,.. 1F~71 Ik < 1/(]/2 
K-1 - / 1 \ k - j J~  

-e).  As For.71= [I r.  +f.71, we have NroroT'll <_ ~ )  when K>__j>__M. 
i = j  t ~ - -  1 / 2 _  e 

K M--1  K 

But then ~ NrnrFn;ll[ = Z Ilr.~Fn~7111 + 2 IlrnKrn~ 111' when K > M ,  and it 
j = l  j = l  j = M  

is easy to see that NF,,,II max ]IF,~-llL ~ 0  as K ~ o e ,  since ILF,~,II--,0. Yet, 
j<=m--1 

j : M  j : ~  t l / 7 - J  ~:o ,=o 

= 1/(1 - ( 1 / 2 - 0 - 9  

(geometric series); letting e--, 0 gives the bound 1/'2/(1/~- 1). 
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Proof of Lemma3. (a) implies (b): Assume ~P(I[FnXI[ >Ko) diverges for some 
n 

K o. Clearly the series diverges for all K < K o ,  so fix K > K  o. Fix N so large 
2 K o 1 ( 

that ~ < ~ - .  Now Lemma2(b)  shows ,-.~lim o~s_<N-xmaX IIFN.+f.-~II = ~  since 

1 ) 
~ ,  O < j < N - 1  . So choose n o so large that n>n o implies 

N n + j  2 
IIFN,+f,-xlI < ~  when O<=j<=N-1. Then, n>n o implies 

Thus, 

max 
O<=j<N-1 

P(ILF~.+sXLL>Ko)<=P( max IIFN,+jXII>Ko) 
O<j<_N--1 

<P(( max II_cN.+f.-1H)llr, xll>Ko) 
O<j<N--1 

<P(HFnX[I >K), by choice of N. 

0o= P(l lr~Xll>Ko)= ~. P(IIFN,+jXI*>Ko < F. NP(IIF, XII>K). 
m=Nno n=no j = 0  n=no 

Thus, divergence for one K o implies divergence for every K. 
Now (a) iff (d) iff (e) follows from the Borel-Cantelli lemma and the fact 

that (a) implies (b), since {Xn} are independent. For (b) iff (f), we use 
Lemma 2(c) and proceed in manner similar to that above, in (a) implies (b), 
with nK--nr_l=nK_l  playing the rote of N. 

Finally, for (b) iff (c), we use the result of Hahn and Klass that if {Oi:i 
= l, ..., d}= {0i(n): i = l  . . . . .  d} represents the PONB at time n, then 

d 

d 2 (n) ~ ~ (0, 0i)2 do ̀ (n)2 (recall ~ means asymptotic uniformly in 0 e S). 
i = l  

Thus, given c>  1, there exists n o so that uniformly in OES and for all n>no, 
we have (letting {O~=Oi(n/LLn): i=1  . . . .  ,d} now denote the PONB at stage 
n/LLn) d 

(0, 0)2 ?0a (n) < c?g (n). (40) 
i=1  

Now, suppose that for i = 1 , 2  . . . . .  d we had IOi(X)l<~/o~(n)/dlfc. Then we 
would also have d 

10(X)l = ,= ~-1 (0, O)Oi(X) 

d 

<E 
i=1  

d 

--<E 
i = l  

i = l  
d 

--<E 
i = l  

I(0, o,)o,(x)h 

I(O, 0,)1 ?o, (n)/d ]fc 

d \ 1 / 2  / 

h~l(O, Oj)2~2j(gO) d ~  

(1/-~yo(n))/d }/c = yo(n), by (40). 
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Hence ]O(X)l>7o(n) implies for some i=1 ,2  . . . . .  d, we have ]Oi(X)]> 
7o, (n)/d I/c, and thus 

d 

P(I 0(X)I > ?o(n)) <= ~ P(I 0~(X)l > 7o,(n)/d ~ c )  
i = 1  

d 0 (x) >  Tqc --< P 2 
i=1 ~ 70j(n) 

=dP(IIF~X[] > 1/d]/c) 

<=dn(llF.X]k > 2/d ]/@), 

using/~.F. 1 ~ I  by (21). Thus, taking suprema above gives 

sup P(IO(X)I > 7(n, 0)) <dP(I[F, XII > 2/d]/c). 
OeS 

Thus (3) and (a) implies (b), above, imply (c). On the other hand, 

a 20r 2 d ( = g  ) 
P(IIF, XH > e) < P(II ,,xII > e/2)= P { V p ]Oz(X)l 2 = ,_, >21/d7O~(n) \ i = l  70i(Yl) ] i = 1  

Gdsup P I0(X)I > ~  7o(n) . 
OES 

Thus the integral test, monotonicity of 7(0, ") and (41) show (c) implies (b), and 
the proof of Lemma 3 is complete. 

Lemma 8. For each ~ > O, 
Uo(7o(t)) 

lim sup ~ - 0. 
t-.oo o~s (LLt) Uo(7o(t)/LLt ) 

Proof. The Equivalence Lemma of Hahn and Klass (1980a) implies that 

lira sup U~ 1, 
t~oo O~S ~ o ( t )  ~ 

i.e., that the functions Uo(.) are uniformly slowly varying for O~S. Let log denote 
logarithm to the base two, and put a(t)= [log(LLt)]. Let e>0. We have, since 
1 < LLt/2 a(~ < 2, 

a (t) - 1 
b(t)-=sup U~176 <2 [1 sup 

o~s Uo(7o(t)/LLt) = j=o o,s 
< 2(1 + e) "(~ 

Uo(Yo(t) 2 j+ 1/LL t) 
Uo(7o(t) 2J/LLt) 

U0(2 ]/~) 
whenever t is large enough that sup < 1 +a for all s> t ,  upon noting 

G(lf i )  
that uniformly in OeS, for all sufficiently large s, we have 7o(s)>]/~. 

We thus have lira logb(t) b(t) , ~  a ( t ~ - O ,  after letting e--*0. It follows ,-o~lim (LLt)~=O 

for every c~ > 0, as asserted. 
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