Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overexpression of transmembrane TNFα in brain endothelial cells induces schizophrenia-relevant behaviors

Abstract

Upregulation of genes and coexpression networks related to immune function and inflammation have been repeatedly reported in the brain of individuals with schizophrenia. However, a causal relationship between the abnormal immune/inflammation-related gene expression and schizophrenia has not been determined. We conducted co-expression networks using publicly available RNA-seq data from prefrontal cortex (PFC) and hippocampus (HP) of 64 individuals with schizophrenia and 64 unaffected controls from the SMRI tissue collections. We identified proinflammatory cytokine, transmembrane tumor necrosis factor-α (tmTNFα), as a potential regulator in the module of co-expressed genes that we find related to the immune/inflammation response in endothelial cells (ECs) and/or microglia of the brain of individuals with schizophrenia. The immune/inflammation-related modules associated with schizophrenia and the TNF signaling pathway that regulate the network were replicated in an independent cohort of brain samples from 68 individuals with schizophrenia and 135 unaffected controls. To investigate the association between the overexpression of tmTNFα in brain ECs and schizophrenia-like behaviors, we induced short-term overexpression of the uncleavable form of (uc)-tmTNFα in ECs of mouse brain for 7 weeks. We found schizophrenia-relevant behavioral deficits in these mice, including cognitive impairment, abnormal sensorimotor gating, and sensitization to methamphetamine (METH) induced locomotor activity and METH-induced neurotransmitter levels. These uc-tmTNFα effects were mediated by TNF receptor2 (TNFR2) and induced activation of TNFR2 signaling in astrocytes and neurons. A neuronal module including neurotransmitter signaling pathways was down-regulated in the brain of mice by the short-term overexpression of the gene, while an immune/inflammation-related module was up-regulated in the brain of mice after long-term expression of 22 weeks. Our results indicate that tmTNFα may play a direct role in regulating neurotransmitter signaling pathways that contribute to the clinical features of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: tmTNFα is a candidate key regulator for the immune/inflammation-related co-expression modules associated with schizophrenia.
Fig. 2: A mouse model overexpressing uncleavable tmTNFα in brain endothelial cells.
Fig. 3: Over-expression of uc-tmTNFα in the EC induces schizophrenia-relevant behaviors in mice.
Fig. 4: Over-expression of uc-tmTNFα in the ECs caused deficits in neurotransmitter signaling in the PFC.
Fig. 5: The effects of tmTNFα on schizophrenia-related behaviors mediated by TNFR2 and not by TNFR1.

Similar content being viewed by others

References

  1. Arango C, Kirkpatrick B, Buchanan RW. Neurological signs and the heterogeneity of schizophrenia. Am J Psychiatry. 2000;157:560–5.

    Article  CAS  Google Scholar 

  2. Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat. 2006;2:531–6.

    Article  Google Scholar 

  3. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9:684–97.643

    Article  CAS  Google Scholar 

  4. Schurov IL, Handford EJ, Brandon NJ, Whiting PJ. Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Psychiatry. 2004;9:1100–10.

    Article  CAS  Google Scholar 

  5. Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry. 1999;46:616–26.

    Article  CAS  Google Scholar 

  6. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.

    Article  CAS  Google Scholar 

  7. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2:258–70.

    Article  Google Scholar 

  8. Torrey EF, Peterson MR. The viral hypothesis of schizophrenia. Schizophr Bull. 1976;2:136–46.

    Article  CAS  Google Scholar 

  9. Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res. 2014;155:101–8.

    Article  Google Scholar 

  10. Al-Hakeim HK, Al-Rammahi DA, Al-Dujaili AH. IL-6, IL-18, sIL-2R, and TNFalpha proinflammatory markers in depression and schizophrenia patients who are free of overt inflammation. J Affect Disord. 2015;182:106–14.

    Article  CAS  Google Scholar 

  11. Hwang Y, Kim J, Shin JY, Kim JI, Seo JS, Webster MJ, et al. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl Psychiatry. 2013;3:e321.

    Article  CAS  Google Scholar 

  12. Chang X, Liu Y, Hahn CG, Gur RE, Sleiman PMA, Hakonarson H. RNA-seq analysis of amygdala tissue reveals characteristic expression profiles in schizophrenia. Transl Psychiatry. 2017;7:e1203.

    Article  CAS  Google Scholar 

  13. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.

    Article  CAS  Google Scholar 

  14. Marsland AL, Petersen KL, Sathanoori R, Muldoon MF, Neumann SA, Ryan C, et al. Interleukin-6 covaries inversely with cognitive performance among middle-aged community volunteers. Psychosom Med. 2006;68:895–903.

    Article  CAS  Google Scholar 

  15. Nimgaonkar VL, Yolken RH, Wang T, Chang CC, McClain L, McDade E, et al. Temporal cognitive decline associated with exposure to infectious agents in a population-based, aging cohort. Alzheimer’s Dis Assoc Disord. 2016;30:216–22.

    Article  Google Scholar 

  16. Prasad KM, Watson AM, Dickerson FB, Yolken RH, Nimgaonkar VL. Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia. Schizophr Bull. 2012;38:1137–48.

    Article  Google Scholar 

  17. Siegel BI, Sengupta EJ, Edelson JR, Lewis DA, Volk DW. Elevated viral restriction factor levels in cortical blood vessels in schizophrenia. Biol Psychiatry. 2014;76:160–7.

    Article  CAS  Google Scholar 

  18. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008;11:1271–82.

    Article  CAS  Google Scholar 

  19. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.

    Article  CAS  Google Scholar 

  20. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013;153:707–20.

    Article  CAS  Google Scholar 

  21. Chen C, Meng Q, Xia Y, Ding C, Wang L, Dai R, et al. The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Sci Transl Med. 2018;10:eaat8178.

    Article  CAS  Google Scholar 

  22. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH. The Stanley Foundation brain collection and neuropathology consortium. Schizophr Res. 2000;44:151–5.

    Article  CAS  Google Scholar 

  23. Kim S, Webster MJ. The Stanley Neuropathology Consortium Integrative Database (SNCID) for Psychiatric Disorders. Neurosci Bull. 2019;35:277–82.

    Article  Google Scholar 

  24. Lanz TA, Reinhart V, Sheehan MJ, Rizzo SJS, Bove SE, James LC, et al. Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry. 2019;9:151.

    Article  Google Scholar 

  25. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol. 2004;6:97–105.

    Article  CAS  Google Scholar 

  26. Grethe S, Ares MP, Andersson T, Porn-Ares MI. p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-x(L). Exp Cell Res. 2004;298:632–42.

    Article  CAS  Google Scholar 

  27. Guo D, Dunbar JD, Yang CH, Pfeffer LM, Donner DB. Induction of Jak/STAT signaling by activation of the type 1 TNF receptor. J Immunol. 1998;160:2742–50.

    Article  CAS  Google Scholar 

  28. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401:82–5.

    Article  CAS  Google Scholar 

  29. Kim S, Webster MJ. The stanley neuropathology consortium integrative database: a novel, web-based tool for exploring neuropathological markers in psychiatric disorders and the biological processes associated with abnormalities of those markers. Neuropsychopharmacology. 2010;35:473–82.

    Article  CAS  Google Scholar 

  30. Harris LW, Pietsch S, Cheng TM, Schwarz E, Guest PC, Bahn S. Comparison of peripheral and central schizophrenia biomarker profiles. PLoS One. 2012;7:e46368.

    Article  CAS  Google Scholar 

  31. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997;385:733–6.

    Article  CAS  Google Scholar 

  32. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385:729–33.

    Article  CAS  Google Scholar 

  33. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995;83:793–802.

    Article  CAS  Google Scholar 

  34. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, et al. Control of synaptic strength by glial TNFalpha. Science. 2002;295:2282–5.

    Article  CAS  Google Scholar 

  35. Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci. 2005;25:2566–75.

    Article  CAS  Google Scholar 

  36. Pribiag H, Stellwagen D. TNF-alpha downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci. 2013;33:15879–93.

    Article  CAS  Google Scholar 

  37. Harhous Z, Booz GW, Ovize M, Bidaux G, Kurdi M. An Update on the Multifaceted Roles of STAT3 in the Heart. Front Cardiovasc Med. 2019;6:150.

    Article  CAS  Google Scholar 

  38. Decoster E, Vanhaesebroeck B, Vandenabeele P, Grooten J, Fiers W. Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J Biol Chem. 1995;270:18473–8.

    Article  CAS  Google Scholar 

  39. Korbelin J, Dogbevia G, Michelfelder S, Ridder DA, Hunger A, Wenzel J, et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med. 2016;8:609–25.

    Article  Google Scholar 

  40. Grant KM, LeVan TD, Wells SM, Li M, Stoltenberg SF, Gendelman HE, et al. Methamphetamine-associated psychosis. J Neuroimmune Pharm. 2012;7:113–39.

    Article  Google Scholar 

  41. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003;23:6315–26.

    Article  CAS  Google Scholar 

  42. Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology. 2010;49:1215–28.

    Article  CAS  Google Scholar 

  43. Patel JR, Williams JL, Muccigrosso MM, Liu L, Sun T, Rubin JB, et al. Astrocyte TNFR2 is required for CXCL12-mediated regulation of oligodendrocyte progenitor proliferation and differentiation within the adult CNS. Acta Neuropathol. 2012;124:847–60.

    Article  CAS  Google Scholar 

  44. Ba H, Li B, Li X, Li C, Feng A, Zhu Y, et al. Transmembrane tumor necrosis factor-alpha promotes the recruitment of MDSCs to tumor tissue by upregulating CXCR4 expression via TNFR2. Int Immunopharmacol. 2017;44:143–52.

    Article  CAS  Google Scholar 

  45. Hanson DR, Gottesman II. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet. 2005;6:7.

    Article  Google Scholar 

  46. Harris LW, Wayland M, Lan M, Ryan M, Giger T, Lockstone H, et al. The cerebral microvasculature in schizophrenia: a laser capture microdissection study. PLoS One. 2008;3:e3964.

    Article  Google Scholar 

  47. Volk DW, Chitrapu A, Edelson JR, Roman KM, Moroco AE, Lewis DA. Molecular mechanisms and timing of cortical immune activation in schizophrenia. Am J Psychiatry. 2015;172:1112–21.

    Article  Google Scholar 

  48. Uranova NA, Zimina IS, Vikhreva OV, Krukov NO, Rachmanova VI, Orlovskaya DD. Ultrastructural damage of capillaries in the neocortex in schizophrenia. World J Biol Psychiatry. 2010;11:567–78.

    Article  Google Scholar 

  49. Radu G, Luca C, Petrescu L, Bordejevic DA, Tomescu MC, Andor M, et al. The predictive value of endothelial inflammatory markers in the onset of schizophrenia. Neuropsychiatr Dis Treat. 2020;16:545–55.

    Article  CAS  Google Scholar 

  50. Cai HQ, Catts VS, Webster MJ, Galletly C, Liu D, O’Donnell M, et al. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry. 2020;25:761–75.

    Article  CAS  Google Scholar 

  51. Li G, Wu Y, Jia H, Tang L, Huang R, Peng Y, et al. Establishment and evaluation of a transgenic mouse model of arthritis induced by overexpressing human tumor necrosis factor alpha. Biol Open. 2016;5:418–23.

    Article  CAS  Google Scholar 

  52. Willuweit A, Sass G, Schoneberg A, Eisel U, Tiegs G, Clauss M. Chronic inflammation and protection from acute hepatitis in transgenic mice expressing TNF in endothelial cells. J Immunol. 2001;167:3944–52.

    Article  CAS  Google Scholar 

  53. Boin F, Zanardini R, Pioli R, Altamura CA, Maes M, Gennarelli M. Association between -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiatry. 2001;6:79–82.

    Article  CAS  Google Scholar 

  54. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014;511:421–7.

    Article  Google Scholar 

  55. Pandey GN, Rizavi HS, Zhang H, Ren X. Abnormal gene and protein expression of inflammatory cytokines in the postmortem brain of schizophrenia patients. Schizophr Res. 2018;192:247–54.

    Article  Google Scholar 

  56. Baune BT, Wiede F, Braun A, Golledge J, Arolt V, Koerner H. Cognitive dysfunction in mice deficient for TNF- and its receptors. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1056–64.

    Article  CAS  Google Scholar 

  57. Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, et al. TNF-alpha protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation. 2012;9:23.

    Article  CAS  Google Scholar 

  58. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci USA. 2010;107:20518–22.

    Article  CAS  Google Scholar 

  59. Gahring LC, Carlson NG, Kulmar RA, Rogers SW. Neuronal expression of tumor necrosis factor alpha in the murine brain. Neuroimmunomodulation. 1996;3:289–303.

    Article  CAS  Google Scholar 

  60. Orti-Casan N, Wu Y, Naude PJW, De Deyn PP, Zuhorn IS, Eisel ULM. Targeting TNFR2 as a novel therapeutic strategy for Alzheimer’s disease. Front Neurosci. 2019;13:49.

    Article  Google Scholar 

  61. Gao H, Danzi MC, Choi CS, Taherian M, Dalby-Hansen C, Ellman DG, et al. Opposing functions of microglial and macrophagic TNFR2 in the pathogenesis of experimental autoimmune encephalomyelitis. Cell Rep. 2017;18:198–212.

    Article  CAS  Google Scholar 

  62. MacVicar BA, Newman EA. Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol. 2015;7. https://doi.org/10.1101/cshperspect.a020388.

  63. Raffaele S, Lombardi M, Verderio C, Fumagalli M. TNF production and release from microglia via extracellular vesicles: impact on brain functions. Cells 2020;9. https://doi.org/10.3390/cells9102145.

  64. Snijders G, van Zuiden W, Sneeboer MAM, Berdenis van Berlekom A, van der Geest AT, Schnieder T, et al. A loss of mature microglial markers without immune activation in schizophrenia. Glia. 2021;69:1251–67.

    Article  CAS  Google Scholar 

  65. Olmos G, Llado J. Tumor necrosis factor-alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014;2014:861231.

    Article  Google Scholar 

  66. Rajashekhar G, Grow M, Willuweit A, Patterson CE, Clauss M. Divergent and convergent effects on gene expression and function in acute versus chronic endothelial activation. Physiol Genom. 2007;31:104–13.

    Article  CAS  Google Scholar 

  67. Kim S, Jo Y, Webster MJ, Lee D. Shared co-expression networks in frontal cortex of the normal aged brain and schizophrenia. Schizophr Res. 2019;204:253–61.

    Article  Google Scholar 

  68. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.

    Article  Google Scholar 

  69. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the investigators who generated the RNA-Seq data and neuropathology data deposited in the SNCID (http://sncid.stanleyresearch.org). The RNA-seq data used for our replication study was obtained from dbGAP database (accession number phs000979.v2.p2). We also thank Jonathan Cohen, Kenya Platero, SignaGen Co., and Macrogen Co. for their technical assistance. Financially support was provided by the National Research Foundation of Korea [NRF] Grant funded by the Korea government (MSIP) (No. MRC, 2017R1A5A2015541). The authors declare that they have no conflict of interest. The RNA-Seq raw data (FASTQ) files are publicly available for download at http://sncid.stanleyresearch.org (SNCID).

Author information

Authors and Affiliations

Authors

Contributions

IJY, JY, JTH, and SK designed the study. MJW and SK performed the human post-mortem study and analysis of the data. IJY, JY, DJS, SH, and JTH performed the animal experiments and statistical analysis of the mouse behavioral data. IJY, JY, MJW, and SK drafted the manuscript, and JTH, MJW, and SK revised it. All authors reviewed and approved the final version.

Corresponding authors

Correspondence to Jin Tae Hong or Sanghyeon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeo, I.J., Yun, J., Son, D.J. et al. Overexpression of transmembrane TNFα in brain endothelial cells induces schizophrenia-relevant behaviors. Mol Psychiatry 28, 843–855 (2023). https://doi.org/10.1038/s41380-022-01846-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01846-7

This article is cited by

Search

Quick links