Academia.eduAcademia.edu
Cretaceous Research 32 (2011) 59e130 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes The uppermost Middle and Upper Albian succession at the Col de Palluel, Hautes-Alpes, France: An integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy) A.S. Gale a, P. Bown b, M. Caron c, J. Crampton d, S.J. Crowhurst e, W.J. Kennedy f, *, M.R. Petrizzo g, D.S. Wray h a School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, UK Department of Geological Sciences, University College London, Gower Street, London WC1E 6BT, UK c Institut de Géologie, Université de Fribourg, CH-1700 Fribourg, Switzerland d GNS Science, PO Box 30 368, Lower Hutt, New Zealand e Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK f Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK g Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy h School of Science, University of Greenwich, Medway University Campus, Pembroke, Chatham Maritime, Kent ME4 4TB, UK b a r t i c l e i n f o a b s t r a c t Article history: Received 31 March 2010 Accepted in revised form 15 October 2010 Available online 19 November 2010 An integrated study of the ammonites, inoceramid bivalves, planktonic foraminifera, calcareous nannofossils, geochemistry, stable carbon isotopes, and cyclostratigraphy is provided for the upper Middle to upper Upper Albian sucession exposed in the Col de Palluel section east of Rosans in Hautes-Alpes, France. The Albian-Cenomanian boundary interval described by Gale et al. at Mont Risou is re-examined, a total thickness of 370 m of the Marnes Bleues Formation. Zonal schemes based on ammonites, inoceramid bivalves, planktonic foraminifera, and calcareous nannofossils are integrated with the stable carbon isotope curve and key lithostratigraphic markers to provide a sequence of more than 70 events in the uppermost Middle Albian to basal Cenomanian interval. Time series analysis of the Al2O3 content of the 500 m Albian sequence present in the Col de Palluel and Risou sections reveals the presence of the 20 kyr precession, 40 kyr tilt, 100 kyr short eccentricity, and 406 kyr long eccentricity cycles. Correlation using planktonic foraminiferan and nannofossil data provide a link between the Col de Palluel and Risou sections and the Italian sequence at Gubbio, and in the Piobbico core. This provides a basis for the extension of the orbital time scale of Grippo et al. to the sequence. It reveals a major break in the Col de Palluel succession at the top of the distinctive marker bed known as the Petite Vérole that may represent as much as 2 Ma. It also provides a basis for the estimation of the length of the Albian Stage at 4.12 Ma, 0.8 Ma for the early Albian, 2.84 Ma for the Middle Albian, and 3.68 Ma for the late Albian substages. Ó 2010 Elsevier Ltd. All rights reserved. Keywords: Albian France Ammonites Inoceramid bivalves Planktonic foraminifera Nannofossils Geochemistry Stable oxygen and carbon isotopes Cyclostratigraphy 1. Introduction (A.S. Gale, W.J. Kennedy) The Marnes Bleues succession of the Vocontian Basin in southeast France has become recognised as a key macrofossil, microfossil, nannofloral, geochemical and stable isotope archive for the uppermost Aptian to lowest Cenomanian interval. The pioneering studies of Bréhéret in the 1980’s, summarised in Bréhéret (1997), laid the foundations for a wide ranging series of publications, for * Corresponding author. E-mail address: jim.kennedy@oum.ox.ac.uk (W.J. Kennedy). 0195-6671/$ e see front matter Ó 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.cretres.2010.10.004 example Bréhéret et al. (1986), Herrle (2002), Herrle et al. (2004), Fiet et al. (2006), and references therein. The section to the south of Mont Risou in Haute-Alpes (Figs. 1e11 ) provides the Global boundary Stratotype Section and Point for the base of the Cenomanian Stage (Gale et al., 1996; Kennedy et al., 2004), and the section at Tartonne provides the candidate GSSP for the base of the Albian Stage (Kennedy et al., 2000). In the present contribution we provide an integrated study of a 240 m section in the Marnes Bleues exposed in the Ravin des Jassines, to the west of the Col de Palluel, in Hautes-Alpes, 2 km east of the town of Rosans (Fig. 1). This extends from the uppermost Middle Albian to the upper Upper 60 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 road cut section 4 D99 GR 9 1 Col de Palluel Risou Moydans Ravin des Jassines 1102 D25 Notre Dame D4 D994 25 D3 Ch. de RISOU St. Jean 25 1179 Rosans 1181.3 la Baume 49 D9 Risou section GSSP for base of Cenomanian Stage 5 D22 la Basse Baume ne da Li 1000 m St-André de-Rosans 500 m 0 1 km Fig. 1. Location of sections around Mont Risou, Haute-Alpes, France. Albian, and taken with the partially overlapping upper Upper Albian to Lower Cenomanian succession to the south described previously (Gale et al., 1996; Kennedy, et al., 2004), provides the most detailed record known of the Upper Albian Substage, here marl laminated / sublaminated organic-rich marl shell bed glauconite barytes nodules well-defined concretionary layer poorly defined concretionary layer discontinuous concretionary layer T Turbidite Fig. 2. Key to symbols used in Figs. 3e6 and 11. nearly 330 m thick in total, with an excellent ammonite, inoceramid bivalve, planktonic foraminiferan, nannofossil, geochemical, stable oxygen and carbon isotope, and cyclostratigraphic record. For comparison, it should be noted that the classic Upper Albian sequences of the Channel coast at Folkestone (UK) and Wissant (Pas de Calais, France) are both incomplete below the sub-Cenomanian unconformity, and an order of magnitude thinner. The section at the Col de Palluel also provides a unique opportunity to determine the ammonite sequence in a Tethyan context, where rich and diverse faunas, known since the pioneering studies of Brongniart (1822) and d’Orbigny (1840e1842), occur in highly condensed phosphates, as at Escragnolles, Gourdon, and Salazac. 2. Lithostratigraphy (A.S. Gale) The Marnes Bleues Formation is widely developed in the Vocontian Basin as a thick (800 m) succession of calcareous clays and marls, often strikingly rhythmically bedded, containing at certain levels thin sand turbidites, and discrete dark, laminated layers rich in organic matter. It spans the late Aptian to early Cenomanian interval. In the Rosans Syncline, west of the town of Rosans, Hautes-Alpes (Fig. 1), the uppermost Aptian to Lower Cenomanian Marnes Bleues and overlying Lower and Middle Cenomanian Calcaires Marneueux de Risou (new term: see below) are very well exposed in badlands and stream courses adjacent to the foot of Mont Risou, which is itself 61 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 250 base D 330 290 base B base inflatum 255 295 335 base ticinensis base breggiensis base NC9b 260 PV 300 340 265 305 top biometricus base biometricus base munsoni 345 270 310 350 315 FO 355 D. cristatum, base sulcatus O. roissyanum fauna with Turrilitoides densicostatus Scaphamites passendorferi bed base pricei 275 base C base parabolicus 280 360 320 LO O. roissyanum fauna T5 285 325 TC 365 T4 290 T3 T2 T1 330 370 Fig. 3. The Marnes Bleues section between 370 and 250 m in the Ravin des Jassines. The bases of ammonite, inoceramid bivalve and planktonic foraminiferan zones, and of lithostratigraphic units recognised is marked. FO¼ first occurrence; LO¼last occurrence; TC¼triplet calcaire; T¼turbidite; PV¼petite vérole. capped by Turonian limestones. Bréhéret (1997) took the sections in the vicinity of Col de Palluel, comprising the roadcut on route D 994 and the Ravin des Jassines (Fig.1) as representing the most complete, basinward succession of the Middle Albian to Lower Cenomanian part of the Marnes Bleues. Bréhéret’s magnum opus (1997) is admirably detailed and offers a thorough account of the sedimentology and stratigraphy of the Marnes Bleues. However, we feel that the correlations proposed are sometimes compromised by meagre biostratigraphical support, and the discontinuities identified in successions like that at the Col de Palluel are almost entirely theoretical. In addition, the division into ‘Unites’ 11e15 for the Palluel section, for example, is somewhat arbitrary and based on a mixture of biostratigraphy, marker bed boundaries, ‘discontinuities’, and lithology. We therefore provide a new lithostratigraphical framework for the Palluel and Risou sections, based on our own observations, but using Bréheret’s well-chosen, named marker beds. The following account is based on a composite section of the Ravin de Jassines and stream sections in the vicinity of Le Chafaud, Risou (Figs. 2e7,9e11), where we have re-measured and re-collected the top 132 m of the Marnes Bleues. As previously (Gale et al.,1996; Kennedy et al., 2004) we take the zero datum as the lowest limestone in the Calcaires Marneueux de Mont Risou. We also logged and sampled the MiddleeUpper Albian boundary section in the roadcut on the north side of the D944 at the Col de Palluel east of the junction with the D425, 4.8 km ENE of Rosans (Figs. 1 and 11). This was described previously by Bréhéret (1997, figs. 8, 9). 62 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 130 Br2 210 170 T 13 base E T 12 T 11 135 Br1 175 215 T 10 base G T9 base F 140 180 145 185 base perinflatum 220 225 T7 base rostratum 150 190 230 155 195 235 200 base appenninica 240 T15 160 base NC10 T6 base fallax GD Jassines event 165 T14 205 245 T8 PD 170 210 250 Fig. 4. The Marnes Bleues section between 250 and 130 m in the Ravin des Jassines. The bases of ammonite zones, and of lithostratigraphic units recognised is marked. T: turbidite; PD: petit doublet; GD: grand doublet; Br: Breistroffer. 2.1. Marnes Bleues Formation Unit A corresponds to the lower part of Unite 11 of Bréhéret (1997, fig. 45) and extends from 291.1 to 370 m. It comprises conspicuously colour-banded, thinly bedded silty clays and marls containing darker beds (<0.5 m thick) of fissile sublaminated marl with TOC contents of <2%, and thin, paler calcareous beds that weather proud, and contain barite concretions (Fig. 6). Pyritic and phosphatic concretions occur throughout. The dark marls contain abundant crushed examples of the bivalve Actinoceramus, and several contain flattened pyritic/limonitic composite moulds of ammonites. Important markers are the thin calcareous beds of the ‘triplet calcaire’ of Bréhéret (1997, fig. 38; 323.2 to 327 m), and an inconspicuous sandy calcareous bed crowded with Actinoceramus sulcatus (Parkinson, 1819) and crushed ammonites ( 314.7 m). This bed is marked on Bréhéret’s log (1997, fig. 38) as the entry level of Birostrina subsulcata (¼A. sulcatus herein). Unit B corresponds to the middle part of Unite 11 of Bréhéret (1997, fig. 45), and extends from 275.3 to 291.1 m. The sequence is made up of silty marls with hard calcareous beds (0.1e0.3 m thick) and thin (0.01e0.1 m) discrete sand turbidites. Some layers are conspicuously light and dark striped on a centimetre scale. Large (<0.3  0.7 m) rounded barite-cemented concretions occur irregularly in the harder beds. Markers are five thin turbidites (T1e5) of which T4 ( 285.9 m) is coloured green because of the presence of abundant grains of glaucony, and the 63 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 35 GSSP : FO 70 T. globotruncanoides 5 poor exposure 0 base briacensis Br 6 105 40 75 110 base H Br 5 10 45 80 115 15 50 85 Br 4 120 20 55 90 125 Br 3 25 base mantelli 30 base I 65 poor exposure 60 95 130 Br 2 100 Fig. 5. The Marnes Bleues section between 0 and 132 m in the section near Le Chafaud, southwest of Mont Risou. The bases of ammonite zones and of lithostratigraphic units recognised is marked. Br: Breistroffer; GSSP: Global boundary Stratotype Section and Point for the base of the Cenomanian Stage, the first occurrence of the planktonic foraminiferan Rotalipora globotruncanoides at 36 m. ‘faisceau silteux’ (‘silty bundle’) of Bréhéret ( 285 to 286.3 m), a 1.3 m complex of 4 harder sandy beds including one turbidite (T4). Unit C corresponds to the top of Unite 11 and base of Unite 12 of Bréhéret (1997, fig. 45), and extends from 250.3 to 275.3 m. Thinly, somewhat irregularly bedded silty and sandy marls contain harder sandy calcareous beds (<0.2 m) and many thin layers (<0.1 m) packed with crushed moulds of ammonites and silvery inoceramid bivalve shells (the latter in the lower part only). The most conspicuous marker is the ‘petite vérole’ (smallpox bed) (Bréhéret, 1997 figs 39, 40; 259.5 m; see the lower part of Fig. 7). This is the highest bed in a 1 m thick triplet of hard calcareous beds, full of Chondrites, the fills of which are packed with foraminifera. The speckling caused by the Chondrites infill supposedly bears a resemblance to the rash produced by smallpox. For Bréhéret (1997 p.307), the petite vérole represented his ‘discontinuite 11’, an inference supported by the firmground nature of the bed, and the presence of glaucony immediately above it. Unit D corresponds to the lower part of Unite 12 of Bréhéret, and extends from 211.5 to 250.3 m. It is made up of alternations of more- and less- calcareous silty marls, very regularly bedded on a metre scale; 0.2 m thick hard calcareous beds weather out conspicuously (Fig. 7). Fossils are relatively uncommon, and occur scattered throughout the sediment. Two very thin (<1 cm) turbidites (T6e7) are present, at 239.4 and; 224.4 m. Bréhéret’s ‘discontinuite 12’, for which there is no sedimentological evidence, coincides with the higher of the two. Pyrite and barite concretions are scattered throughout. Unit E corresponds to the upper part of Unite 12 of Bréhéret, and extends from 178.6 to 211.5 m. It is made up of rhythmically bedded silty marls containing harder marly limestones at approximately 1 m intervals (Fig. 7). Certain of the marly limestones contain flattened barite concretions (Paillert, 1983, Bréherét and Brumsack, 2000), and sometimes pyritised ammonites. The small bivalve Aucellina is abundant throughout, occurring concentrated with ammonites in shell beds, which immediately overly limestone beds. A single thin turbidite is present (T8, 206 m). Bréhéret’s ‘discontinuite 13’, which is, in our view, unsupported by sedimentological evidence, is located in the upper part of this unit at 192.8 m. Unit F corresponds to Unite 13 of Bréhéret, and extends from 137.2 m to 178.6 m. It is made up of more and less regularly bedded calcareous marls, the rhythmicity on a 0.5e1 m scale, picked out by harder, more calcareous beds and softer intervening marls. The lower part is conspicuously sandy, and a group of 7 thin turbidites (T9-15) are present. The thickest of these, T12 ( 173.5 m, and some 0.05e0.1 m thick) has a strongly bioturbated base and is a most conspicuous marker; slabs of it are common as debris in the gullies on the higher part of the Ravin des Jassines. Two pairs of harder calcareous beds, the ‘Petit Doublet’ and ‘Gros Doublet’, were identified by Bréhéret (1997) as markers. Unit F contains abundant ammonites and Aucellina in certain thin layers. Unit G corresponds to the lower part of Unite 14 (14A) of Bréhéret, and extends from 108 to 137.2 m. The niveau Breistroffer of Bréhéret (1997, figs 46, 47) comprises a succession of thin (<0.2 m) discrete layers of sublaminated, dark, fissile, organic-rich 64 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 6. The lower part of the Col de Palluel Marnes Bleues succession in Ravin de Jassines. marls with TOC values up to 3.0%, which occur in groups of 2 and 3. We have been able to readily identify beds Br 1e6 of Bréhéret (Figs. 4 and 5), but are less convinced that Br 7 and 8 can be recognised around Mont Risou. The dark beds of the niveau Breistroffer are separated by silty marls containing hard, more calcareous beds. The sublaminated beds contain an abundant fauna of crushed composite moulds of ammonites (Gale et al., 1996). Unit H corresponds to the upper part of Unite 14 (14B) of Bréhéret, together with the overlying sediments, extending from 30.4 to 108 m at Risou. Inconspicuously bedded silty marls Fig. 7. The higher part of the Marnes Bleues succession, in the Ravin de Jassines, from petite vérole (PV) upwards. The vertical lines mark the position of the logged and sampled interval. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 m slump 45 20 40 65 2.1.1. Calcaires Marneueux du Risou This is a new formation name, introduced here for the rhythmically bedded marly limestones of Cenomanian age that succeed the Marnes Bleues Formation. Although they are developed across the Vocontian Basin, they have not been formally named. We here designate the stream cut sections south of Le Chafaud, Risou (Fig. 1), as reference section for the unit. We take the base of the Formation at the first well-cemented limestone bed in the succession, our zero datum reference for this and previous accounts of the stratigraphy of the Marnes Bleues (Gale et al., 1996). The formation consists of bioturbated calcareous marls and marly limestones, conspicuously bedded on a decimetre to metre scale. Individual decimetre scale couplets are often bundled into groups a few metres thick. We present a log of the lowest 80 m of the Formation at Risou here (Fig. 8). 3. The sequence of ammonite faunas (W.J. Kennedy) 3.1. Middle and Upper Albian ammonite zonation 10 30 0 Fig. 8. Log of the lowest 80 m of the Calcaires Marneaux de Risou. contain rather poorly defined 0.2e1 m thick more calcareous beds. Ammonites and small bivalves are concentrated in a few beds only (e.g. 80 m, 50 m). Pyritised ammonites are common between 35 and 45 m. Unit I extends from the zero datum to 30.4 m, and comprises calcareous marls made up of numerous rhythmic alternations of more and less calcareous units on a metre scale. In the higher part, several beds containing barite concretions are present, and pyritised burrows occur throughout. Ammonites and bivalves are rather scarce throughout this interval. 3.1.1. Middle Albian There is now reasonable agreement that the base of the Middle Albian should be drawn, in ammonite terms, at the first occurrence of the ammonite Lyelliceras lyelli (d’Orbigny, 1841), and the base of the Upper Albian, in ammonite terms, at the FO of the ammonite Dipoloceras cristatum (Brongniart, 1822) (see for example Hart et al., 1996), but, as yet there are no accounts of the detailed succession of ammonite faunas across these boundaries in expanded sequences, or their relationship to other faunal and floral groups at the level of precision demanded by contemporary stratigraphic practise. As will be described below, the Col de Palluel section provides a degree of resolution of the latter problem; the former remains unresolved. In Europe, Middle Albian ammonite zonations have been largely developed in the relatively attenuated sequences of the Anglo-Paris Basin, within what Owen (1971, p. 130, text-fig. 50) termed the hoplitinid ammonite faunal province. The southeast of France lies on the margins of this province and the Mediterranean province. Here, ammonite distributions are complex. Hoplitids are locally abundant in condensed phosphatic deposits as at Escragnolles, Var (Parona and Bonarelli, 1897; Breistroffer, 1947; Collignon, 1949; Gebhard, 1979, 1982,1983) and Gourdon, Alpes-Maritimes (Jacob, 1907, 1908; Collignon, 1949). These do not provide a basis for detailed biostratigraphic subdivision. In the expanded sequences of the Marnes Bleues, there is, so far as we are aware, no ammonite record between the uppermost Lower Albian (mammillatum Zone, steinmanni Subzone) from the Col de Pré-Guittard, Arnayon, Drôme, noted by Kennedy et al. (2000, p. 608, fig. 11) and the record of unidentified ammonites in the lumachelle à Birostrina concentrica of Bréhéret (1997, fig. 8) at the 334.7 m level, only 20 m below the lowest occurrence of the basal Upper Albian ammonite Dipoloceras cristatum at 314.7 m. Owen (1999, fig. 5) suggested that the Mediterranean (Tethyan Province) Middle Albian might be divisible (from oldest to youngest) into zones of Douvilleiceras mammillatum, Lyelliceras lyelli and Oxtropidoceras (O.) spp. Absence of expanded sections make this zonation somewhat hypothetical, while the apparent recognition of a lower Middle Albian mammillatum Zone is puzzling, as Owen has otherwise consistently placed his mammillatum Superzone exclusively in the Lower Albian (for example Owen, 1988), although noting that Douvilleiceras extends up into his basal Middle Albian lyelli Subzone. The relative distribution of Oxytropidoceras species, good potential marker fossils in the Mediterranean province (and throughout Tethys) is problematic, as most records in southeast France are from condensed sequences. Records from Pech de Foix, Ariège, were documented by Kennedy et al. (1996), who recorded Oxytropidoceras (Mirapelia) 66 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Owen, 1999 S. dispar S. dispar S. dispar Latil, 1995 N. blancheti This work A. briacensis A. briacensis A. briacensis M. perinflatum M. perinflatum M. perinflatum M. rostratum M. rostratum M. fallax C. auritus H. varicosum M. inflatum M. inflatum C. auritus Amédro et al. 2004 H. orbignyi D. cristatum M. fallax M. inflatum M. inflatum H. varicosum H. orbignyi D. cristatum M. pricei M. pricei D. cristatum D. cristatum Fig. 9. Some recently proposed zonal schemes for the Upper Albian Substage. m Member Marker Bed I Substage Ammonite Zone Lower Cenomanian (part) mantelli Nannofossil Zone Planktonic Foram Zone globotruncanoides 50 briacensis H 100 NC 10 Br appenninica G perinflatum 150 F GD PD Upper Albian rostratum 200 E fallax ticinensis D inflatum 250 C B PV pricei breggiensis FS cristatum 300 NC 9a A 350 NC 9b TC Middle Albian (part) primula roissyanum Fig.10. Correlation of lithostratigraphic and biostratigraphic divisions of the upper 370 m of the Marnes Bleues Formation in the environs of Mont Risou. TC: triplet calcaire; FS: faisceau silteux; PV: petite vérole; pd: petit doublet; GD: grand doublet; Br: Breistroffer. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 T T Actinoceramus sulcatus (fide Bréhéret) 50 20 3 2 T Triplet Calcaire 1 T 40 Proturrilitoides densicostatus bed 10 sandstone dykes T Scaphamites passendorferi bed 30 sandstone dykes 0m Fig. 11. The Lower-Middle Albian boundary interval exposed on the north side of the D994 road east of the junction with the D425, 4.8 km east- north- east of Rosans T: turbidite. mirapelianum (d’Orbigny, 1850) in association with Hoplites (Hoplites) dorsetensis Spath, 1926, of the upper, Hoplites spathi Subzone of the Hoplites dentatus Zone. As described below, Oxytropidoceras (Oxytropidoceras) roissyanum (d’Orbigny, 1841) occurs at the top of the Middle Albian of the Col de Palluel sections, and we propose a roissyanum Zone for this interval. The base of the Zone cannot be defined in this section, but Owen (1971) records both mirapelianum and roissyanum from the spathi Subzone in the Anglo-Paris Basin. Accordingly we provisionally recognise lyelli and roissyanum Zones as possible divisions of the Middle Albian in southeast France. There are numerous scattered references to the ammonites from the Albian sucession described here in the literature, but the only satisfactory descriptions and/or illustrations are those of Kennedy in Gale et al. (1996) and Joly and Delamette (2008). 67 3.1.2. Upper Albian Development of a satisfactory, testable Upper Albian zonation that applies to both the Hoplitinid Faunal Province and the Mediterranean Province that includes southeast France should, at first sight, be relatively unproblematic, as the key taxa, members of the Mojsisovicsiidae and Stoliczkaiinae for the most part, are of cosmopolitan distribution. Fig. 9 shows a number of alternative zonations as a basis for discussion. There is agreement that the FO of Dipoloceras cristatum defines the base of the Upper Albian in ammonite terms. Inclusion as a Subzone of a Mortoniceras inflatum Zone is a tradition: Mortoniceras inflatum first appears at a much higher level, the auritus Subzone of authors (note that Owen, 1999, p. 144, refers to, but does not describe, an ‘early form’ of inflatum in his varicosum Subzone). Owen (1999, p. 144) pointed out that Mortoniceras is absent from the cristatum Subzone, while the wide distribution of D. cristatum outside western and central Europe, in Morocco, Tunisia, India, KwaZulu (South Africa), Mozambique, Madagascar, Japan, Texas (USA), and Argentina, make Owen’s proposal of a cristatum Total Range Zone entirely logical, and it is accepted as such here. As Owen also notes, the separation of the classic Hysteroceras orbignyi and H. varicosum Subzones is unsatisfactory; the index species have overlapping (if not identical) ranges, and are separable only on the basis of the presence of the radially ribbed bivalve Actinoceramus sulcatus sulcatus (Parkinson, 1819) in the orbignyi Subzone, and the concentrically ribbed Actinoceramus sulcatus biometricus Crampton, 1996, in the varicosum Subzone. Alternative divisions that suggest themselves are twofold. Either recognise an orbignyi or varicosum Total Range Zone, or follow the views of Amédro (1992, Amédro et al., 2004), and recognise a Mortoniceras pricei Total Range Zone. The latter view is adopted here. Above, and following Amédro, we adopt a Mortoniceras inflatum Total Range Zone, a much narrower concept than the classic one. The classic Stoliczkaia dispar Zone presents as many problems as the classic Mortoniceras inflatum Zone. Not only is the index species confined to a limited interval within the Zone, but the subdivisions of the interval considered equivalent to the Zone are disputed. In this interval, Amédro (1992, 2002), having abandoned a dispar Zone, has consistently recognised a Mortoniceras fallax Zone below, and a Mortoniceras perinflatum Zone above, with, latterly, and higher still, a Praeschloenbachia briacensis Zone as the equivalents of the broad dispar Zone of authors. In contrast, others (as for example Owen, 1996, 1999) recognise a rostratum Subzone below, and a perinflatum Subzone above, and do not recognise a fallax Zone or Subzone. Amédro (2002) rejected Mortoniceras rostratum as a zonal fossil because it came from a condensed deposit. But as Hancock (2003) noted, this is not the case. The holotype of M. rostratum comes from the expanded Upper Greensand of Oxfordshire, and it is M. fallax, used as an index fossil by Amédro, that comes from not merely a condensed deposit, but from the Cambridge Greensand, a bed of derived Albian phosphatised fossils, probably of more than one age, that form a basement bed to the Cenomanian Lower Chalk of Cambridgeshire, and are preserved in a matrix of Lower Cenomanian age (Hart, 1973). The problem of the stratigraphic relationship between fallax and rostratum was addressed by Latil (1995), and reviewed by Kennedy and Latil (2007): Owen (1984) suggested that the dispar Zone be divided into two Subzones (from bottom to top): 1) Mortoniceras (Mortoniceras) rostratum Subzone 2) Mortoniceras (Durnovarites) perinflatum Subzone 68 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 But introduction of these new subdivisions put forward, discrepancies in the understanding of the index species, Mortoniceras rostratum (J. Sowerby, 1818) in the literature. - Breistroffer (1940) assumed that M. rostratum only occurs in the perinflatum Subzone whilst Mortoniceras fallax (¼Pervinquieria fallax Breistroffer,1940) occurs in the lower part of the dispar Zone. Breistroffer was followed by Amédro in Amedro and Robaszynski (1980), Scholz (1979), and Cooper and Kennedy (1979). - Owen (1975) concluded both species as synonyms and therefore Mortoniceras rostratum characterises the lower part of the dispar Zone. After re-examination of the type material of M. inflatum (J. Sowerby, 1818)., M. rostratum (J. Sowerby, 1818)., M. fallax (Breistroffer, 1940)., M. pachys (Seeley, 1865)., and M. stoliczkai (Kossmat, 1895)., and comparative material from south-eastern France, it turns out that true M. rostratum only occurs in the perinflatum Subzone of the Montagne de Lure (Alpes de Haute Provence) sections, along with Stoliczkaia dispar.. Mortoniceras rostratum is always quadrituberculate on the phragmocone and on the beginning of the body chamber and trituberculate on the terminal part of the body chamber. M. fallax. differs from M. rostratum by the appearance of the trituberculation at a younger stage (i.e. before the body chamber) and its larger adult size. Moreover, it is found at an older level. From the inflatum Subzone, Mortoniceras inflatum (J. Sowerby, 1818). shows the first indices of a quadrituberculate stage on the inner whorls. In Mortoniceras, transition between tri- and quadri-tuberculate morphologies seems to be induced by a juvenile innovation that spreads quickly to the outer whorls. During the dispar Zone, this innovation drives quickly to an heterochronic process of progenetic type: after a fallax grade in which quadrituberculation invades the inner whorls towards the vicinity of the body chamber; this process achieves during the perinflatum Subzone, the morphology of M. rostratum in which trituberculation is only maintained on the outer part of the body chamber. All these ornamental changes seem to be combined with a reduction of the Mortoniceras adult size through evolution. In addition, it is likely that the successive inflatum, fallax and rostratum represent a one single chronospecies, characterised by a strong intraspecific polymorphism. In any case, only M. fallax should be used as index species of the lower part of the dispar Zone, while M. rostratum characterises the middle part of this Zone.” (Latil, 1995). The sucession of these species of Mortoniceras is established as follows. A re-examination of the ammonites from the Montlaux section in Alpes de Haute Provence, described by Latil (1995) and Kennedy and Latil (2007) shows that M. perinflatum succeeds M. rostratum, with no overlap. This same sequence has been independently established in Texas (Kennedy et al.,1998, 2005). Furthermore, the ontogeny and other morphological features suggested to Kennedy et al. (1998) that both rostratum and perinflatum should be referred to the Subgenus Mortoniceras (Subschloenbachia) Spath, 1921, which they regarded as the senior synonym of Durnovarites Spath, 1922. The relative position of M. fallax is established on the basis of records from southern England, the distinctive association in the expanded Strépy section (Amédro, 2002; Kennedy et. al., 2008) and the condensed Salazac section in Gard (Latil, 1995; Amédro, 2002). On this basis, a sequence of Mortoniceras fallax, rostratum, and perinflatum Zones can be proposed, succeeded by an Arrhaphoceras briacensis Zone, together equivalent to the classic dispar Zone of authors (Fig. 9). Some authors, most recently Latil (1995, fig. 7) have preferred to divide up the classic dispar Zone into a Subzone of Neophlycticeras (N.) blancheti below, and Stoliczkaia dispar above, as an alternative. The evidence from the Col de Palluel section, described below, leads us to adopt the Mortoniceras based sequence. 3.2. The ammonite succession at the Col de Palluel The uppermost Middle, and Upper Albian sequence at the Col de Palluel has yielded more than 100 ammonite species. Many have been discussed previously (in Gale et al., 1996), and we concentrate, in this account, on illustrating the fauna, restricting our taxonomic remarks to a limited number of key or poorly known species. There are two aspects to ammonite occurrences in the section: those that provide the justification for the zonal scheme proposed above, and the sequence of first and last occurrences within the sucession that provide the matrix of intrazonal intervals-or events- that provide a basis for more precise dating of isolated Upper Albian faunas elsewhere in the region, including some classic and richly fossiliferous condensed units. The position of zonal boundaries is shown in Figs. 3 5, and summarised in Fig. 10. 3.2.1. The Middle Albian Oxytropidoceras (O.) roissyanum Zone This is a new term, established for the uppermost Middle Albian faunas present in the Col de Palluel section. The lowest 35 metres of our logged section in the Ravin des Jassines (Fig. 3) did not yield any ammonites. These first appear in the Ravin des Jassines at 334.5 m, corresponding to the lumachelle à Birostrina concentrica of Bréhéret (1997, fig. 8). This same bed is present in the roadcut on the north side of the D994 road east of the junction with the D425, 4.8 km east- north- east of Rosans (Bréhéret, 1997, fig. 9; Fig. 11) where it yields an extensive fauna. Long-ranging Phylloceras (Hypophylloceras) velledae (Michelin, 1838), Tetragonites sp., Puzosia (P.) mayoriana (d’Orbigny, 1841), Anahoplites planus (Mantell, 1822), and Ptychoceras sp., are accompanied by the stratigraphically significant species Oxytropidoceras roissyanum (d’Orbigny, 1841), Dipoloceras bouchardianum (d’Orbigny, 1841), Turrilitoides densicostatus (Passendorfer, 1930), Hamites subrotundus Spath, 1941, Hamites tenuicostatus Spath, 1941, and Hamites tenuis J. Sowerby, 1814. Elements of this assemblage extend upwards to 321.3 m, with the additional species Hamites maximus J. Sowerby, 1814, at 333.5 m, and the long-ranging Kossmatella muhlenbecki (Fallot, 1885) at 326.6 m. The presence of Scaphamites passendorferi Wiedmann and Marcinowski, 1985 at 338 m, is notable. 3.2.2. Upper Albian, Dipoloceras cristatum Zone There is a 6.6 m gap in the ammonite record between 321.3 and 314.7 m. The lowest Dipoloceras cristatum appears at 314.7 m, a level that corresponds to the lumachelle à Birostrina subsulcata of Bréhéret (1997, figs 8,9). The FO of Actinoceramus sulcatus falls in the lower part of the range of D. cristatum elsewhere (see below), and the co-occurrence of these species indicates that the base of the cristatum Zone, and of the Upper Albian, lies somewhere below 314.7 m. The highest D. cristatum occurs at 294.4 m, and the top of the Zone is placed immediately below the lowest Mortoniceras pricei at 278.4 m. The assemblage includes the same long-ranging taxa as the roissyanum Zone, together with Protetragonites sp. Dipoloceras bouchardianum ranges up from below, and extends throughout the Zone. Also present in the lower part of the Zone are Hysteroceras serpentinum Spath, 1934, Beaudanticeras subparandieri Spath, 1923, Eoscaphites circularis (J. de C. Sowerby, 1836), Hamites attenuatus, H. maximus, H. compressus J. Sowerby, 1814, H. tenuicostatus, Prohelicoceras thurmanni (Pictet and Campiche, 1861), and Pseudhelicoceras pseudoelegans Spath, 1937. Mortoniceras (Deiradoceras) cunningtoni Spath, 1933, appears at 298.3 m, and Dipoloceras pseudaon Spath, 1931, at 293.1 to 293.5 m. 3.2.3. Mortoniceras pricei Zone The index species appears at 278.4 m, where it is accompanied by Hysteroceras binum (J. Sowerby, 1815), and H. orbignyi (Spath, 1922), and several long-ranging taxa. M. pricei extends to 257.7 m. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 A major faunal event is the appearance of Elobiceras newtoni Spath, 1925, between 271.9 m and 278.8 m. The pricei Zone yields a rich and diverrse fauna. Short ranging taxa include Hysteroceras carinatum (Spath, 1922), Hysteroceras binum (J. Sowerby, 1815), Dipoloceras bouchardianum (LO 271.9 m), Eoscaphites subcircularis, Idiohamites spiniger (J. Sowerby, 1818), Idiohamites subspiniger Spath, 1939, Idiohamites tuberculatus (J. Sowerby, 1818), Jauberticeras sp., Beaudanticeras subparandieri Spath, 1923, Hamites incurvatus Brown, 1837, Pseudhelicoceras gaultinum Spath, 1937, Psilohamites bouchardianus (d’Orbigny, 1842), Mortoniceras (Deiradoceras) bipunctatum Spath, 1933, M. (D.) albense Spath, 1934, Ptychoceras adpressum (J. Sowerby, 1814), Prohysteroceras (Goodhallites) goodhalli (J. Sowerby, 1820), Mortoniceras cf. geometricum Spath, 1932, Anisoceras subarcuatum Spath, 1939, Hamitoides (?) rusticus Spath, 1939, Neoharpoceras sp. (at 258.7 m), Scaphites simplex Jukes-Browne, 1875 (FO at 258.7 m), Hamites gardneri Spath, 1941, Epihoplites gracilis Spath, 1926 (at 256 m). Long-ranging taxa that occur in the Zone include Phylloceras (Hypophylloceras) velledae, Kossmatella muhlenbecki, Puzosia (P.) mayoriana, Anagaudryceras sacya (Forbes, 1846), Tetragonites subrectangularis Wiedmann, 1962b, Desmoceras latidorsatum (Michelin, 1838), and Zelandites sp. Parize et al. (1998) recorded ammonites from the top of the interval here referred to the pricei Zone. The horizons of their material were related to the Petite Vérole. From a few metres below the Petit Vérole they recorded Hysteroceras sp., Mortoniceras sp. gr. M. inflatum and M. inflatum, which, if correctly identified suggest that the base of the inflatum Zone is a few metres lower than it is drawn here. They record a second fauna of Anisoceras sp. gr. Anisoceras perarmatum, Stoliczka (Stoliczkaia) sp., and Scaphites hugardianus from a metre above the discontinuity (that is to say the top of the Petite Vérole), and take it to mark the base of their Stoliczkaia dispar Zone, which would fall at the 258.5 m level on our log (Fig. 3). This is 59.6 m below the lowest occurrence of Stoliczkaia in our collections, and incompatible with the faunal sequence we have established, suggesting the record of Stoliczkaia represents some other member of the Stoliczkaiinae, such as Cenisella or Zuluscaphites, the latter recorded here from 253.1 m. The base of the Mortoniceras inflatum Zone is drawn at the first occurrence of the index species, at 253.1 m. Short ranging taxa present in the zone are Prohysteroceras (Goodhallites) sp. (at 251.6 m), Neoharpoceras hugardianum (d’Orbigny, 1841) (at 251.6 m), Hysteroceras binum (J. Sowerby, 1815), Epihoplites sp., Mastigoceras adpressum (J. Sowerby, 1814), Psilohamites bouchardianus (d’Orbigny, 1842), Scaphites simplex, Hamites charpentieri Pictet, 1847, Hemiptychoceras gaultinum (Pictet, 1847), Hamites duplicatus Pictet and Campiche, 1847, Bhimaites stoliczkai (Kossmat, 1897), Anisoceras armatum (J. Sowerby, 1817), Hysteroceras binum (J. Sowerby, 1815), Hamites parkinsoni Fleming, 1828, Hamitoides studerianus (Pictet, 1847), Lechites gaudini (Pictet and Campiche, 1847), and Cantabrigites sp. Long-ranging taxa present in the zone are Puzosia (Puzosia) mayoriana, Anagaudryceras sacya, Desmoceras latidorsatum, Kossmaticeras agassizianum, K. muhlenbecki (Fallot, 1885), Tetragonites rectangularis, and Phylloceras (Hypophylloceras) velledae (Michelin, 1838). The base of the Mortoniceras fallax Zone is poorly defined in the Col de Palluel section. Juvenile Mortoniceras referred to M. fallax occur at 240.9 m, and the base of the zone is, accordingly, drawn here; a fragment of an adult occurs at 233.2 m. The following short-range taxa occur in the zone. Hamites parkinsoni, H. duplicatus, Neoharpoceras sp., Cantabrigites minor Spath, 1933, Zuluscaphites oryctepusi Van Hoepen, 1955, Z. helveticus Kennedy and Delamette, 1994, Zuluscaphites sp., Ptychoceras adpressum, Scaphites simplex, Anisoceras perarmatum, Discohoplites subfalcatus (Semenov, 1899), Lechites gaudini, Anisoceras armatum (J. Sowerby, 1817), Hemiptychoceras subgaultinum Breistroffer, 1940, Idiohamites incertus (Spath, 1939), Pseudhelicoceras circumtaeniata (Kossmat, 69 1895), Scaphites meriani Pictet and Campiche, 1861, Scaphites hugardianus d’Orbigny, 1842, Tuberolechites regifex Cooper and Kennedy, 1977, Cenisella bonnetiana (Pictet, 1847), Hamites virgulatus Brongniart, 1822, Scaphites bassae Collignon 1929, Hamites subvirgulatus Spath, 1941, and Hamites renzi Kennedy, 1996. Longranging taxa present in the zone are Puzosia (P.) mayoriana, Zelandites dozei, Desmoceras latidorsatum, Kossmatella muhlenbecki, K. agassiziana, Tetragonites rectangularis, Phylloceras (Hypophylloceras) velledae, and Anagaudryceras sacya. The base of the Mortoniceras (Subschloenbachia) rostratum Zone is drawn at the first occurrence of the index species, at 186.0 to 186.2 m. The following short-range species are present in the zone: Lechites gaudini, Cantabrigites helveticum Renz, 1968, Turrilitoides hugardianus (d’Orbigny, 1842), Scaphites bassae, Scaphites simplex, Scaphites meriani, Hamites duplicatus, Hemipychoceras subgaultinum, Mariella escheriana (Pictet, 1847). The following longranging taxa are present in the zone: Desmoceras latidorsatum, Kossmatella agassiziana, K. muhlenbecki, Phylloceras (Hypophylloceras) seresitense Pervinquière, 1907, Anagaudryceras sacya. The base of the Mortoniceras (Subschloenbachia) perinflatum Zone is drawn at the first occurrence of M. (S.) perinflatum at the 181 m level in the Risou section (Gale et al., 1996, p.559), and at the correlative 181.3 m level in the Col de Palluel section. The following short-range taxa are present in the zone between 181.3 and 165.7 m in this section. Scaphites bassae, S. meriani, Turrilitoides hugardianus, Lechites gaudini, Hamites duplicatus, Neophylycticeras blancheti (Pictet and Campiche, 1859), Stoliczkaia (S.) dispar (d’Orbigny, 1840), Mortoniceras nanum Spath, 1933, Anisoceras armatum (J. Sowerby, 1817), Cantabrigites sp. Long-ranging taxa present are Kossmatella agassiziana and Puzosia mayoriana. The higher parts of the perinflatum Zone in the section south of Mont Risou were re-examined as part of the present study, and a revised log is shown in Fig. 5. The highest recorded Mortoniceras (Subschloenbachia) occurs at 102.8 m, in association with numerous Ostlingoceras (Ostlingoceras) puzosianum (d’Orbigny, 1842). The latter species extends to 91 m, and we provisionally redraw the top of the perinflatum Zone above this. Short-ranging taxa in the 181 m to 91 m. interval are: Lepthoplites sp., Callihoplites spp., Discohoplites subfalcatus, D. coelonotus (Seeley, 1865), Hyphoplites campichei Spath, 1925, H. pylorus Wright and Wright,1949, Cantabrigites cantabrigense, M. (S.) perinflatum, Stoliczkaia (S.) dispar (at 181 and 119 m), Stoliczkaia (S.) clavigera Neumayr, 1875, Neophlycticeras (N.) sp., Hamites renzi , Hamites subvirgulatus, Hamites funatus Brongniart, 1822, H. duplicostatus, Hemiptychoceras subgaultinum, Anisoceras armatum, A.perarmatum, A.pseudoelegans Pictet and Campiche, 1861, Lechites gaudini, Lechites moreti Breistroffer, 1947 (at 102.8 m), Turrilitoides hugardianus, Ostlingoceras puzosianum ( 108.5 to 91 m), Mariella sp., M. (M.) cf. miliaris, M.(M.) bergeri (Brongniart, 1822), Scaphites hugardianus, S. meriani, S. bassae. Long-ranging taxa present in the zone are Phylloceras (Hypophylloceras) seresitense seresitense, Anagaudryceras sacya, Tetragonites cf. rectangularis, Zelandites dozei dozei (Fallot, 1885), Kossmatella muhlenbecki, Puzosia (P.) mayoriana, and Desmoceras (D.) latidorsatum. 3.2.4. Arrhaphoceras (Praeschloenbachia) briacensis Zone A briacensis Subzone was introduced by Scholz (1973) for an uppermost Albian interval in which Mortoniceras and Ostlingoceras (O.) puzosianum were absent, and Hyphoplites had appeared. His fauna was isolated, but previous work on the Risou section (Gale et al., 1996) revealed an interval at the top of the Albian part of the Marnes Bleues that corresponded to Scholtz’ briacensis Subzone. Restudy of the section leads to the placement of the base of the briacensis zone above the LO of O. (O.) puzosianum at 91 m. The zone spans the Albian/Cenomanian boundary, defined by the FO of the planktonic foraminiferan Thalmanninella globotruncanoides at 36 m. The base 70 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 of the succeding Neostlingoceras carcitanense Subzone of the Mantelliceras mantelli Zone is drawn at 30 m, following Gale et al. (1996). The briacensis Zone remains an ill-defined unit, of which no equivalent has been recognised in the Hoplitinid Faunal Province (Owen, 1999), where there is frequently a break in the sedimentary sequence, or an interval in which there is no ammonite record. In faunal terms it is as much defined, at Risou, by what taxa are absent, as by what taxa are present. Gale et al. (1996) found only a single specimen of the index species, at 32 m. The following taxa occur in the zone. Phylloceras (Hypophylloceras) seresitense seresitense Pervinquière, 1907, Tetragonites rectangularis, Jauberticeras sp., Eogaudryceras (Eogaudryceras) sp., E.(Eotetragonites) sp., Gaudryceras (Gaudryceras) cf. cassissianum (d’Orbigny, 1850), Zelandites dozei dozei, Kossmatella muhlenbecki, K. agassiziana, Desmoceras (D.) latidorsatum, Puzosia (P.) mayoriana, Puzosia (Bhimaites) stoliczkai (Kossmat, 1898), Discohoplites valbonnensis valbonnensis, Hyphoplites campichei, Stoliczkaia (S.) clavigera, Hamites duplicostatus, H. renzi, Hemiptychoceras subgaultinum, Anisoceras perarmatum, A. armatum, A. elegantulus, Lechites (L.) gaudini, Mariella (M.) bergeri, M.(M.) cf. miliaris, M.(M.) cf. hillyi Dubourdieu, 1953, Scaphites (S.) bassei, (Collignon, 1929), and Worthoceras pygmaeus Butjor, 1991. 3.3. Ammonite marker events in the Col de Palluel Sucession There are more than 100 potentitial first and last occurrences of stratigraphically significant ammonites in the Col de Palluel and Risou successions. A selection of potentially key indicators are listed below; FO¼first occurrence, LO¼last occurrence in the section, in metres below the top of the Marnes Bleues: LO Oxytropidoceras roissyanum at 334.5 m FO Dipoloceras bouchardianum at 321.3 m FO of Dipoloceras cristatum at 314.7 m FO Hysteroceras orbignyi at 314.7 m LO Dipoloceras bouchardianum at 271.9 m LO Dipoloceras cristatum at 294.4 m Occurrence of Dipoloceras pseudaon at 293.1 to FO Hysteroceras binum at 278.4 m FO Mortoniceras pricei at 278.4 m FO Elobiceras newtoni at 271.9 m LO Elobiceras newtoni 267.8 m LO Mortoniceras pricei at 257.7 m LO Hysteroceras orbignyi at 254.3 m FO Mortoniceras inflatum at 253.1 m FO Anisoceras armatum at 250.8 m FO Lechites gaudini at 250.8 m FO Anisoceras perarmatum at 248.6 m LO Mortoniceras inflatum at 245.9 m FO Mortoniceras fallax at 240.9 m LO Mortoniceras fallax at 212.3 m FO Stoliczkaia dispar at 198.9 m FO Stoliczkaia clavigera at 194 m FO Mortoniceras rostratum at 186 m LO Mortoniceras rostratum at 182.2 m FO Mortoniceras perinflatum at 181 m LO Stoliczkaia dispar at 119 m LO Mortoniceras perinflatum at 102.8 m FO Ostlingoceras puzosianum at 102.8 m FO Mariella bergeri at 92.5 m LO Ostlingoceras puzosianum at 91 m LO Anisoceras armatum at 80 m LO Anisoceras perarmatum at 80 m LO Mariella bergeri at 50 m LO Stoliczkaia clavigera at 32 m LO Lechites gaudini at 32 m The base of the Cenomanian, marked by the FO of the planktonic foraminiferan Thalmanninella globotruncanoides at 36 m Occurrence of Arrhaphoceras briacensis at 32 m 3.4. Taxonomic notes Key references for the determination of species present in the Col de Palluel sections are given below, as are additional observations where appropriate. Order Ammonoidea Zittel, 1884 Suborder Phylloceratina Arkell, 1950 Superfamily Phylloceratoidea Zittel, 1884 Family Phylloceratidae Zittel, 1884 Subfamily Phylloceratinae Zittel, 1884 Phylloceras (Hypophylloceras) velledae (Michelin, 1834), 338 to 211.3 m, roissyanum-fallax zones. Joly in Gauthier, 2006, p. 101, pl. 39, fig. 1; text-fig. 1; Joly, 2000, p. 141, pl. 35, figs 1, 2; text-figs 314e318; Joly and Delamette, 2008, p. 21, figs 24, 25. Phylloceras (Hypophylloceras) seresitense Pervinquière, 1907, 248.6 m, inflatum Zone, ranging into the Lower Cenomanian at Risou. Joly, 2000, p.158, pl. 39, figs 13e15; Joly and Delamette, 2008, p. 49, figs 68 and 69. Suborder Lytoceratina Hyatt, 1889 Superfamily Lytoceratoidea Neumayr, 1875 Family Lytoceratidae Neumayr, 1875 Subfamily Lytoceratinae Neumayr, 1875 A specifically indeterminate Protetragonites is present in the cristatum Zone at the 309.7 m level. 293.5 m Protetragonites aeolus (d’Orbigny, 1850) neptuni Wiedmann, 1962a occurs as pyritic nuclei at the 65 to 60 m level (Fig.12 AeC), and range to the 30 to 35 m level, within the upper Upper Albian part of the briacensis Zone. Wiedmann,1962a, p. 24, pl.10, fig. 3; textfig. 6; Kennedy in Gale et al., 1996, p. 544, fig. 13e and f. Superfamily Tetragonitoidea Hyatt, 1900 Family Gaudryceratidae Spath, 1927 A specifically indeterminate Eogaudryceras (Eotetragonites) sp. occurs in the fallax Zone at the 239 m level. E. (E.) shimizui Breistroffer, 1936 ganoi Wiedmann, 1962b occurs as pyritic nuclei in the briacensis Zone at the 65 to 60 m level (Fig. 12 M, N, R). Wiedmann, 1962b, p. 153, pl. 8, fig. 4; text-fig. 12. Anagaudryceras sacya (Forbes, 1846) ranges from 271.9 m, pricei Zone, into the Lower Cenomanian at Risou (Fig. 13D and E ). The presence of a large adult individual is notable (Fig. 13D and E. Kennedy and Klinger, 1979, p. 146, pl. 9, figs 1e3; pl. 10, figs 1e6; pl. 11, figs 1 and 2; Kennedy and Latil, 2007, p. 458). Kossmatalla muhlenbecki (Fallot, 1885) ranges from 326.6 to 65 to 60 m, roissyanum to briacensis Zones (Figs. 12JeL, OeQ, 29B). Wiedmann, 1962b, p. 168, pl. 8, figs 5 and 8; text-figs 27e29; Kennedy in Gale et al., 1996, p. 551, fig. 10aec, e. Kossmatella agassiziana (Pictet, 1847) ranges from 251.6 to 165.7 m, inflatum to perinflatum Zones (Figs. 13C, 14A, B, D, 29C ). Wiedmann, 1962b, pl. 13, figs 9e11; Delamette et al., 1997, pl. 40, fig. 1. Zelandites dozei dozei (Fallot, 1885) ranges from 250.8 m, inflatum Zone, into the Lower Cenomanan at Risou (Fig. 13A). Fig. 12. AeC, Protetragonites aeolus (d’Orbigny, 1850) neptuni Wiedmann, 1962a, OUM KZ25812. DeF, Tetragonites rectangularis Wiedmann, 1962b, OUM KZ25813. GeI, Desmoceras (Desmoceras) latidorsatum (Michelin, 1838), OUM KZ18376. JeL, OeQ, Kossmatella (Kossmatella) muhlenbecki (Fallot, 1885); J-L, OUM KZ24772; OeQ, OUM KZ25814 M, N, R, Eogaudryceras (Eotetragonites) shimizui Breistroffer, 1936 gaoni Wiedmann, 1962b, OUMKZ25815. SeU, Puzosia (Bhimaites) stoliczkai (Kossmat, 1898), OUM KZ 18378. All specimens are from the 60 to 65 m level, briacensis Zone. All figures are 2. 72 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 13. A, Zelandites sp., 258.7 m, pricei Zone. B, Zelandites doze dozeii (Fallot, 1885), OUM KZ23952, 250.8 m, inflatum Zone. C, Kossmatella (Kossmatella) agassiziana (Pictet, 1847), OUM KZ24025a, 235.7 m, fallax Zone. D, E, Anagaudryceras sacya (Forbes, 1846), OUM KZ 29359a, b, 248.2 m, inflatum Zone. Figs. A, CeE are 1; fig. B is 2. .Scholz, 1979, p. 51, pl. 10, figs 3 and 4; text-fig. 14; Kennedy in Gale et al., 1996, p. 549, figs 13aec, g, i, j, l, m, 26c, 29p (pars). A specifically indeterminate Zelandites occurs at the level, pricei Zone. 258.7 m Family Tetragonitidae Hyatt, 1900 Subfamily Tetragonitinae Hyatt, 1900 Tetragonites rectangularis Wiedmann,1962b, and poorly preserved individuals identified as T. cf. rectangularis range from the 251.6 m A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 73 Fig. 14. A, B, D, Kossmatella (Kossmatella) agassiziana (Pictet, 1847). A, OUM KZ 24646, 192.8 m, fallax Zone; B, OUM KZ 24797, 217.3 m, fallax Zone; D, OUM KZ 24410, 253.1, inflatum Zone. C, E, Puzosia (Puzosia) mayoriana (d’Orbigny, 1841). C, OUM KZ23526, 278.4 m, pricei Zone; E, OUM KZ24428, 253.1 m, inflatum Zone. All figures are 1. level, pricei Zone, into the Lower Cenomanian at Risou (Fig. 12DeF). Wiedmann, 1973, p. 596, pl.1, fig. 1; pl. 4, fig. 2; pl. 7, figs 1 and 2. A specifically indeterminate Tetragonites is present at the 294.4 m level, pricei Zone. Subfamily Gabbioceratinae Breistroffer, 1953 Specifically indeterminate Jauberticeras occur in the pricei Zone between 266.2 and 254.3 m. A better-preserved individual with coarse flank ribs is comparable to Jauberticeras subbeticum Wiedmann, 1962c (p. 31, pl. 2, fig. 3; textfigs 5, 6), and subspecies tyrrhenicum Wiedmann and Dieni, 1968, p. 44, pl. 2, fig. 10; text-fig. 14. 267.9 m level, pricei Zone (Fig. 33A). Suborder Ammonitina Hyatt, 1889 Superfamily Haploceratoidea Zittel, 1884 Family Oppelidae H. Douvillé, 1890 Subfamily Aconeceratinae Spath, 1923 Falciferella? sp., 199 m level, fallax Zone. A tiny smooth planulate may be a representative of the genus. Family Binneyitidae Reeside, 1927 Borissiakoceras ? sp. 230.8 m (Fig. 29D), fallax Zone. The specimen (OUM KZ24750) is a further tiny planulate, 11.5 mm in diameter. It is smooth, apart from delicate riblets and striae on the outer flank and ventrolateral shoulder at the greatest preserved diameter. It has what appears to be a well-preserved aperture with a biconcave margin and ventral rostrum. Reference to Falciferella? is an alternative identification. The sutures are indecipherable, which limits more precise identification. Superfamily Desmoceratoidea Zittel, 1895 Family Desmoceratidae Zittel, 1895 Subfamily Puzosiinae Spath, 1922 Puzosia mayoriana (d’Orbigny, 1841), 338 m, roissyanum Zone, extending up into the Lower Cenomanian at Risou (Figs.14C,E,15,18O, 24D). Wright and Kennedy, 1984, p. 55, pl.3 figs 1, 2, 4,6, 9e12; pl.4, figs 1, 2, 5e7; text-figs 1a,b, 2c,h, m; 3ner; 4aec; Kennedy and Bilotte, 2009, p.47, pl. 3, figs 32, 33, 37e40. Lehmann (1988, p. 407) asserted that Austiniceras austeni (Sharpe, 1855) was the macroconch of Puzosia mayoriana. Kennedy and Latil (2007, p. 461) doubted this, and figured a large fragment that co-occurred with typical mayoriana in the Montlaux section (pl.1, fig. 6), arguing that it differed from austeni of comparable size (Wright and Kennedy, 1984, pl.5, fig. 6) in having the intercalated ribs restricted to the outer flanks only, whereas in the 74 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 15. Puzosia (Puzosia) mayoriana (d’Orbigny, 1841), OUM KZ25129, Marnes Bleues, lumachelle à Actinoceramus concentricus, Middle Albian, roissyanum Zone, Le Puy Bevons, Alpes ede-Haute-Provence. Figure is 1. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 latter the ribs extend to the umbilical shoulder, and are falcoid. An additional macroconch from the Marnes Bleues is shown here as Fig. 14. It confirms these differences, and has strong distant primary ribs that are straight and prorsiradiate on the inner to mid flank with the intercalated ribs confined to the outer flank. Puzosia (Bhimaites) stoliczkai (Kossmat, 1898), 245.9 m, inflatum zone (Fig. 29A) and 65 to 60 m, briacensis Zone (Fig. 12SeU). Renz, 1972, p. 716, pl. 7, figs 1, 2; pl. 8, fig. 2; text-fig. 7B. Subfamily Beudanticeratinae Breistroffer, 1953 75 Anahoplites planus (Mantell, 1822), 334.5 m, roissyanum Zone (Fig. 16H). Spath, 1925, p. 137, pl. 12, figs 8, 9; pl. 14, fig. 4; text-figs 39e41; see also Marcinowski and Wiedmann, 1990, p. 69 et seq. Subfamily Hoplitinae H. Douvillé, 1890 Epihoplites gracilis Spath, 1926, 256 m, pricei Zone (Fig. 16B). Spath, 1926, p. 183, pl. 16, fig. 7; text-fig. 54. Euhoplites truncatus Spath, 1925, 338 m, roissyanum Zone (Fig. 16D, E). Spath, 1928, p.259, pl. 25, figs 1e4; text-figs 86a, b, 87. Beaudanticeras subparandieri Spath, 1923, 314.7 m, cristatum Zone and 267.9 m, pricei Zone. Spath, 1923, p. 62, pl. 4, fig. 2. Leptohoplites cantabrigiensis Spath, 1925, 230.8 to 199 m, fallax Zone (Fig. 16A and G). Spath, 1928, p. 235, pl. 13, fig. 8; pl. 20, fig. 3; pl. 21, fig. 2pl. 24, figs 1, 12. Beaudanticeras sp., Zone. A specifically indeterminate Lepthoplites is present in the topmost perinflatum Zone at 102.8 m. 338 m, roissyanum Zone to 267.9 m, pricei Subfamily Desmoceratinae Zittel, 1895 Desmoceras latidorsatum (Michelin, 1838), 314.8 m, roissyanum Zone, ranging into the Lower Cenomanian at Risou. Joly in Gauthier, 2006, p. 97, pl. 33, figs 1, 2; text-fig. 53; Kennedy and Bilotte, 2009, p. 46, pl. 2, figs 6, 7, 19e28; pl. 8, figs. 21e23; text-fig. 4. Superfamily Hoplitaceae H. Douvillé, 1890 Family Hoplitidae H. Douvillé, 1890 Subfamily Anahoplitinae Breistroffer, 1947 Lepthoplites falcoides Spath, 1925, 102.8 m, topmost perinflatum Zone. Renz, 1968, p. 35, pl. 4, figs 9e11, text-fig. 13a. Discohoplites subfalcatus (Semenov, 1899), 239.7 to 119 m, fallax to perinflatum Zones (Fig. 16C and I). Renz, 1968 p. 23, pl. 2, figs 1e3; text-fig. 8a, c, d; 10 d; Kennedy in Gale et al., 1996 p.552, text-figs 15c, f; 27e; Kennedy and Bilotte, 2009, p.48, pl. 3, fig. 4. Discohoplites valbonnensis valbonnensis (Hébert and MunierChalmas, 1875), 80 m, upper Upper Albian briacensis Zone. Wright and Wright, 1949, p. 479, pl. 28, fig. 9; Renz, 1968, p.23, pl. 2, Fig. 16. A, G, Lepthoplites cantabrigensis Spath, 1928. A, OUM KZ24758, 230.8 m, fallax Zone. G, OUM KZ24603a, 199 m, fallax Zone. B, Epihoplites gracilis Spath, 1926, OUM KZ23828, 256 m, pricei Zone. C, I, Discohoplites subfalcatus (Semenov, 1899). C, OUM KZ24007, 239.7 m, fallax Zone; I, OUM KZ24594, 199 m, fallax Zone. D, E, Euhoplites truncatus Spath, 1925; D, OUM KZ24843, 338 m; E, OUM KZ24842, 338 m, roissyanum Zone. F, Hyphoplites pylorus Wright and Wright, 1949, OUM KZ24690a, 102.8 m, perinflatum Zone. H, Anahoplites planus (Mantell, 1822), OUM KZ24507, 333.4 m, roissyanum Zone. Figure A is 2; figures BeI are 1. 76 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 fig. 6; Kennedy in Gale et al., 1996, p. 553, fig. 15b; Kennedy, et al., 2008, p. 41, pl. 4, figs 6e23. Discohoplites coelonotus (Seeley, 1865), 164 m, perinflatum Zone. Renz, 1968, p. 22, pl. 2, figs. 4, 5; Kennedy in Gale et al., 1996, p. 553, fig. 16q. Hyphoplites pylorus Wright and Wright, 1949, 102.8 m, topmost perinflatum Zone (Fig.16F). Wright and Wright,1949, p. 488, pl. 29, fig. 2. Hyphoplites campichei Spath, 1925, 135 to 80 m, perinflatum Zone and upper Upper Albian briacensis Zone. Wright and Kennedy, 1984, p. 69, pl. 6, figs. 2e6, 8, 9; Kennedy and Bilotte, 2009, p. 51, pl. 3, figs. 13, 14, 21, 22. Arrhaphoceras (Praeschloenbachia) briacensis (Scholz, 1973), 32 m, lower Lower Cenomanian briacensis Zone. Scholz, 1973, p. 125, pl. 1, figs 6e8; Kennnedy, Gale et al. 1996, p. 554, fig. 11m, p. Superfamily Acanthoceratoidea de Grossouvre, 1894 Family Brancoceratidae Spath, 1934 Subfamily Brancoceratinae Spath, 1934 Hysteroceras orbignyi (Spath, 1922), 314.7 to 254.3 m, cristatum and pricei Zones (Figs. 17A,D,G,K,S,N, 34J and 37F). Spath, 1934, p. 483, pl. 49, figs 4, 6; pl. 50, figs 2e5; pl. 52, figs 2e4, 8; pl. 54, fig. 8; pl. 56, fig. 15; text-figs 161aed, 166e169; Kennedy and Juignet in Gauthier, 2006, p. 108, pl. 46, figs 5, 6. Hysteroceras serpentinum Spath, 1934, 314.7 m, cristatum Zone (Fig. 17C). Spath, 1934, p. 495, pl. 56, fig. 2. Hysteroceras carinatum (Spath, 1932), 271.9 to 224.6 m, pricei and inflatum Zones (Figs. 17 I, L, 26E). Spath, 1934, p. 482, pl. 51, fig. 5; pl. 53, figs 4, 5, 10, 11; pl. 56, fig. 11; text-figs 161m, n; 166d; Kennedy and Juignet in Gauthier, 2006, pl. 109, pl. 46, fig. 7. Hysteroceras binum (J. Sowerby, 1815), 278.4 to 204.9 m; ? 196.7 m, pricei to fallax zones. (Figs. 17B, F, J, M, P, 35H). Spath, 1934, p. 478, pl. 53, figs 8, 9; text fig. 161; 165. Hysteroceras symmetricum (J. de. C. Sowerby, 1836), 293.1 to 293.5 m, cristatum Zone. Spath, 1934, p. 492, text-figs 173aee. Hysteroceras antipodeum (Etheridge, 1902), 199 m, fallax Zone (Fig. 17E). Henderson, 1990, p. 115, figs 3AeC; 4. Subfamily Mojsisovicziinae Hyatt, 1903 Oxytropidoceras (Oxytropidoceras) roissyanum (d’Orbigny, 1841), 339 to 334.5 m, roissyanum Zone (Fig. 18A, E, I, L). Kennedy and Juignet in Gauthier, 2006, p. 111, pl. 42, fig. 1. Dipoloceras bouchardianum (d’Orbigny, 1841), 321.3 to 271.9 m, roissyanum and cristatum zones (Figs. 17Q, 18C, D, FeH, J, K, O). Spath, 1931, p. 374, pl. 32, fig. 19; pl. 33, fig. 5; pl. 34, figs 4e7; text-figs 122c, d; 124aec; Kennedy and Juignet in Gauthier, 2006, p. 110, pl. 45, fig. 6. Dipoloceras bouchardianum (d’Orbigny, 1841) form rectangularis Spath, 1931, 333.4 m, roissyanum Zone (Fig. 19A and B). Spath, 1931, p.377, pl. 323, fig. 19. Spath figured only a phragmocone of his var. rectangularis, but in his description he notes: ‘A crushed body chamber of the var. rectangularis (BM no. C.35107) has a crested keel with about four long waves in it to the half whorl (at 80 mm diameter), rising to 7 mm when the keel in between the crests is only 3 mm high. There are a number of these body chamber examples before me of the present species as well as the allied D. fredricksburgense, and, at first, I took this waviness of the keel to be due to crushing. But in phosphatised fragments, with the keel uncrushed, it can be seen that this feature is original, and the carina may be undercut by lateral, spiral grooves that follow the outline of the crest.. I do not know of any form with comparable flares in the keel.’ The specimen referred to by Spath has never been figured: it is illustrated here as Fig. 19B, together with a comparable individual, albeit reduced to a mere crushed film, from the roissyanum Zone of the Col de Palluel. As Spath notes, this in a remarkable morphology; further work is needed to establish if it merits specific separation from bouchardianum. Dipoloceras cristatum (d’Orbigny, 1841), 314.7 to 294.4 m, cristatum Zone (Fig. 18M, N, PeR). Kennedy in Kennedy et al., 1999, p. 1105, figs 4.9; 5.1e5.11; 6.7e6.12; 7.8, 7.9;10.5. Dipoloceras pseudaon Spath, 1931, 293.1 to 293.5 m, cristatum Zone (Fig. 20A and B ). Spath, 1931, p. 273, pl. 32, fig. 10; pl. 34, figs 1e3. The holotype is illustrated for comparison. Subfamily Mortoniceratiae H. Douvillé, 1912 Mortoniceras (Mortoniceras) inflatum (J. Sowerby, 1818) 253.1 to 245.9 m, inflatum Zone (Fig. 24A, CeF). Amédro and Matrion in Amédro et al., 2004, p. 16, pl. 1, figs 1, 4; pl. 2, figs 1, 2; pl. 3; pls 4-8. Mortoniceras (Mortoniceras) pricei (Spath, 1922), 278.4 to 257.7 m, pricei Zone (Figs. 18B, 21A, 23AeE). Kennedy in Kennedy et al., 1999, p. 1109, figs 8, 9, 10.6. Mortoniceras (Mortoniceras) cf. geometricum Spath, 1932, 267.9 m, pricei Zone (Fig. 25A ). Spath, 1932, p. 395, pl. 44, fig. 1. Mortoniceras (Mortoniceras) potternense Spath, 1932, 224.6 m, fallax Zone (Fig. 25D). Spath, 1932, p. 399, pl. 37, fig. 5; pl. 36, fig. 10; text-fig. 135. Mortoniceras (Mortoniceras) fallax Breistroffer, 1940, 240.9 212.3 m, fallax Zone (Fig. 25E). Kennedy et al., 2008, p. 42, pl. 6, figs 1e3; pl. 7, figs 1, 2; pl. 10, figs 8e11, 16. Mortoniceras (Mortoniceras) nanum Spath, 1933, 212.2 to 169.4 m, fallax and rostratum Zones (Fig. 25B, C). Kennedy et al., 2008, p. 44, pl. 8, figs 4, 6, 7, 13, 14; pl. 9, figs 1e8. Mortoniceras (Deiradoceras) cunningtoni Spath, 1933, 298.3 m, cristatum Zone. Spath, 1933, p. 416, pl. 37, fig. 2; pl. 39, fig. 5; pl. 41, fig. 6; pl. 42, fig. 7; pl. 43, fig. 3, pl. 48, fig. 1; text-figs 143; 144a, e. Mortoniceras (Deiradoceras) albense Spath, 1934, 267.9 m, pricei Zone (Figs. 17H, O, 25A). Spath, 1924, p. 424, pl. 43, fig. 2; pl. 44, fig. 4; text-figs 145b; 147; 149. Mortoniceras (Deiradoceras) bipunctatum Spath, 1933, 267.9 m, pricei Zone (Fig. 25F). Kennedy in Kennedy et al., 1999, p. 1111, fig. 10.8, 12.1-12.6. Mortoniceras (Subschloenbachia) rostratum (J. Sowerby, 1817), 186.2 to 182.2 m, rostratum Zone (Figs. 26AeD,FeO,27). Kennedy et al., 1998, p. 17, figs 9e11; 13-18; Kennedy and Latil, 2007, p. 463, pl. 2, fig. 2; pl. 3, figs 3, 6e9; pl. 4, figs 7, 8. Mortoniceras (Subschloenbachia) perinflatum (Spath, 1922), 181.3 to 102.8 m, perinflatum Zone (Figs. 28A, F, G, 29F). Kennedy and Latil, (2007) p. 464, pl. 3, figs 2, 4, 5. M. (S.) subquadratum is regarded as a synonym, following Kennedy and Latil (2007, p. 465). Mortoniceras (Mortoniceras?) haughtoni Spath, 1925, 223.8 m, fallax Zone (Fig. 28E). Spath, 1925, p. 184, pl. 29, fig. 1; pl. 30, fig. 2. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 77 Fig. 17. A, D, G, K, N, S, Hysteroceras orbignyi (Spath, 1922). A, OUM KZ23843, 254.3 m, pricei Zone; D, OUM KZ23637, 267.9 m, pricei Zone; G, OUM KZ23635b, 267.9 m, pricei Zone; K, OUM KZ23844, 254.3 m, pricei Zone N, OUM KZ23638, 267.9 m, pricei Zone; S, OUM KZ23640, 267.9 m, pricei Zone. B, F, J, M, P, R, Hysteroceras binum (J. Sowerby, 1815). B, OUMNH KZ 24752, 230.8 m, inflatum Zone; F, OUM KZ24128, 213.2 m, fallax Zone; J, OUM KZ23897, 250.8 m, inflatum Zone; M, OUM KZ4736, 226.7 m, fallax Zone; P, OUM KZ23981, 245.9 m, inflatum Zone; R, OUM KZ23626, 267.9 m, pricei Zone C, Hysteroceras serpentinum Spath, 1934, OUM KZ24466, 314.7 m, cristatum Zone. E, Hysteroceras antipodeum (Etheridge, 1902), OUM KZ24598, 199 m, fallax Zone. H, O, Mortoniceras (Deiradoceras) albense Spath, 1934. H, OUM KZ23747, 267.9 m, pricei Zone; O, OUM KZ23730, 267.9 m, pricei Zone. Q, Dipoloceras bouchardianum (d’Orbigny, 1841), OUM KZ23416, 314.4 m, cristatum Zone. I, L, Hysteroceras carinatum Spath, 1922; I OUM KZ23859, 251.6 m, inflatum Zone; L, OUM KZ23839, 254.3 m, pricei Zone. Figs. A, B, DeH, K, L, OeS, are 1; C, I, J, M, N, are 2. Fig. 18. A, E, I, L, Oxytropidoceras (Oxytropidoceras) roissyanum (d’Orbigny, 1841). A, OUM KZ24514b, 333.4 m, roissyanum Zone; E, OUM KZ24515b, 333.4 m, roissyanum Zone; I, OUM KZ24882, 338 m roissyanum Zone; L, OUM KZ24881, 338 m, roissyanum Zone. B, Mortoniceras (Mortoniceras) pricei (Spath, 1922), OUM KZ24556, 258.9 m, pricei Zone. C, D, F-H, J, K, O, Dipoloceras (Dipoloceras) bouchardianum (d’Orbigny, 1841). B, OUM KZ24459, 293.1 to 239.5 m, cristatum Zone; C, OUM KZ24322b, 314.7, cristatum Zone; D, OUM KZ24319b, 314.7 m; F, OUM KZ23489, 293.1 to 293.5 m, cristatum Zone; F, OUM KZ24459, 314.7 m, cristatum Zone; G, OUM KZ24327, 314.7 m, cristatum Zone; H, OUM KZ23405, 314.7 m, cristatum Zone; J, OUM KZ23484, 293.1 to 293.5 m; K, OUM KZ24328, 314.7 m; O, OUM KZ23382 (associated with Puzosia (P.) mayoriana (d’Orbigny, 1841), 314.7 m, cristatum Zone. M, N, PeR, Dipoloceras (D.) cristatum (d’Orbigny, 1841). M, OUM KZ23356a, N, OUM KZ23356b 314.7 m, cristatum Zone; P, OUM KZ24939a (together with Actinoceramus concentricus parabolicus Crampton, 1996, 318.5 m, cristatum Zone; Q, OUM KZ23482, 294.4 m, cristatum Zone; R, OUM KZ23354, 314.7 m, cristatum Zone. All 1. 79 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 19. Dipoloceras (Dipoloceras) bouchardianum form rectangularis Spath, 1931. A, OUM KZ24518, 333.4 m, roissyanum Zone; B, BMNH C35107, from the Gault Clay of Folkestone, Kent. Arrow in A indicates the position of the distinctive undulose keel, more clearly visible in B. Both 1. Elobiceras (Craginites) newtoni Spath, 1925, 271.9 to 267.8 m, pricei Zone (Figs. 21BeE, 22AeJ, 25F, 31G, 32D, 34J, 37K). Spath, 1925, p. 186, pl. 29, fig. 3; pl. 30, fig. 1. Euspectroceras strigilis Hoepen, 1946, p. 202, figs 175e177, is a synonym. The preservation of the material in the Palluel section is remarkable, with numerous specimens retaining the aperture with rostrum (Figs. 21D, E, 22G, I, J, 31G). Of these, the large individuals are interpreted as macroconchs, the small ones as microconchs. Neoharpoceras hugardianum (d’Orbigny,1841) 251.6 to 248.2 m, inflatum Zone (Fig. 24B). Kennedy and Juignet in Gauthier, 2006, p.107, pl. 45, fig. 9; pl. 46, fig. 1. Prohysteroceras (Goodhallites) goodhalli (J. Sowerby, 1820), 258 m, pricei Zone (Fig. 23F, G). Spath, 1934, p. 447, pl. 49, fig. 3; pl. Cantabrigites minor Spath, 1933, 235.7 to 212.3 m, fallax Zone (Fig. 28C, H, I). Spath, 1933, p. 440, pl. 41, figs 1, 2; pl. 43, fig. 4; pl. 44, 50, fig. 1; pl. 51, figs 2, 6; pl. 54, figs 2, 10; pl. 56, figs 6e9; text-figs 153e155; 158a, b. Neoharpoceras sp., fallax Zones. 258.7, 235.7, and 224.6 m, pricei and Fig. 20. A, Slab with Dipoloceras (Dipoloceras) bouchardianum (d’Orbigny, 1841) (left) and Dipoloceras (Dipoloceras) pseudaon Spath, 1931(right), 293.1 293.5 m, cristatum Zone; B, the holotype of Dipoloceras (Dipoloceras) pseudaon Spath, 1931, BNH C344881, Gault Clay, Bed 8, cristatum Zone, Folkestone, Kent. Figs. are 2. 80 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 21. A, Mortoniceras (Mortoniceras) pricei (Spath, 1922), OUM KZ23524, 278.4 m, pricei Zone. B-E, Elobiceras (Craginites) newtoni Spath, 1925. B, OUM KZ23735; C, OUM KZ23690; D, OUM KZ23692; E, OUM KZ23708; all 267.9 m, pricei Zone. A, C, E, 1; B, 2. fig. 2; pl. 46, fig. 11; text-fig. 152. Renz, 1968, p. 59, pl. 10, figs 23, 25e28; text-figs 20; 21. Cantabrigites cantabrigense Spath, 1933, 182.8 to 119 m, perinflatum Zone. Spath, 1933, p. 438, pl. 41, figs 3, 4; pl. 45, fig. 4; pl. 46, fig. 8; Renz, 1968, p. 58, pl. 10, figs 10, 24; text-figs 20h; 21a, b. Cantabrigites helveticum Renz, 1968, 186 to 186.2 m, rostratum Zone (Fig. 28B, D). Renz, 1968, p. 61, pl. 10, figs 15, 16; textfigs 20f, 21g. Subfamily Stoliczkaiinae Breistroffer, 1953 Zuluscaphites oryteropusi Hoepen, 1955, 253.1 m, inflatum Zone (Fig. 29G). Kennedy and Klinger, 1993, p. 64, fig. 1ael; Kennedy and Delamette, 1994, p. 1278, fig. 13.1e13.14. Zuluscaphites helveticus Kennedy and Delamette, 1994, 219.1 m, fallax Zone (Fig. 29H). Kennedy and Delamette, 1994, p. 1281, fig. 6.9e6.11; 8.1; 9.3-9.7; 12.1-12.3, 12.6-12.9. Zuluscaphites sp. 208.7 m, fallax Zone (Fig. 29J). 200.3 m, fallax Zone Cenisella bonnetiana (Pictet, 1847), (Fig. 29I). Kennedy and Delamette, 1994, p. 1278, fig. 12.10e12.16. Stoliczkaia dispar (d’Orbigny, 1841), 198.9 to 119 m, rostratum and perinflatum Zones. Wright and Kennedy, 1994, p. 574, figs 4aec; 5b; 11hej, nep, sev; 12aed; 13dee; Kennnedy and Latil, 2007, p. 465, pl. 6, figs 4e6. Stoliczkaia (Stoliczkaia) clavigera Neumayr, 1875, 181 to 32 m, perinflatum to lower Lower Cenomanian briacensis Zone. Wright and Kennedy, 1994, p. 576, figs 5b; 11kem, qer; 12eeh, ken; A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 81 Fig. 22. AeJ, Elobiceras (Craginites) newtoni Spath, 1925. A, OUM KZ23571; B, OUM KZ23591; C, OUM KZ23706; D, OUM KZ23602; E, OUM KZ23560; F, OUM KZ23607; G, OUM KZ23718; H, OUM KZ23572; I, OUM KZ23699; J, OUM KZ23557.AeC, EeJ are 1; D is 2. Fig. 23. A-E. Mortoniceras (Mortoniceras) pricei Spath, 1922,A, OUM KZ23790, 258.7 m, pricei Zone; B, OUM KZ23785, 258.7 m; C, OUM KZ24558, 258.9 m; D, OUM KZ23787, 258.7 m; E, OUM KZ24554a, b, 258.9 m. F, G, Prohysteroceras (Goodhallites) goodhalli (J. Sowerby, 1820). F, OUM KZ23794, 258.7; G, OUM KZ23795, 258.7, all specimens are from the pricei Zone. All figures are 1. Fig. 24. A, CeF, Mortoniceras (Mortoniceras) inflatum (J. Sowerby, 1818). A, OUMKZ23860, 251.6; C, OUM KZ23915, 250.8 m; D, OUM KZ23989 (associated with Puzosia (P.) mayoriana (d’Orbigny, 1841), 245.9 m; E, OUM KZ24424, 253.1 m; F, OUM KZ23918, 250.8. B, Neoharpoceras hugardianum (d’Orbigny, 1841), OUM KZ23921, 250.8 m, all inflatum Zone. AeE are 1; F is 2. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 83 Fig. 25. A, Mortoniceras (Mortoniceras) geometricum Spath, 1932, OUM KZ23747 267.9 m, pricei Zone. B, C, Mortoniceras (Mortoniceras) nanum Spath, 1933. B, OUM KZ24814, 212.3 m, fallax Zone; C, OUM KZ24302a, 169.4 m, rostratum Zone. Zone. D, Mortoniceras (Mortoniceras) potternense Spath, 1932 (associated with Neoharpoceras sp. and Hamites sp.), 258.9 m, pricei Zone. E, Mortoniceras (Mortoniceras) fallax Breistroffer, 1940, OUM KZ24132, 212.3 m, fallax Zone. F, Mortoniceras (Deiradoceras) bipunctatum Spath, 1933 (associated with Elobiceras (Craginites) newtoni Spath, 1925), OUM KZ23748a, 267.9 m, pricei Zone. A, DeF, 1; B, C, 2. 84 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 26. AeD, FeO, Mortoniceras (Subschloenbachia) rostratum (J. Sowerby, 1817). A, OUM KZ24253, 182.2 to 182.6 m; B, OUM KZ24215, C, M, OUM KZ24217, D, OUM KZ24256, all 186 to 186.2 m; F, K, OUM KZ24261, 182.2 to 182.8; G, N, OUM KZ24218, 186 to 186.2 m; H, O, OUM KZ24252, I, J, OUM KZ24258, L, OUM KZ24259, 182.2 to 182.8 m, all rostratum Zone. E, Hysteroceras carinatum Spath, 1922, OUM KZ24560, 258.9 m, pricei Zone. Figures AeH, J are 1; figs I, KeO are 2. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 27. Mortoniceras (Subschloenbachia) rostratum (J. Sowerby, 1817), OUM KZ24214, 186 to 186.2 m, rostratum Zone, 1. 85 Fig. 28. A, F, G, Mortoniceras (Subschloenbachia) perinflatum (Spath, 1922). A, OUM KZ24286, 180.1 m; F, G, OUM KZ24283, 181.3 m, perinflatum Zone. B, D, Cantabrigites helveticum Renz, 1968. B, OUM KZ24207, D, OUM KZ24208, 186 to 186.2 m, rostratum Zone. C, H I, Cantabrigites minor Spath,1933. C, OUM KZ24015, 235.7 m, H, OUM KZ24080, 212.3 m, I, OUM KZ24079, 212.3 m, all fallax Zone. E, Mortoniceras (Mortoniceras?) haughtoni (Spath, 1925), OUM KZ25781, 223.8 m, fallax Zone. AeF, H, I, are 1; G is 2. 86 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 29. A, Puzosia (Bhimaites) stoliczkai (Kossmat, 1898) (bottom) (with Phylloceras (Hypophylloceras) sp. and Zelandites sp.), OUM KZ23990, 245.9 m, pricei Zone. B, Kossmatella muhlenbecki (Fallot, 1885), OUM KZ 23523, 278.4 m, pricei Zone. C, Kossmatella (Kossmatella) agassiziana (Pictet, 1847), KZ23902, 250.8 m, inflatum Zone. D, Borissiakoceras? sp., OUM KZ24750, 230.8 m, fallax Zone. E, Stoliczkaia (Faraudiella) sp., OUM KZ24297, 171.2 m, perinflatum Zone. F, Mortoniceras (Subschloenbachia) perinflatum (Spath, 1922), OUM KZ24665, 191 m level, perinflatum Zone. G, Zuluscaphites orycteropusi Hoepen, 1955, OUM KZ 24439, 253.1 m, inflatum Zone; H, Zuluscaphites helveticus Kennedy and Delamette, 1994, OUM KZ24792, 219.1 m, fallax Zone. I, Cenisella bonnetiana (Pictet, 1847), I, OUM KZ24177, 200.3 m, fallax Zone; J, Zuluscaphites sp., OUM KZ24164, 208.9 209.1 m, fallax Zone. K, Stoliczkaia (Stoliczkaia) dispar (d’Orbigny, 1841), OUM KZ24309b, 166.8 m, perinflatum Zone. A,B, C, G, H, K, are 1; D, E, F, I, are 2. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 13aec; 14aec; Kennedy and Latil, 2007, p. 466, pl. 4, fig. 1; pl. 5, figs 1e7; pl. 6, fig. 1; Kennedy and Bilotte, 2009, p.55, pl. 3, figs 34e36; pl. 4, figs 5e23; pl. 5, figs 1e3. Neophlycticeras (Neophlycticeras) blancheti Pictet and Campiche, 1859, 171.2 m, perinflatum Zone. Kennedy and Delamette, 1994, p. 1269, figs 6.1e6.8, 6.19e6.22; 7.1e7.12, 7.15e7. 17; 8.3; 9.1e9.2. Stoliczkaia (Faraudiella) sp., 171.2 m, and Zone (Fig. 29E). 102.8 m, perinflatum Latil, 2007, p. 470, pl. 8, figs 1e7; pl. 9, figs 1e3, 5e8; Kennedy and Bilotte, 2009, p. 60, pl. 6, figs 14e16. Algerites sayni Pervinquière, 1910, 50 m, upper Upper Albian briacensis Zone. Kennedy in Gale et al., 1996, p. 575, figs 25b, c, d, f, g, i; 26b, e, f, h. Family Hamitidae Gill, 1871 Hamites rotundus J. Sowerby, 1814, 338 to 334.5 m, roissyanum Zone (Fig. 33B). Spath,1941, p. 611, pl. 67, figs 14e18; pl. 68, fig.1; textfig. 219aei; Marcinowski and Wiedmann, 1990, p. 36, pl. 2, fig. 13. Suborder Ancyloceratina, Wiedmann, 1966 Superfamily Turrilitaceae Gill, 1871 Family Labeceratidae Spath, 1925 Hamitoides studerianus (Pictet, 1847), 253.1 m, inflatum Zone (Fig. 37C, G, H). Delamette et al. 1997, pl. 20, fig. 5. Hamitoides sp. 87 314.7 m, cristatum Zone (Fig. 33I). 266.2 m, pricei Zone Hamitoides(?) rusticus Spath, 1939, (Fig. 33C). Spath, 1939, p. 602, pl. 66, fig. 2. Family Anisoceratidae Hyatt, 1900 Hamites tenuicostatus Spath, 1941, 338 to 314.7 m, roissyanum Zone (Figs. 33G, 34G, 35F). Spath, 1941, p. 614, pl. 68, figs 2, 3; textfig. 220. Hamites gardneri Spath, 1941, 338 m and 257.7 m, roissyanum Zone and pricei Zone (Figs. 36A, C, F, K, 40F, G ). Spath, 1941, p. 614, pl. 68, figs 2, 3; text-fig. 220aeg. Hamites tenuis J. Sowerby, 1814, 334.5 m, roissyanum Zone (Fig. 38M). Spath, 1941, p. 628, pl. 68, fig. 14; pl. 70, figs 2, 16, 17; pl. 71, fig. 2; text-fig. 228. Anisoceras subarcuatum Spath, 1939, 258.7 to 257.7 m, pricei Zone (Fig. 32AeC). Spath, 1939, p. 560, pl. 53, fig. 5; pl. 63, fig. 5; pl. 65, fig. 1; pl. 66, fig. 1; text-fig. 198aeh. Hamites subrotundus Spath, 1941, 334.5 m, roissyanum Zone (Fig. 38O). Spath, 1941, p. 616, pl. 68, figs 6e9; text-fig. 221. Anisoceras aff. subarcuatum Spath, 1939, 267.9 m, pricei Zone (Fig. 37J). Anisoceras armatum (J. Sowerby, 1818) 250.8 to 80 m, inflatum Zone to upper Upper Albian briacensis Zone. Kennedy in Gale et al., 1996, p. 573, figs 24def, h; Kennedy and Latil, 2007, p. 467, pl. 7, fig. 7; pl. 10, figs 11, 14. Hamites maximus J. Sowerby, 1814, 333.m, 314.7 m, 309.7 m, roissyanum and cristatum Zones. Spath, 1941, p. 621, pl. 68, figs 15e16, 20; pl. 69, figs 1e9; pl. 70, figs 1, 18; text-fig. 224; Marcinowski and Wiedmann, 1990, p. 34, pl. 3, fig. 1. Anisoceras perarmatum Pictet and Campiche, 1861, 248.6 to 80 m, inflatum Zone to upper Upper Albian briacensis Zone (Fig. 31D). Renz, 1968, p. 74, pl. 13, fig. 5; pl. 14, figs 1, 2, 3, 5; text fig. 27a; 28g; Kennedy in Gale et al., 1996, p. 571, figs 23a, e; 24aec, g; Kennedy and Latil, 2007, p. 468, pl. 7, figs 1e6, pl. 10, fig. 12; Kennedy and Bilotte, 2009, p. 58, pl. 6, figs 17 30. Anisoceras pseudoelegans Pictet and Campiche, 1861, 199 to 119 m, fallax Zone to perinflatum Zone (Fig. 31E). Renz,1968, p. 79, pl. 14, figs 10 12; pl. 16, fig. 7; text figs 27i; 28k; Kennedy in Gale et al., 1996, p. 573, fig. 23c, d, f; Kennedy and Latil, 2007, p. 469, pl.12, figs 7, 8. Idiohamites cf. favrinus Pictet, 1847, 267.9 m, pricei Zone (Fig. 36M). Spath, 1939, p. 591, pl. 65, fig. 9; text fig. 21l. Idiohamites spiniger (J. Sowerby, 1818), 267.9 to 254.3 m, pricei Zone (Fig. 31B). Spath, 1939, p. 584, pl. 64, figs 10, 11; pl. 65, fig. 12; text-figs 206i; 207aei. Idiohamites subspiniger Spath, 1939, 267.9, pricei Zone (Fig. 30C, D, 32D). Spath, 1939, p. 586, text-fig. 208 a-g. Idohamites tuberculatus (J. Sowerby, 1818), 267.9 m, pricei Zone (Fig. 33A). Spath, 1939, p. 582, pl. 64, fig. 12; pl. 65, figs 3, 4, 10; textfig. 206aeh. Idiohamites desorianus (Pictet, 1847), 216.3 m, fallax Zone (Fig. 34F). Spath, 1939, p. 592, text-fig. 212aee, ?feh; Renz, 1968, p. 72, pl. 11, fig. 32; text-figs 25h; 26e. Idiohamites incertus Spath, 1939, 210 to Spath, 1939, p. 595, text-fig. 214aeh. 210.5 m, fallax Zone. Idiohamites elegantulus Spath, 1939, 50 m, upper Upper Albian briacensis Zone. Spath, 1939, p. 599, text-fig. 216aeg; Kennedy and Hamites attenuatus (J. Sowerby, 1814), 314.7 m, cristatum Zone. Spath, 1939, p. 607, pl. 67, figs 1e13, 19; text fig. 218; Marcinowski and Wiedmann, 1990, p. 34, pl. 2, figs 9e11; text-fig. 19. Hamites compressus J. Sowerby, 1814, 298.3 to 248.6 m, cristatum to inflatum Zones (Figs. 31A, 40C, D). Spath, 1941, p. 617, pl. 68, figs 10e13; text-fig. 222aem. Hamites incurvatus Brown, 1837, 267.9 and 257.7 m, pricei Zone (Figs. 31G, 34A). Spath, 1941, p. 619, pl. 68, figs 18, 19; text-fig. 223aeg; Marcinowski and Wiedmann, 1990, p. 36. Hamites intermedius J. Sowerby, 1814, 271.9 m pricei Zone (Fig. 35H; ? Fig. 36H). Spath, 1941, p. 630, pl. 70, figs 19, 20; pl. 21, figs 3e6; text-fig. 229aeg, mep. Hamites charpentieri Pictet, 1847, 251.6 m, and 212.2 m, inflatum and fallax Zones (Fig. 36L). Spath, 1941, p. 642, pl. 72, figs 17e22; text-fig. 233. Hamites duplicatus Pictet and Campiche, 1861, 250.8 to 2.5 m, fallax Zone and extending into the lower Cenomanian mantelli Zone at Risou (Figs. 30A, 36D, E, G, I). Renz,1968, p. 68, pl.11, figs 19, 20, 21; textfig. 23hek; Kennedy in Gale et al., 1996, p. 565, fig. 16l, n, p; 20c, h, i, k. Hamites parkinsoni Fleming, 1828, 246.8 to 204 m, inflatum and fallax Zones (Figs. 30E, 31C, 34B). Spath, 1941, p. 653, text-fig. 239; Renz, 1968, p. 68, pl. 11, figs 12, 17, 18; text-fig. 23g, o. Hamites funatus Brongniart, 1822, 219.1 and 102.8 m, fallax and perinflatum Zones (Fig. 33F). Spath, 1941, p. 650, pl. 72, figs 1e3, 23; text-fig. 237aek. Hamites subvirgulatus Spath, 1941, 193 to 102.8 m, fallax to perinflatum Zones (Fig. 36B). Spath, 1941, p. 645, text-fig. 234ah; Kennedy in Gale et al., 1996, p. 567, figs 20d, e, j; 25g, h, j; 26j, k. 88 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 30. A, Hamites duplicatus Pictet and Campiche, 1847, OUM KZ24737, 231.5 m, fallax Zone. B, Hamites attenuatus J. Sowerby, 1814, OUM KZ24359, 314.7 m, cristatum Zone. C, D, Idiohamites subspiniger Spath, 1939. C, OUM KZ23728, 267.9 m, pricei Zone; D, OUM KZ23750 (associated with Actinoceramus sulcatus (Parkinson, 1819), 267.9 m, pricei Zone. E, Hamites parkinsoni Fleming, 1828, OUM KZ24442 253.1 m, inflatum Zone. All 1. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 89 Fig. 31. A, Hamites compressus J. Sowerby, 1814, OUM KZ23456, 298.3 m, cristatum Zone B, Idiohamites spiniger (J. Sowerby, 1818), 267.9 m, pricei Zone. C, Hamites parkinsoni Fleming, 1828, OUM KZ24586, 204 m, inflatum Zone. D, Anisoceras perarmatum Pictet and Campiche, 1861, OUM KZ24679, 102.8 m, perinflatum Zone. E, Anisoceras pseudoelegans Pictet and Campiche, 1861, OUM KZ24653b, 119 m, perinflatum Zone. F, Hamites renzi Kennedy, 1996, OUM KZ24653b, 119 m, perinflatum Zone. G, Elobiceras (Craginites) newtoni Spath, 1925, associated with Hamites incurvatus Brown, 1837, Pseudhelicoceras sp. juv., and Actinoceramus sulcatus biometricus Crampton, 1996, OUM KZ23701, 267.9 m, pricei Zone. Figures A, CeG are 1; fig. B is 2. 90 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 32. AeC, Anisoceras subarcuatum Spath, 1939. A, OUM KZ 23769, B, OUM KZ23770, C, OUM KZ23806, 258.7 m, pricei Zone. D, Idiohamites subspiniger Spath, 1939 (associated with Actinoceramus sulcatus (Parkinson, 1819), Elobiceras (Craginites) newtoni Spath, 1925, and Hysteroceras sp., OUM KZ23752, 267.9 m, pricei Zone. All figures are 1. Fig. 33. A, Idiohamites tuberculatus (J. Sowerby, 1818)(associated with Jauberticeras sp. cf. subbeticum Wiedmann, 1962c), OUM KZ23735, 267.9 m, pricei Zone. B, Hamites rotundus J. Sowerby, 1814, OUM KZ24847, 338 m, roissyanum Zone. C, Hamitoides (?) rusticus Spath 1939, OUM KZ23767, 266.2 m, pricei Zone. D, Pseudhelicoceras circumtaeniata (Kossmat, 1895), 199 m, fallax Zone. E, Eoscaphites circularis (J. de C. Sowerby, 1836), OUM KZ23422, 309.7 m, cristatum Zone. F, Hamites funatus Brongniart, 1822, OM KZ24683, 102.8 m, perinflatum Zone. G, Hamites tenuicostatus Spath, 1941, OUM KZ24510, 333.4 m, roissyanum Zone. H, Hamites sp.?, OUM KZ23614a, 267.9 m, pricei Zone. I, Hamitoides sp., OUM KZ25721, 314.7 m, roissyanum Zone. J, Hemiptychoceras subgaultinum Breistroffer, 1940, OUM KZ24581, 205 m, rostratum Zone Figures A, E, H, G, are 2; figs B-D, I, J, are 1. 92 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 34. A, Hamites incurvatus Brown, 1837, OUM KZ23612, 267.9 m, pricei Zone. B, Hamites parkinsoni Fleming, 1828, OUM KZ23972, 246.8 m, inflatum Zone. C, D, Ptychoceras adpressum (J. Sowerby, 1814). C, OUM KZ23668, 267.9 m, pricei Zone; D, OUM KZ23867, 251.6 m, inflatum Zone. E, Hemiptychoceras subgaultinum Breistroffer, 1940, OUM KZ24023, 235.7 m, fallax Zone. F, Idiohamites desorianus (Pictet, 1847), OUM KZ24803, 216.3 m, fallax Zone. G, Hamites tenuicostatus Spath, 1941, OUM KZ24511, 333.4 m, roissyanum Zone. H, I, Hemiptychoceras gaultinum (Pictet, 1847). H, OUM KZ24626, 196.7 m, fallax Zone. I, OUM KZ23889, 250.8 m, inflatum Zone. J, Psilohamites bouchardianus (d’Orbigny, 1842)(associated with Elobiceras (Craginites) newtoni Spath, 1925, Hysteroceras orbignyi (Spath, 1922), Hypophylloceras sp. and Pseudhelicoceras sp.), OUM KZ32748b, 267.9 m, pricei Zone. A, B, E, GeI are 1; B, C, F, J, are 2. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 93 Fig. 35. A eE, I, G, N, Hamites? sp. nov. A, OUM KZ23619, 267.9 m, pricei Zone; B, C, OUM KZ24849, D, OUM KZ24547, 338 m, roissyanum Zone; E, I, OUM KZ23618, G, OUM KZ23722, 267.9 m, pricei Zone; N, OUM KZ24858, 338 m, roissyanum Zone. F, Hamites tenuicostatus Spath, 1941, OUM KZ23414, 314.4 m, cristatum Zone. H, Hamites intermedius J. Sowerby, 1814 (with Hysteroceras binum (J. Sowerby, 1815), OUM KZ23539, 271.9 m, pricei Zone. JeM, Scaphamites passendorferi Wiedmann and Marcinowski, 1985. J, OUM KZ24936, K, OUM KZ24915b; L, OUM KZ24915a, M, OUM KZ24916, 338 m, roissyanum Zone. A, C, G I, J-N, 2; B, E, F, H, 1. Fig. 36. A, C, F, K, Hamites gardneri Spath, 1941. A, OUM KZ23496, C, OUM KZ23498, D, OUM KZ23495, F, OUM KZ23497, K, OUM KZ23495, all 293.1 293.5 m, cristatum Zone. B, Hamites subvigulatus Spath, 1941, OUM KZ24685, 102.8 m, perinflatum Zone. D, E, G, I, Hamites duplicatus Pictet and Campiche, 1847. D, OUM KZ23880a, 250.8 m, inflatum Zone; E, OUM KZ23887, 250.8 m, inflatum Zone; G, OUM KZ24294, 172 m, perinflatum Zone; I, OUM KZ24083, 212.3 m, fallax Zone. H, Hamites sp. cf. intermedius J. Sowerby, 1814 B, OUM KZ23534, 271.9 m, pricei Zone. J, Prohelicoceras thurmanni (Pictet and Campiche, 1861), OUM KZ23360, 314.7 m, cristatum Zone. L, Hamites charpentieri Pictet, 1847, OUM KZ23855, 251.6 m, inflatum Zone. M, Idiohamites cf. favrinus (Pictet, 1847), OUM KZ23616, 267.9 m, pricei Zone. A-F, I-K are 1; G, H, L, M, are 2. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 95 Fig. 37. A, D, Mariella escheriana (Pictet, 1847). A, OUM KZ24248, D, OUM KZ24251, 182.2 to 182.8 m, rostratum Zone. B, Prohelicoceras thurmanni (Pictet and Campiche, 1861), OUM KZ24770a, 314.7 m, cristatum Zone. C, H, G, Hamitoides studerianus (Pictet, 1847). C, OUM KZ24402a, G, OUM KZ24401a, H, OUM KZ 24400b, 253.1 m, inflatum Zone. E, Pseudhelicoceras pseudoelegans Spath, 1937, OUM KZ23433, 309.7 m, cristatum Zone. F, K, Pseudhelicoceras sp. F, OUM KZ23726 (with Hysteroceras orbignyi (Spath, 1922), K, OUM KZ23667 (with Elobiceras Craginites newtoni Spath, 1935, 267.9 m, pricei Zone. I, Pseudhelicoceras circumtaeniata (Kossmat, 1895), OUM KZ24647, 192.8 m, fallax Zone. J, Anisoceras aff. subarcuatum Spath, 1939, OUM KZ23548, 267.9 m, pricei Zone. A, DeF are 2; B, C, GeK are 1. Fig. 38. A,B,D,N, Turrilitoides hugardianus (d’Orbigny, 1841). A, OUM KZ24271a, 182.2 to 182.8 m, rostratum Zone; B, OUM KZ24289, 178.7 m, perinflatum Zone: D, OUM KZ24272, 182.2 to 182.8 m, rostratum Zone; N, OUM KZ24292, 176 to 176.5 m, perinflatum Zone. C, F-I, K, Ostlingoceras (Ostlingoceras) puzosianum (d’Orbigny, 1842). C, OUM KZ24704, F, OUM24724, G, OUM KZ24712, H, OUM KZ24702, I, OUM KZ24726, K, OUM KZ24703, all -102.8 m, perinflatum Zone. E, J, L, M, N, Turrilitoides densicostatus (Passendorfer 1930). E, OUM KZ24527b, J, OUM KZ24527a, L, OUM KZ23311, M, OUM KZ23316 (associated with Hamites tenuis J. Sowerby, 1814), O, OUM KZ24508 (associated with Hamites subrotundus Spath, 1941) 333.4 m, roissyanum Zone. AeD, FeI,K, N, are 1; E, J, L, M,O, are 2. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Hamites renzi Kennedy, 1996, 187.8 m to 80 m, fallax Zone to upper Upper Albian briacensis Zone. Kennedy in Gale et al., 1996, p. 569, figs 21aee, gei, k; 22b, eeg; 23b. Hamites sp.? 267.9 m, pricei Zone (Fig. 33) This problematic specimen consists of an initial open helix and part of the suceeding shaft. It appears to lack ventral tubercles or spines, suggesting it to be a distinctive and very finely ribbed Hamites. This apart, the specimens show a striking similarity to contemporaneous Idiohamites turgidus (J. Sowerby, 1818) as figured by Spath (1939, pl. 66, fig. 6). More material is needed to estalish if the apparent lack of tubercles or spines is an artefact of preservation. Hamites? sp. nov., 267.9 m, pricei Zone (Fig. 35AeE, I, G, N). The affinities of these specimens are problematic. Both possible microconchs (Fig. 35G, N) and possible macroconchs are present. The most complete possible microconch, OUM K23495, is only 22.6 mm (Fig. 35N) long. An initial tiny open planispire 2e3 mm in diameter that overlaps with the flank of the succeeding shaft is succeeded by two closely adpressed (?) shafts, and a third much shorter final shaft, not in contact with the preceding one. Ornament is of fine dense crowded prorsiradiate ribs on the penultimate shaft that change to rursiradiate around the curved sector and are feebly rursiradiate on the final shaft, where they become more widely spaced. The aperture is preceded by a wide interspace and flared rib. The second possible microconch, OUM KZ23722 (Fig. 35 G) has ribs that increase by branching and intercalation on the flanks and venter. The largest, incomplete possible macroconch is a final shaft 40 mm long, OUM KZ24849 (Fig. 35B, C), that shows well the change from fine and crowded to more widely spaced ribs, together with the flared apertural rib. The simple ribbing of some of these specimens recalls Hamitidae, the branching and intercalating ribs of other specimens recalls Hamitoides and the Labeceratidae. These specimens resemble the tiny specimens referred to Hamites attenuatus J. Sowerby, 1814, by Spath (1941, text-fig. 218, g), while the overlap of the initial spire with the succeeding shaft corresponds to that shown by larger 97 specimens of this species (Spath, 1941, text-fig. 218f). These specimens may represent an undescribed micromorphic hamitid, or the apparent dimorphism may be illusory. In the latter case affinities with Hamites attenuatus are possible. Hemiptychoceras gaultinum (Pictet, 1847), 338 to 246.8 m, roissyanum to inflatum Zones (Fig. 34H, I). Wiedmann and Dieni, 1968, p. 61, pl. 5, figs 6, 8; pl. 6, fig. 12 (?); Marcinowski and Wiedmann, 1990, p. 40, text-fig. 22; Delamette et al., 1997, pl. 20, fig. 7. Hemiptychoceras subgaultinum Breistroffer, 1940, 235.7 to 80 m, fallax Zone to upper Upper Albian briacensis Zone (Figs. 33J, 34E). Boule et al., 1907, p. 36 (56), pl. 6 (13), fig. 1; Marcinowski and Wiedmann, 1990, p. 41, pl. 3, fig. 6; Kennedy in Gale et al., 1996, p. 569, figs 21aee, gei, k; 22b, eeg; 23b. 267.9 m, Psilohamites bouchardianus (d’Orbigny, 1842), 252.3 m, and 251.6 m, pricei to fallax Zones (Fig. 34J). Spath, 1941, p. 655, text-fig. 240. Ptychoceras adpressum (J. Sowerby, 1814), 338 m to 235.7 m, roissyanum to fallax Zones (Fig. 34C and D). Spath, 1941, p. 657, textfig. 241aem; Henderson, 1990, p. 125, figs 10AeF. Scaphamites passendorferi Wiedmann and Marcinowski, 1985, 338 m, roissyanum Zone (Fig. 35JeM). Wiedmann and Marcinowski, 1985, p. 453, figs 2, 3, 6; Marcinowski and Wiedmann, 1990, p. 47, pl. 5, figs 1e4. Family Baculitidae Gill, 1871 Lechites gaudini (Pictet and Campiche, 1847), 250.8 m to 32 m, fallax to lower Lower Cenomanian briacensis Zone. Renz, 1968, p. 80, pl. 17, figs 1e4; text-fig. 29e. Kennedy in Gale et al., 1996, p. 577, figs 22a, c, d; 27eei, leo; Kennedy and Latil, 2007, p. 471, pl. 10, figs 6, 7, 10; Kennedy and Bilotte, 2009, p.61, pl. 8, figs 1e7. Fig. 39. A, C, Lechites (Tuberolechites) regifex Cooper and Kennedy, 1977. A, OUM KZ24635, C, OUM KZ24633, 196.7 m, fallax Zone. B, Lechites (Lechites) gaudini (Pictet and Campiche, 1861), OUM KZ24138, 211.3 m, fallax Zone. D, Lechites (Lechites) moreti Breistroffer, 1936, OUM KZ24694, 102.8 m, perinflatum Zone. All figures are 1. 98 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 40. A, Worthoceras sp., OUM KZ24816, 212.2 m, fallax Zone. B, E, Scaphites meriani Pictet and Campiche, 1861. B, OUM KZ24169, 203 203.6 m, fallax Zone; E, OUM KZ24284, 181.3 m, rostratum Zone. C, D, Hamites compressus J. Sowerby, 1814. C, OUM KZ23449, D, OUM KZ23446, 298.3 m, cristatum Zone. F, G, Hamites gardneri Spath, 1941. F, OUM KZ23810a, G, OUM KZ23810b, 257.7 m, pricei Zone. H, Scaphites bassei Collignon, 1929, OUM KZ24284b, 183.1 m, rostratum Zone. I, Scaphites simplex Jukes-Browne, 1875, OUM KZ24034, 235.7 m, fallax Zone. J-L, Eoscaphites subcircularis (Spath, 1937). J, OUM KZ23744, K, OUM KZ23608a, L, OUM KZ23746, 267.9 m, pricei Zone. Lechites moreti Breistroffer, 1936, 102.8 m, perinflatum Zone (Fig. 39D ). Renz, 1968, p. 81, pl. 16, figs 10, 12, 13; text-fig. 29a, i; Kennedy and Latil, 2007, p. 472, pl. 10, figs 3 5, 8, 9, 15; Kennedy and Bilotte, 2009, p.62, pl. 8, figs 8e13. Tuberolechites regifex Cooper and Kennedy, 1977, 201.8 m to 196.7 m, fallax Zone. Cooper and Kennedy, 1977, p. 654, fig. 8, 1e15. Family Turrilitidae Gill, 1871 Turrilitoides densicostatus (Passendorfer, 1930), 339 m to 338 m, roissyanum Zone (Figs. 38E, J, L, M, N). Marcinowski and Wiedmann, 1990, p. 50, pl. 4, figs 11, 12. Turrilitoides hugardianus (d’Orbigny, 1842), 183.8 m to 176.5 m, rostratum and perinflatum Zones (Fig. 38A, B, D, N). A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Marcinowski and Wiedmann, 1990, p. 50, pl. 4, figs 9, 10; Kennedy in Gale et al., 1996, p. 580, fig. 16aed; Kennedy and Juignet in Gauthier, 2006, p. 170, pl. 46, fig. 9. Pseudhelicoceras pseudoelegans Spath, 1937, 338 and 267.9 m, roissyanum Zone to pricei Zone (Fig. 37E). Check. Spath, 1937, p. 534, pl. 57, figs 29e35; pl. 58, figs 31e33; text-figs 188aec; 189a. Pseudhelicoceras gaultinum Spath, 1937, Spath, 1937, p. 539, pl. 58, figs 27e30. 267.9 m, pricei Zone. Pseudhelicoceras circumtaeniata (Kossmat, 1895), 199 to 192.8 m, fallax Zone (Figs. 33D, 37I). Klinger and Kennedy, 1978, p. 26, pl. 5aec; text-figs 3g, 6d. Pseudhelicoceras spp. 314.7 m, 309.7 m, and pricei Zones (Figs. 31G, 37F, K). 267.9 m, cristatum Prohelicoceras thurmanni (Pictet and Campiche, 1861), 314.7 m, cristatum Zone (Figs. 36J, 37B). Pictet and Campiche, 1861, p. 118, pl. 56, fig. 4. Mariella escheriana (Pictet, 1847), 182.2 m to 182.8 m, perinflatum Zone (Fig. 37A, D). Pictet, 1847, p. 154, pl. 15, fig. 11. Mariella cf. miliaris (Pictet and Campiche, 1861), 102.8 m and 50 m, perinflatum Zone and upper Upper Albian briacensis Zone. Spath, 1937, p. 514, pl. 57, figs 25, 26; text-fig. 179a-e; Renz, 1968, p. 88, pl. 18, fig. 10; text-figs 31m; 32h; Kennedy in Gale et al., 1996, p. 583, figs 28c, h, k, m, n; 29a-d, jek. Mariella bergeri (Brongniart, 1822), 92.5 m to 50 m, upper Upper Albian briacensis Zone. Kennedy in Gale et al., 1996, p. 583, figs 28a, b, i, j, l, o, p; 29i, p, m; Kennedy and Latil, 2007, p. 472, pl. 10, figs 1, 2, 13; Kennedy and Bilotte, 2009, p. 62, pl. 6, figs 31e34, ? 35; pl. 7, figs 18, 10. Mariella cf. hillyi (Dubourdieu, 1953), 50 m, upper Upper Albian briacensis Zone. Kennedy in Gale et al., 1996, p. 585, fig. 29e, f, n, q. Mariella spp. indet., 182.2 m to Zones. 94.5 m, rostratum to briacensis Ostlingoceras puzosianum (d’Orbigny, 1842), 102.8 m, perinflatum Zone (Fig. 38C,FeI, K). Kennedy and Latil, 2007, p. 473, pl. 11, figs 1-12; pl. 12, figs 1-4; Kennedy and Bilotte, 2009, p. 64, pl. 7, figs 9, 11e19. Superfamily Scaphitaceae Gill, 1871 Family Otoscaphitinae Wright, 1953 Worthoceras sp., 212.2 m, fallax Zone. Worthoceras pygmaeum Butjor, 1991, 119 m and 50 m, perinflatum and upper Upper Albian briacensis Zone. Butjor, 1991, p. 537, fig. 2k; Kennedy in Gale et al., 1996, p. 586, fig. 30d, g, i, n. Yezoites subevolutus, 50 m, upper Upper Albian briacensis Zone. Kennedy in Gale et al., 1996, p. 589, fig. 30b, c, h, j, k; Kennedy et al., 2005, p. 419, figs 53a-o. Subfamily Scaphitinae Gill, 1871 Eoscaphites circularis (J. de C. Sowerby, 1836), 314.7 m, 309.7 m, and 298.3 m, cristatum Zone (Fig. 33E). Spath, 1937, p. 499, pl. 57, figs 1e9; text-figs 174aei; Wiedmann, 1965, p. 404, pl. 53, figs 1e3; text-fig. 1aec. Eoscaphites subcircularis (Spath, 1937), 267.9 m, pricei Zone (Fig. 40JeL); Spath, 1937, p. 501, pl. 57, figs 10e12; text-fig. 175e; 99 Wiedmann, 1965, p. 407, pl. 53, figs 4e6; pl. 54, figs 2e4, 8, 9; pl. 55, figs 1-3; text-figs 1def, 2. Scaphites simplex Jukes-Browne, 1875, 258.7 m to 182.2 m, pricei to rostratum Zones. (Fig. 40I). Spath, 1939, p. 504, pl. 57, figs 13-23; text-figs 176cef; 177aec; Wiedmann, 1965, p. 412, pl. 54, figs 1, 7; pl. 55, figs 4, 5; text-fig. 3e. Scaphites meriani Pictet and Campiche,1861, 203 m to 127.5 m, fallax to perinflatum Zones (Fig. 40B and E). Wiedmann, 1965, p. 426, pl. 54, fig. 6; pl. 57, figs 3, 4; text-figs 5aec; Renz, 1968, p. 94, text-fig. 33a; Kennedy in Gale et al., 1996, p. 590, fig. 30p. Scaphites hugardianus (d’Orbigny, 1842), 201.8 m to 164 m, rostratum and perinflatum Zones. Wiedmann, 1965, p. 423, pl. 54, fig. 5; pl. 57, figs 1, 2, 6, 7; text-figs 5d, e; Renz, 1968, p. 93, pl. 18, fig. 17; Kennedy in Gale et al., 1996, p. 590, figs 17aec, g. Scaphites bassei Collignon, 1929, 193 m to þ4 m, fallax Zone to Lower Cenomanian mantelli Zone (Fig. 40H). Wright and Kennedy, 1996, p. 386, pl. 114, figs 2e6; text-figs 150c, 151A, d, F, G, ?J; 152M, ?P; Kennedy in Gale et al., 1996, p. 590, figs 30a, e, f, l, o, q. 4. The inoceramid bivalve sequence (J.S. Crampton, A.S. Gale) 4.1. Introduction The upper Middle and lower Upper Albian succession at the Col de Palluel section contains a low diversity but locally abundant inoceramid fauna. Examples of all of the taxa discussed below are illustrated in Fig. 41 . Typically, flattened inoceramids are clustered densely on bedding planes in the Marnes Bleues Formation and are preserved with the external calcitic shell layer adhering to either the internal or external mould. In particular, the interval between 348 m and 261 m has been sampled in detail with the recovery of 27 collections and over 460 specimens. Trenching suggests that some beds within this interval are largely or entirely barren of bivalves or other benthic megafossils (e.g., w 309 m to 300 m, w 265 m to 261 m). Above 261 m, inoceramids are uncommon in lower Upper Albian strata, although they become more common again around the Albian/Cenomanian boundary (Gale et al., 1996). The Middle and lower Upper Albian inoceramid fauna is dominated overwhelmingly by the genus Actinoceramus. Middle Albian Actinoceramus define a single lineage that experienced seemingly continuous phyletic evolution and can be divided into three successional subspecies (Crampton, 1996); in ascending order, these are: A. concentricus expandoclunis Crampton, 1996, A. concentricus concentricus (Parkinson, 1819), and A. concentricus parabolicus Crampton, 1996. At the beginning of the Late Albian the lineage underwent inferred cladogenetic budding (Crampton, 1996; Crampton and Gale, 2005). Following cladogenesis, A. concentricus apparently persisted in low abundance and with relatively little morphological change as the successional subspecies A. concentricus gryphaeoides (Sowerby, 1828), which was hitherto known with confidence from England only (Crampton, 1996) but has now been identified also from collections in the Col de Palluel section ( 212.3 m, and ? 314.9 m to ? 314.5 m; Fig. 41K). In contrast, the other Late Albian lineage of Actinoceramus, the species A. sulcatus, is essentially cosmopolitan at low and midpaleolatitudes and is typically extremely abundant at many localities. The species is noteworthy for the high levels of morphological variability within and between populations, variability that is inferred to reflect phyletic evolution at varying rates together with widespread ecophenotypic plasticity (Crampton and Gale, 2005; 2009). These patterns of variation provide a rich dataset for studies of evolutionary rate and process and, as described below, 100 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 41. A, B, C, Actinoceramus sulcatus forma sulcatus (Parkinson, 1819). A, right valve, OUM KZ23176, 267.9 m; B, right valve; OUM KZ23042, 294.6 to 294.1 m; C, right valve showing possible loss of radial folds through growth;, OUM KZ22939, 314.7 to 314.5 m. D, E, F, Actinoceramus sulcatus forma subsulcatus (Wiltshire, 1869), showing diagnostic lack of radial folds and sulci on the juvenile shell (within 5 mm of the beak). D, right valve, OUM KZ23141, 271.9 to 271.7 m; E, right valve, juvenile, latex cast, OUM KZ22923, 314.9 to 314.7 m; F, left valve, OUMKZ22919, height as for E. G, Actinoceramus sulcatus forma munsoni (Cragin, 1894), showing typical pair of comparatively weak radial sulci close to the anterior margin, OUM KZ23197, 267.1 to 266.9 m. H, Actinoceramus sulcatus biometricus Crampton, 1996, showing characteristic umbonal-ventral carina that divides the disk into subequal facets, OUM KZ23233, 265.6 to 265.4 m. I , J, Actinoceramus concentricus parabolicus Crampton, 1996, showing typically expanded posterior disk. I, left valve, latex cast, OUM KZ.22920, 314.9 to 314.7 m; J, right valve, OUM KZ22818, 326.8 to 326.5 m. K, Actinoceramus concentricus gryphaeoides (J. de C. Sowerby, 1828), left valve, showing regular, well-spaced commarginal folds characteristic of the subspecies, OUM KZ24130, 212.3 m. L, Actinoceramus concentricus concentricus (Parkinson, 1819), left valve, showing typically inflated form and weak sculpture, OUM KZ22837, 334.8 to 334.3 m. M, Actinoceramus sulcatus sensu lato?, right valve, finely sculptured and showing possible initiation of posterior sulcus on adult disk. This specimen is typical of many that cannot be reliably identified to subspecies or morphotype, but possibly representing Actinoceramus. sulcatus forma subsulcatus in which the onset of radial folding occurred late in ontogeny and is not preserved; OUM KZ23069, 293.7 to 293.1 m. N, Inoceramus anglicus Woods, 1911, left valve, juvenile, showing diagnostic regular, rounded and comparatively high amplitude commarginal folds, broadly rounded ventral margin, and relatively weak inflation, OUM KZ.23040, 298.4 to 298 m. All figures are 1.5. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 yield useful biostratigraphic datums. Most A. sulcatus are highly distinctive and are diagnosed by the presence of large radial or approximately radial folds and sulci that affect all or part of the shell. Following the taxonomic scheme described in Crampton and Gale (2009), three morphotypes and one successional subspecies of A. sulcatus are recognised: A. sulcatus forma sulcatus, A. sulcatus forma subsulcatus (Wiltshire, 1869), A. sulcatus forma munsoni (Cragin, 1894), and A. sulcatus biometricus Crampton, 1996. Crampton and Gale (2009) defined four new Actinoceramus zones in the Col de Palluel section (see below). These are essentially lineage zones, in the sense of Salvador (1994), based on the evolutionary hypotheses outlined above, although they incorporate information about the relative abundance of distinctive forms into zonal definitions because evolutionary patterns are themselves expressed in this way. Lineage zones have a status and utility that is different from other types of biostratigraphic zone. In particular, and assuming that defining evolutionary hypotheses are correct, then the boundaries of lineage zones “have strong time significance and approach chronostratigraphic units” within their geographic distributions (Salvador, 1994: p. 61). In the present case, the use of relative abundance information introduces an element of stochastic uncertainty related to sampling and this, in turn, adds an element of uncertainty to the placement of zonal boundaries. Despite this, in the Col de Palluel section, changes in abundance of key forms are well defined, conspicuous, and located within narrow stratigraphic intervals. Errors associated with the use of abundance criteria are, therefore, likely to be small. The same holds true for other localities in England and Texas, described by Crampton (1996) and Crampton and Gale (2005; 2009). In particular, we would argue that the base of the A. sulcatus forma sulcatus Zone provides an extremely valuable biostratigraphic datum that may have strong time significance in the sense of Salvador (1994). In addition to forms of Actinoceramus, one other inoceramid is present in the strata studied here, namely Inoceramus anglicus Woods, 1911 (Fig. 41N). This species has relatively little biostratigraphic utility, being uncommon and having a stratigraphic range extending up into the Lower Cenomanian (Gale et al., 1996). I. anglicus is recorded here from 298 m and, questionably, from ? 318.5 m. 101 sulcatus Zone is defined by the base of the overlying zone at 267.1 m. The form A. sulcatus forma subsulcatus has a range that is essentially coincident with the sulcatus Zone at the Col de Palluel, although it has not been identified from the highest sample. The base of the A. sulcatus forma munsoni Lineage Abundance Zone is defined at the lowest occurrence of Actinoceramus faunas that comprise one third or more of the form A. sulcatus forma munsoni. This form is diagnosed by the presence of relatively few (typically two), shallow folds that are restricted to the anterior part of the shell (Fig. 41G). A. sulcatus forma munsoni comprises a minor component of some collections from the underlying zone, but it has a conspicuous abundance acme within a single concretionary shell bed at 267.1 m to 266.9 m and the base of the zone is taken at 267.1 m. The collection from this shell bed is small (just three well preserved specimens) due to the hardness of the rock and difficulties of sampling; however, field observations indicate that A. sulcatus forma munsoni completely dominates faunas within this bed. The top of the zone defined by the base of the overlying zone at 266.2 m. The munsoni Zone is very thin at Col de Palluel, but is known to be much thicker elsewhere (e.g., at Fort Worth in Texas; Kennedy et al., 1999; see Crampton and Gale, 2009). The base of the A.sulcatus biometricus Lineage Abundance Zone, the highest inoceramid zone described, is defined at the lowest occurrence of Actinoceramus faunas that comprise two thirds or more of the taxon A. sulcatus biometricus. This subspecies is diagnosed by its lack of radial folds or sulci except for a centrally situated, broad, rounded, umbonal-ventral carina (Crampton, 1996; Fig. 41H). The base of the zone in the Col de Palluel section is at 266.2 m; similar, non-folded Actinoceramus comprise up to 30% of collections in the underlying two zones and are interpreted to be, largely, end-member ecophenotypes of A. sulcatus. The top of the zone is at 265.4 m; above this, Actinoceramus are extremely rare and no A. sulcatus biometricus have been identified (Gale et al., 1996; herein). 5. Planktonic Foraminifera (M. Caron and M.R. Petrizzo) 5.1. Material and methods 4.2. Inoceramid zones in the Col de Palluel section The position of zonal boundaries is plotted on Fig. 3. The base of the A. concentricus parabolicus Lineage Abundance Zone is defined at the lowest occurrence of Actinoceramus faunas dominated by by the successional subspecies A. concentricus parabolicus. The index pecies is diagnosed by the absence of radial folds and sulci except for a single umbonal-ventral carina that divides the disc into a smaller anterior facet and a characteristically larger posterior facet (Fig. 41I). Isolated, rare A. concentricus parabolicuslike specimens may occur somewhat lower in the sequence and, therefore, the base of the parabolicus Zone is defined at that level at which the index subspecies comprises 50% or more of the total fauna. At the Col de Palluel section (and elsewhere, see Crampton and Gale, 2009), the lower boundary of the zone is readily identified at the base of an abrupt and conspicuous acme of A. concentricus parabolicus at 318.5 m. The top of the zone is defined by the base of the overlying zone at 314.7 m. The highest confident identification of A. concentricus parabolicus is at 314.9 m, although similar, nonfolded Actinoceramus comprise up to 30% of collections in the overlying zone and are interpreted to be, largely, end-member ecophenotypes of A. sulcatus. The base of the A. sulcatus Lineage Zone is defined at the lowest occurrence of Actinoceramus sulcatus sensu lato. In the Col de Palluel section, the base of the zone is at 314.9 m, 20 cm below the base of a 15 cm thick, slightly concretionary shell bed. The top of the A total of 79 samples throughout the section have been analysed for planktonic foraminifera. Samples were soaked in hydrogen peroxide, washed under running water through 63e125 <mm>, 125e250 <mm>, and 250 <mm> sieves and then dried. The stratigraphic distribution of planktonic foraminifera in the succession is shown in Fig. 42. Species that are questionably present are denoted by a question mark. Examples of taxa present and discussed below are shown in Figs. 43e47. The taxonomic concepts follow Sigal (1966, 1969), Robaszynski et al. (1979), Wonders (1978), Caron (1985), Loeblich and Tappan (1987), Petrizzo and Huber (2006a,b), and the CHRONOS online Mesozoic taxonomic dictionary located at http://portal.chronos.org. The position of zonal boundaries (Fig. 42) follows to the classical zonal schemes developed for the Tethyan region (Sigal, 1977; Robaszynski et al., 1979; Premoli Silva and Sliter, 1995; and Robaszynski and Caron, 1995). In general, planktonic foraminifera are poorly to moderately preserved from the base to the top of the studied section. There is a progressive foraminiferal diversification, with the appearance of more morphologically complex taxa up section, and only smallsized specimens with simple morphologies present in the lower part of the section (from 318.4 to 370.0 m). In fact, the evolution of planktonic foraminifera in the Middle Late Albian is marked by the appearance of a new group of taxa with trochospiral test, an umbilical-extraumbilical primary aperture, sutural or umbilical 102 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 42. Distribution of planktonic foraminifera in the Col de Palluel section. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 103 Fig. 43. AeC - Pseudothalmanninella ticinensis (Gandolfi, 1942), sample CP 26; DeF - Thalmanninella appenninica (Renz, 1936), sample CP 1; GeI - Thalmanninella balernaensis (Gandolfi, 1957), sample CP 1; JeL e Praeglobotruncana delrioensis (Plummer, 1931), sample CP 1; MeO e Hedbergella praelibyca Petrizzo and Huber, 2006, sample CP 33, scale bar 100 mm; PeR e Hedbergella simplex (Morrow, 1934), sample CP 64, scale bar 100 mm. Scale bars 200 mm except when otherwise stated. supplementary aperture, and a peripheral keel. Despite the apparent polyphyletism, these single-keeled taxa were included in the genus Rotalipora by Sigal (1958). Subsequently, Wonders (1978) reconsidered the gradual evolution of the polyphyletic Rotalipora group and designated the genera (1) Pseudothalmanninella Wonders, 1978 for the ticinensis group, which evolved from Ticinella praeticinensis (Sigal, 1966) and possesses an umbilical supplementary aperture, (2) Thalmanninella Sigal, 1948 to include the appenninica group, which evolved from Ticinella raynaudi (Sigal, 1969) and possesses an umbilical to sutural supplementary aperture, and (3) Rotalipora Brotzen, 1942 to include the Cenomanian cushmani group. However, Sigal’s (1958) opinion had a general consensus among most authors and was followed by the European Working Group on Planktonic Foraminifera in the preparation of the Atlas (Robaszynski et al., 1979). The polyphyletic origin of the Rotalipora group was recently pointed out by the CHRONOS Mesozoic Planktonic foraminifera working group (meetings in Washington, May 2004, and Fribourg, June 2005 and June 2009; B. T. Huber, coordinator) that agreed to the revision of the Rotalipora group. In a recently published 104 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 44. AeC e Planomalina buxtorfi (Gandolfi, 1942), sample CP 1, scale bar 200 mm; DeF e Planomalina praebuxtorfi Wonders, 1975, sample CP 26, scale bar 200 mm; GeI e Globigerinelloides pulchellus (Todd and Low, 1964), sample CP 33; JeL e Hedbergella wondersi Randrianasolo and Anglada, 1989, sample CP 64; MeN e Heterohelix sp., sample CP 52, scale bar 50 mm; OeQe Hedbergella delrioensis (Carsey, 1926), sample CP 91. Scale bars 100 mm except when otherwise stated. taxonomy encompassing the Albian-Cenomanian rotaliporids (Gonzales-Donoso et al., 2007), the genus Thalmanninella is used to identify spiroconvex and umbiliconvex forms that seem to belong to different lineages. Subsequently, in a discussion on the polyphyletism of Thalmanninella, Lipson-Benitah (2008) introduced the genus Parathalmanninella to accommodate the species that evolved from the Ticinella raynaudi group (praebalernaensis, balernaensis and appenninica) and redefined the genus Thalmanninella based on other morphological features and deriving from Pseudothalmanninella tehamaensis. For the time being we adopt in this study the three-fold grouping for Rotalipora of Wonders (1978), although we suspect that the genus Thalmanninella may be polyphyletic. Further investigations are needed to identify the ancestral species of Thalmanninella and, hence, to clarify its taxonomic position. 5.2. Biozonation and bioevents Foraminiferal distribution and diversification up section provides a precise placement of zonal boundaries and enables the A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 105 Fig. 45. AeC e Thalmanninella praebalernaensis (Sigal, 1969), sample CP 64; DeF e Ticinella roberti (Gandolfi, 1952), sample CP 69, scale bar 200 mm; GeI e Ticinella praeticinensis Sigal, 1966, sample CP 69, scale bar 200 mm; JeL e Ticinella praeticinensis Sigal, 1966, sample CP 65; MeO e Pseudothalmanninella subticinensis (Gandolfi, 1957), sample CP 65; PeR e Hedbergella planispira (Tappan, 1940), sample CP 90. Scale bars 100 mm except when otherwise stated. identification of some secondary biostratigraphic datum events that are potentially very useful for global correlation. The following zones have been identified, in stratigraphical order. The stratigraphic interval from the base of the studied interval ( 370.0 m to 300.2 m) to the FO (first occurrence) of Biticinella breggiensis at 297.9 m is assigned to the Ticinella primula Zone. In this biozone, poorly preserved planktonic foraminifera are recorded only in the smaller size fraction (<125 mm). The assemblage is mainly composed of representatives of Hedbergella delrioensis, Ticinella primula, Ticinella raynaudi aperta, and Hedbergella planispira. Despite the very poor preservation we also observed the occurrence of several hedbergellid-like forms, and of a few specimens close to Hedbergella rischi. Rare planispiral forms with 4 to 5 chambers in the last whorl are also recorded. Hedbergella simplex occurs consistently from 306.1 m up section, but rare specimens are present well below at the 353.0 m level. Sporadic specimens of Ticinella raynaudi digitalis, Ticinella roberti and Globigerinelloides bentonensis occur throughout this interval. Ticinella madecassiana and Biticinella subbreggiensis first occur at the 339.1 m and 334.9 m level, respectively. Rare representatives of the smallsized Heterohelix species are first recorded at 311.9 m in the >63 mm size fraction. 106 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 46. AeC e Biticinella breggiensis (Gandolfi, 1942), sample CP 74, scale bar 200 mm; DeF e Biticinella breggiensis (Gandolfi, 1942), sample CP 69, scale bar 200 mm; GeI e Biticinella subbreggiensis Sigal, 1966, sample CP 88, scale bar 100 mm; JeL eBiticinella subbreggiensis Sigal, 1966, sample CP 89, scale bar 100 mm; MeO e Ticinella raynaudi Sigal, 1966, sample CP 69, scale bar 200 mm; PeR e Ticinella raynaudi aperta Sigal, 1966, sample CP 89, scale bar 100 mm. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 107 Fig. 47. AeC e Ticinella raynaudi digitalis Sigal, 1966, sample CP 96; DeF e Ticinella madecassiana Sigal, 1966, sample CP 86; GeI e Ticinella madecassiana Sigal, 1966, sample CP 65; JeL e Ticinella primula Luterbacher, 1963, sample CP 119; MeO e Ticinella primula Luterbacher, 1963, sample CP 89; PeR e Ticinella primula Luterbacher, 1963, transitional form to B. subbreggiensis, sample CP 88. Scale bars 100 mm. 108 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 The stratigraphic interval 297.9 to 257.7 m, from the FO of Biticinella breggiensis to the FO of Pseudothalmanninella ticinensis at 256.0 m is attributed to the Biticinella breggiensis Zone. Planktonic foraminifera are generally poorly preserved and only rare forms of Biticinella breggiensis, Hedbergella wondersi, and Ticinella roberti are found in the large-sized fraction. Biticinella subbreggiensis disappears close to the base of the zone at 292.3 m, and Hedbergella wondersi first appears at 290.2 m. Planktonic foraminiferal preservation improves slightly at the top of this interval, which is characterised by the appearance of rare and poorly preserved Thalmanninella praebalernaensis at 263.8 m, and of Pseudothalmanninella subticinensis and Globigerinelloides pulchellus at 259.4 m. Specimens of Ticinella praeticinensis occurs consistently at 263.8 m in the upper part of the zone, although very rare and poorly preserved specimens are recorded in the lower part of this zone close to the FO of Biticinella breggiensis. Ticinella roberti occurs consistently only in the upper part of the zone from 265.8 to 257.7 m. The Biticinella breggiensis Zone can be further subdivided into a lower Ticinella praeticinensis Subzone ( 297.9 to 261.8 m) and an upper Pseudothalmanninella subticinensis Subzone ( 259.4 to 257.7 m) based on the first occurrence of the latter taxon. The Pseudothalmanninella ticinensis Zone spans the stratigraphic interval ( 256.0 to 198.5 m) from the FO of the nominal taxon to the FO of Thalmanninella appenninica at 196.6 m level. Planktonic foraminiferal preservation improves slightly throughout the interval. The assemblage is dominated mainly by ticinellids and hedbergellids. Few heterohelix specimens occur in the small-sized fraction, whereas the large-size fraction is mainly composed of representatives of Globigerinelloides and Pseudothalmanninella. Rare specimens close to Praeglobotruncana delrioensis are found at the 251.9 m level. Hedbergella praelibyca first occurs at the base of the zone, and Thalmanninella balernaensis appears close to the top at 216.0 m. It should be noted that the base of the Mortoniceras fallax ammonite Zone, taken as the base of the ‘Vraconnien’ by authors (Amédro, 2002) lies within the ticinensis planktonic foram Zone on the basis of the present study. In boreholes the base of the ‘Vraconnien’ has been placed at the base of the appenninica planktonic foram Zone (Amédro, 2002, fig. 29). The stratigraphic interval from the FO of Thalmanninella appenninica and the top of the studied section at 129.5 m is assigned to the Thalmanninella appenninica Zone. The base of the zone is marked by several appearances and extinctions, which reflect a major change in the planktonic foraminiferal composition. Within this zone the most distinct and useful datums for biostratigraphic purposes are the FO of Planomalina praebuxtorfi at 193.2 m, followed by the FO of Planomalina buxtorfi at 173.4 m, and the FO of Praeglobotruncana delrioensis at 165.0 m. Constrained by the first appearances the following sequence of extinctions is recorded: Biticinella breggiensis and Pseudothalmanninella subticinensis at 187.0 m, Globigerinelloides pulchellus at 173.4, Ticinella raynaudi aperta at 165.0 m and Planomalina praebuxtorfi at 144.4 m. 5.3. Phylogenetic trends Despite the overall poor to moderate preservation of the planktonic fauna, we can easily trace the gradual and progressive evolution of (1) the Ticinella praeticinensis e Pseudothalmanninella subticinensis e Pseudothalmanninella ticinensis lineage, and (2) the Ticinella raynaudi aperta eThalmanninella praebalernaensis e Thalmanninella balernaensis lineage. Moreover, we note the presence of rare and poorly preserved specimens showing transitional features in between Ticinella raynaudi digitalis and Thalmanninella appenninica, which suggest a possible evolutionary linkage between the two species. Further investigations, including detailed morphometric and wall structure analysis, on well preserved planktonic foraminiferal fauna are needed to confirm Ticinella raynaudi digitalis as the ancestral species of Thalmanninella appenninica. The ancestoredescendant relationship of the late Albian Planomalina lineage (Hedbergella wondersi e Globigerinelloides pulchellus e Planomalina praebuxtorfi e Planomalina buxtorfi) previously reconstructed by Petrizzo and Huber (2006b) using well preserved late Albian material recovered during Ocean Drilling Program Leg 171B (North Atlantic Ocean) is here confirmed. In addition, we observe the presence of rare intermediate forms between Ticinella primula and Biticinella subbreggiensis, which occur in moderately well preserved samples. These findings validate Ticinella primula as the ancestral species of Biticinella, as already observed in other Tethyan localities (Luterbacher and Premoli Silva, 1962; Caron, 1971). 5.4. Regional and global correlation of bioevents Comparison between the classical zonal schemes developed for the Tethyan region (for example Sigal, 1977; Robaszynski et al., 1979; Premoli Silva and Sliter, 1995; and Robaszynski and Caron, 1995) and the planktonic foraminiferal distribution recorded in the Col de Palluel section, highlights good correlation of the first and last occurrence datums reported from northern Madagascar, Central Italy, and the western North Atlantic Ocean (Sigal, 1966; Randrianasolo and Anglada, 1989; Premoli Silva and Sliter, 1995; Luciani et al., 2004; Petrizzo and Huber, 2006a,b). The stratigraphic distribution of the most common species is also in agreement with that recorded by Moullade (1966) in a previous study of the Col de Palluel section. In addition, some secondary events linked with the primary zonal events of the Tethyan zonation were found through detailed analysis of the planktonic foraminiferal assemblage. The validity of these events for worldwide correlation is discussed below in stratigraphic order. 1) Biticinella subbreggiensis (the ancestor species of Biticinella breggiensis) is potentially a very useful taxon for global correlation. It is characterised by a relatively short stratigraphic range, and is easily identifiable in assemblages as it differs from Biticinella breggiensis in being not totally planispiral. 2) In the Col de Palluel section very rare and scattered biserial Heterohelix species first occur in the upper part of the Ticinella primula Zone. In contrast, the FO of Heterohelix moremani in the Umbria Marche Basin (Bottaccione section, Central Italy) is reported by Premoli Silva and Sliter, (1995) to be in the lower part of the Pseudothalmanninella ticinensis Zone, in agreement with Robaszynski and Caron (1995). The same level of first occurrence seen in Central Italy was observed by Bellier and Moullade (2002) in ODP Leg 171B in the western North Atlantic Ocean. The reason for this apparent discrepancy could be related to the rarity and very small size of the first biserial specimens. 3) The appearance of Hedbergella wondersi in the lower part of the Biticinella breggiensis Zone is a promising bioevent for global correlation. To date, this species was documented to occur consistently in Madagascar, from where it was first described (Randrianasolo and Anglada, 1989), and in the western North Atlantic Ocean (Petrizzo and Huber, 2006a,b). Specimens of Hedbergella wondersi were also reported from late Albian sediments (the Yam boreholes) drilled offshore of Israel (Lipson-Benitah and Almogi-Labin, 2000). 4) The FO of Globigerinelloides pulchellus, previously placed in the middle of the Pseudothalmanninella ticinensis Zone (Petrizzo and A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Huber, 2006a,b), is here shown to fall close to the top of the Pseudothalmanninella subticinensis Subzone. The reliability of this species for regional and global correlation is confirmed by its occurrence in the North Atlantic (Blake Nose: Petrizzo and Huber, 2006a,b) and on the Moroccan Margin (Leckie,1984), in northern Madagascar (Randrianasolo and Anglada, 1989), and in the offshore of Israel (Lipson-Benitah and Almogi-Labin, 2000). 5) Hedbergella praelibyca was first reported from the western North Atlantic Ocean to occur near the base of the Thalmanninella appenninica Zone (Petrizzo and Huber, 2006a). Based on the new data collected in the Col de Palluel section, we extend the stratigraphic distribution of Hedbergella praelibyca to the base of the Pseudothalmanninella ticinensis Zone. 6) We confirm the first occurrence of Thalmanninella balernaensis to fall in a stratigraphic level preceding the appearance of Thalmanninella appenninica, as previously observed in the North Atlantic record (Petrizzo and Huber, 2006a). As a result of correlating and evaluating all the data currently available, the best succession of planktonic foraminifera events across the Middle/Late Albian boundary interval in the Col de Palluel section is (in stratigraphical order): FO T. madecassiana (within T. primula Zone) at 339.1 m. FO B. subbreggiensis (within T. primula Zone) at 334.0 m. FO Heterohelix species in the small-sized fraction (top T. primula Zone) at 311.9 m. FO B. breggiensis at 297.9 m. LO B. subbreggiensis (base B. breggiensis Zone) at 292.3 m. FO H. wondersi (base B. breggiensis Zone) at 290.2 m. FOs Th. praebalernanesis at 263.8 m, sample CP 70, and Ps. subticinensis at 259.4 m. The bioevents recorded at the top of the B. breggiensis Zone identify the first evolutionary appearance of trochospiral planktonic foraminifera characterised by an imperforate peripheral margin with fused pustules aligned on the earliest chambers to form a single keel. 6. Calcareous nannofossils (P. Bown) 6.1. Introduction The stratigraphic history of middle to late Albian nannofossils is relatively well understood based upon documentation of continental shelf sections from all continents bar Antarctica and oceanic sections from all ocean basins (e.g., Bralower, et al., 1993; Bown et al., 1998; Bown, 2001; Mutterlose et al., 2005). Comprehensive taxonomic studies have described diverse, well-preserved nannofossil assemblages from hemipelagic shelf successions such as the Gault Clay of southern England (Black, 1972, 1973, 1975; Crux, 1991; Bown, 2001) and the Marnes Bleues of the Vocontian basin (Thierstein, 1973; Gale et al., 1996), and palaeoceanographic studies have been carried out from European epicontinental shelf basins (Erba et al., 1992), the Atlantic (Watkins et al., 2005) and Pacific oceans (Erba, 1992a). Biostratigraphic subdivision of the interval is relatively straightforward, and employs a series of distinctive, global bioevents (first occurrences of Tranolithus orionatus, Axopodorhabdus albianus and Eiffellithus turriseiffelii). The widespread recognition of these events reflects the muted biogeographic differentiation that characterised this part of the Cretaceous period (Bown et al.,1998; Mutterlose et al., 2005). Two similar biostratigraphic zonal schemes are widely applied: the NC zonation of Roth (1978, 1983) with subzones after Bralower et al. (1993), and the CC zonation of Sissingh (1977) with subzones after Perch-Nielsen (1979, 1985). Additional regional schemes allow for finer stratigraphic subdivision using less-widely- 109 distributed taxa (e.g., Jeremiah, 1996; Bown et al., 1998). Nannofossil zonal schemes and bioevents for the Upper Albian are summarised in Figs. 48 and 49 . The nannofossil bioevents have generally been correlated with macrofossil and microfossil biostratigraphy in continental shelf sections (Bown et al., 1998), and more recently with cyclostratigraphic age models in deep-sea sections, which has allowed for meaningful estimates of durations between bioevents for the first time (Watkins and Bergen, 2003). The principal upper Albian nannofossil bioevent is the first occurrence of Eiffellithus turriseiffelii, which comprises a plexus of transitional morphotypes that has recently been reviewed by Watkins and Bergen (2003). 6.2. Methods Calcareous nannofossils were analysed using simple smear slides and standard light microscope techniques (Bown and Young, 1998). Samples were analysed semi-quantitatively, with a minimum of 1000 fields of view examined for each sample. Abundance and preservation categories are given in Fig. 48. Biostratigraphy is described with reference to the NC zones of Roth (1978, 1983) with subzones after Bralower et al. (1993). The abbreviation NF is used to identify nannfossil zones. FO is used for the first or stratigraphically lowest occurrence of the species in the section and is assumed to approximate the evolutionary appearance of the species, unless stated otherwise. LO is used for the last or stratigraphically highest occurrence of the species in the section and is assumed to approximate the extinction of the species, unless stated otherwise. 6.3. Results Smear slides were produced from 57 samples and all yield nannofossil assemblages that are common to abundant and generally moderately-well preserved. Quality of preservation is demonstrated by the consistent presence of dissolution-sensitive taxa, such as, Calciosolenia (Scapholithus of some authors) and holococcoliths (Owenia, Orastrum). Species richness is consistently high, averaging 54 species per sample, with maxima of over 70 species per sample, and 137 morphologies were recorded through the section. The global aggregate nannofossil diversity for this time interval is around 125, including holococcoliths (Bown, 2005a). The assemblages are largely composed of cosmopolitan species, but include both cooler-water/high-latitude species, such as Seribiscutum primitivum and Repagulum parvidentatum, and warm-water taxa, such as nannoconids, Calcicalathina alta and Hayesites irregularis (Bown, 2005b). Several high latitude taxa are notably absent, such as Ceratolithina spp. and Tegulalithus tesselatus, and only one or two specimens of G. praeobliquum were observed. The stratigraphic distribution of nannoplankton is shown in Fig. 48. A representative selection of specimens is illustrated in Figs. 50e54 . A complete taxonomic list is given in Appendix 1 and taxonomic notes are provided at the end of this section. 6.4. Nannofossil biostratigraphy Axopodorhabdus albianus is present in the lowest sample examined, 370 m, without Eiffellithus spp., indicating an intra-NC9 NF Zone (Subzone NC9a) position (Figs. 48, 49). The FO of Eiffellithus monechiae in sample at 257.7 m marks the base of the NC9b NF Subzone, and the FO of Eiffellithus turriseiffelii at 234.5 m marks the base of the NC10 NF Zone (Subzone NC10a, equivalent to the UC0 NF Zone of Burnett, 1998). This uppermost zone cannot be further subdivided at Col de Palluel, due to the absence of Hayesites albiensis in the upper part of the section (not found above 257.7 m), the low stratigraphic occurrence of Gartnerago stenostaurion (Arkhangleskiella antecessor and Arkhangleskiella sp. of Burnett, 1998 and Fig. 48. Stratigraphic range chart for calcareous nannofossils from the Col de Palluel. Biostratigraphic marker species and other notable occurrences are shaded. Species abundance: A >10/field of view (FOV), C 1-10/FOV, F 1/2-10 FOV, R 1/11-100 FOV,  one or two specimens only, ? questionable occurrence. Nannofossil abundance: A >10%, C 1-10%, F 0.1-1%, R <0.1%, B barren. Nannofossil preservation: G good, M moderate, P poor. The eiffellithid and similar coccoliths are grouped together, but repeated elsewhere in their alphabetical order. 111 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 FO C. kennedyi FO G. theta FO C. anfractus FO G. chiasta Gale et al. (1996) FO G. nanum LO S. rotatus FO C. hayi; LOS. cf. S. angustus LO E. monechiae; cons. nannoconids consistent C. alta total range Z. clarus FO E. turriseiffellii S. angustus s.s FO E. monechiae; LO H.albienis LO C. anglicum LO common R. parvidentatum amm. zones this work amm. zones/subzones Owen (1999) carcitanense mantelli briacensis dispar perinflatum rostratum fallax inflatum carcitanense perinflatum Nf. zones subzones 9c FO C. kennedyi CC 9b FO C. anfractus FO G. chiasta ? FO H. albiensis NC 10a CC 9a rostratum auritus inflatum pricei varicosum orbignyi cristatum cristatum FO C. hayi FO E. turriseiffelii FO C. ehrenbergii S. angustus FO E. monechiae ? LO C. anglicum LO comm. R. parvidentatum daviesi MIDDLE roissyanum A. albianus present at base nannofossil events previous work briacensis UPPER nannofossil events this work and Gale etal. (1996) lautus NC 9b CC 8b NC pars 9a nitidus loricatus meandrinus pars subdelaruei FO A. albianus Fig. 49. Synthesis of middle to upper Albian nannofossil biostratigraphy, showing principal zonal schemes, marker species and secondary bioevents. The CC zonal scheme is from Sissingh (1977), Perch-Nielsen (1979, 1985) and NC zonal scheme from Roth (1978) and Bralower et al. (1993). Bioevent positions based on previous work are from Bown (2001) and correlations with the Col de Palluel section are indicated by continuous lines indicating good agreement with previous work, and the dotted lines showing disagreements. Gale et al., 1996), and the absence of Calculites anfractus. Corollithion kennedyi, the marker species for the overlying Cenomanian NC11 NF Zone (or UC1 NF Zone of Burnett, 1998), is not present. However, the latter two taxa are found stratigraphically higher in the succession in the nearby Mont Risou section (Gale et al., 1996). The principal intra-Upper Albian global nannofossil marker species is the FO of Eiffellithus turriseiffelii, which has been utilised since Stradner (1963), and incorporated into all subsequent mid-Cretaceous nannofossil zonation schemes. The event is actually part of a complex plexus of taxa that mark the origination of the genus Eiffellithus sensu stricto (Eiffellithus is also used for several earliest Cretaceous taxa with similar morphologies that are not closely related). The plexus is characterised by coccoliths that possess a relatively broad murolith rim and central area cross bars with variable orientation. The end member species E. turriseiffelii has symmetrical diagonal bars and E. monechiae has near-symmetrical axial bars. The rims display a diagnostic bicyclic image in cross-polarised light, with a distinctly broad, birefringent inner cycle (see Fig. 51). Watkins and Bergen (2003) have recently described four new species from this plexus and documented abundance trends associated with the adaptive radiation. None of these new species were logged consistently in the Col de Palluel section, but the interval from 257.7 m to 146.5 m yielded frequent transitional eiffellithid morphologies with asymmetric cross bars (see Fig. 51 and the taxonomic notes below). The stratigraphic position of the principal nannofossil bioevents is consistent with previous studies, when compared with the ammonite biostratigraphy described herein (see synthesis of Albian stratigraphic bioevents in Bown, 2001). E. monechiae has generally been recorded within the varicosum ammonite Subzone (of Owen, 1999) and E. turriseiffelii in the auritus ammonite Subzone (of Owen, 1999). However, a number of the subzonal or secondary nannofossil bioevents compare less well. The LO of Hayesites albiensis, which defines the base of the CC9b NF Subzone of Perch-Nielsen (1979), is recorded in the inflatum ammonite Zone herein, coincident with the base of the NC9 NF Zone, and significantly lower than the top Albian position suggested by Perch-Nielsen (1979). A similar, lower position for this bioevent, has also been documented by Bown (2001) in southern England and Hill (1976) in Texas. The LO of Crucicribrum anglicum is recorded here within the pricei ammonite Zone, and was recorded in a similar position by Bown (2001), Crux (1991) and Black (1972) (all southern England), but was recorded in the earliest Cenomanian by Hill (1976) and Jeremiah (1996). The FO of Crucibiscutum hayi is usually recorded in the auritus ammonite Subzone (of Owen, 1999) but not found until the perinflatum ammonite Zone herein. A number of conspicuous species abundance shifts have also been noted from this stratigraphic interval, including the decline in abundance of Repagulum parvidentatum (Crux, 1991) and increase in abundance of Biscutum constans. R. parvidentatum is recorded throughout the Col de Palluel section but declines from consistently common to frequent at 310 m, cristatum ammonite Zone, and becomes rarer and more sporadically recorded above 254 m, inflatum ammonite Zone. R. parvidentatum is considered to be a robust indicator of cooler surface-water conditions (e.g., Mutterlose et al., 2005), and its decline here suggests a possible warming trend through this part of the late Albian. Nannoconus, which is a taxon generally associated with low latitude, warmer surface water areas (Bown, 2005b), broadly increases in abundance in the upper part of the section, lending support to this interpretation. The nannofossil succession from the Marnes Bleues section directly overlying the sequence described in herein (perinflatum and briacensis ammonite Zones and carcitanense ammonite Subzone), was documented by Gale et al. (1996). This succession formed the basis for the UC0, 1 and 2 nannofossil zones and subzones of Burnett (1998). The stratigraphically higher assemblages are broadly comparable to those described here, however, a series of Gartnerago first occurrences (G. nanum, G. chiasta and G. theta) provides a diagnostic succession of bioevents, and the FOs of Calculites anfractus and Corollithion kennedyi define the UC0C nannofossil subzone and UC1 nannofossil zones. 6.5. Taxonomic notes Images of a representative selection of the nannofossil diversity from Col de Palluel are presented in Figs. 50e54. Taxonomic 112 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 50. Family Chiastozygaceae. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 51. Family Eiffellithaceae and Staurolithites with eiffellithid-like appearance. 113 114 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 52. Family Eiffellithaceae, Rhagodiscaceae, Calciosoleniaceae, Stephanolithiaceae, Axopodorhabdaeae. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 53. Family Biscutaceae, Cretarhabdaceae, Arkhangelskiellaceae, Kamptneriaceae. 115 116 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 54. Holococcoliths and nannoliths. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 comments on the eiffellithid species complex, and several other notable nannofossils, follow below. Eiffellithus Reinhardt, 1965, and similar coccoliths Fig. 51, AeGG Eiffellithus is a genus characterised by murolith coccoliths with a prominent inner rim cycle that is birefringent and conspicuous in cross-polarised light. This cycle is broader than the outer rim cycle. The central area is spanned by variably-orientated cross-bars. Eiffellithus is also used for several earliest Cretaceous taxa (E. primus, E. striatus, E. windii) that have similar morphologies but which are not closely related. The principal late Creteceous eiffellithids, E. eximius, E. monechiae and E. turriseiffelii are considered members of a meaningful taxonomic clade, which probably originated from Staurolithites. However, the relationship between these eiffellithids and a number of similar mid-Cretaceous coccoliths, e.g. Helicolithus spp., Staurolithites glabra (Eiffellithus paragogus of some authors), and Eiffellithus hancockii, is uncertain. The mid-Cretaceous adaptive radiation of the eiffellithids is reviewed and documented in Watkins and Bergen (2003), but we were unable to consistently apply the new species concepts introduced therein. We did, however, observe a stratigraphic interval in the Col de Palluel section ( 146.5 m to 259.4 m) that was characterised by a complex of morphologies transitional between Eiffellithus and Staurolithites (two rim cycles of similar width), and within this complex, between Eiffellithus monechiae (near-axial cross-bars) and Eiffellithus turriseiffelii (diagonal cross-bars). We used an E. monechiae species concept close to that of the original description of Crux (1991) and informally grouped forms with rotated bars (w20e40 from axial) as E. turriseiffellii (asymmetric) (Fig. 51, EEeGG). Fig. 51 shows the range of morphological diversity within the eiffellithids and other similar murolith coccoliths, and is organised with axial forms first (Fig. 51, AeD), then diagonal forms (Fig. 51, EeT), and asymmetric forms last (Fig. 51, UeGG). Eiffellithus monechiae Crux, 1991 Fig. 51 BeC, XeDD Described by Crux (1991) using a Hill and Bralower (1987) image, originally designated as Eiffellithus eximius, as the holotype. The original diagnosis states that the cross bars should be aligned within 20 of the major axes. Watkins and Bergen (2003) emended this diagnosis stating that the species has an asymmetrical diagonal cross subparallel to the ellipse axes, with rotation of not greater than 10 . They described two other species, Eiffellithus praestigium, with asymmetric bars rotated by 10e20 , and Eiffellithus vonsalisiae rotated by 20e35 . We saw only two specimens with bars rotated <10 (Fig. 51, BeC), and none precisely conforming to the E. praestigium form. Eiffellithus turriseiffelii (Deflandre in Deflandre and Fert, 1954) Reinhardt, 1965 Fig. 51 FeR Divided by Watkins and Bergen (2003) into 3 types, by the addition of a small morphotype, E. parvum, and a small form with blocky arms, called E. equibiramus. We principally encountered forms that conform to the original E. turriseiffelii type. Staurolithites angustus (Stover, 1966) Crux, 1991 not figured A large (w7 mm), Staurolithites-like species with bars rotated around 10e20 from axial. Differentiated from the Eiffellithus species complex by its narrower, bright inner cycle that is approximately the same width as the outer cycle. Staurolithites cf. S. angustus (Stover, 1966) Crux, 1991 Fig. 51 UeW 117 Like S. angustus, but consistently smaller in length (w5 mm). Staurolithites rotatus Jeremiah, 1996 Fig. 51 T Like E. turriseiffelii, but with a Staurolithites-like rim. Zeugrhabdotus clarus Bown, 2005b Fig. 50 EEeII A distinctly bicyclic murolith with a narrow central area spanned by a transverse bar. Its short range at Col de Palluel 230.6 to 202.2 m, coincident with the Eiffellithus radiation, suggests that this species may be more closely related to the eiffellithids than to Zeugrhabdotus, but this requires confirmation from other localities. Calcicalathina? alta Perch-Nielsen, 1979 Fig. 52 HeV This species was originally described on the basis of a figure of the side view only, in which it appears as a distinctive, elevated coccolith with layered central area structure. At Col de Palluel we consistently encountered plan views of a coccolith that we consider to be C. alta, based on the general morphology (narrow rim and complex central area fill), size, and co-occurrence with side views. Braarudosphaera Deflandre, 1947 Fig. 54 VeW Tall, side views of Braarudosphaera (probably B. africana) were found sporadically throughout the section. Such braarudosphaerid morphologies are common in the Eocene but have rarely been reported in the Cretaceous (Bown, 2005b). 7. Geochemistry (D. Wray) 7.1. Major, trace and rare-earth element geochemistry The major, trace and rare-earth element composition of all samples from the Col de Palluel has been determined. Samples were dried at 105 C, disaggregated and ground using an agate ball mill. They were subsequently dissolved using a lithium metaborate fusion and analysed by inductively coupled plasma-optical emission spectroscopy and inductively coupled plasma-mass spectroscopy. Full details of the procedures adopted can be found in Wray and Wood (1998). Data are plotted stratigraphically in Fig. 55 . The vertical scale used reflects the depth below the top of the Marnes Bleues that the sample was collected from. 7.2. Major elements The major element chemistry of the succession falls within the normal range expected for mudstones, as encountered previously in this region (Krauskopf, 1967; Wedepohl, 1969; Kennedy et al., 2000). Results for aluminium remain broadly constant throughout the succession with a mean value of 9.151% Al2O3. In contrast, whilst silicon data remain broadly constant through the lower three quarters of the succession they fall by around 10wt% SiO2 in the higher part of the succession. This is balanced by a comparable increase in CaO. Most of the major elements display a strong correlation with Al2O3 reflecting their association with the clay minerals. In order to elucidate more subtle trends, data have been normalised to their respective Al2O3 values. A plot of SiO2/ Al2O3 displays a slight, gradual fall in values towards the top of the section. When integrated with the data for CaO and Al2O3 presented earlier, the pattern is most readily interpreted as indicating a fall in quartz content with a complimentary increase in the 118 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 55. Selected major and trace element plots from the Col de Palluel; Al2O3 normalisation is used to remove the effect of changes in the carbonate: clay ratio. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 proportion of calcite. This in turn implies a decrease in the supply of silt and coarser grained detrital material within the higher part of the succession, possibly reflecting an increasing distance from source. Similarly a plot of K2O/Al2O3 displays a gradual fall upsection, implying a slight, steady decrease in potassium-rich minerals (predominantly illite and K feldspar) within the noncarbonate fraction. Phosphate levels remain low and relatively constant throughout the succession. Whilst phosphate-containing minerals can be derived from a variety of sources (notably marine organisms, detrital apatite grains and through precipitation from seawater), the broadly constant values do imply that a steady-state situation existed throughout the studied interval. Importantly, the data do not highlight any significant horizons of phosphate accumulation such as would occur during periods of winnowing or extended nondeposition. 7.3. Trace and rare earth elements When normalised to aluminium, trace elements commonly associated with the heavy mineral fraction (for example Zr, Nb and Ta) show a trend which is comparable to that displayed by SiO2/ Al2O3, supporting the proposal that the proportion of silt and coarser material in the non-carbonate fraction decreases upsection. In contrast, uranium, when normalised to aluminium, displays an irregular saw-tooth pattern. Petrographic investigations reveal that these fluctuations in U/Al2O3 are associated with slight increases in the abundance of glauconite within the sediment. Aluminium normalised lanthanum and cerium both display a gradual decrease in values up-section. The trend they exhibit is similar to that displayed by aluminium normalised potassium, implying that a significant proportion of the rare-earth elements are concentrated in potassium-rich minerals such as illite. This association has also been observed by workers studying the Argille Varicolori Formation in the southern Apennines of Italy (Caggianelli et al., 1992). A plot of Ce/Ce* reveals a subtle, upward decrease in the cerium anomaly. This cannot be readily attributed to the recorded increase in calcite content of the sediment as this would, if anything, be expected to increase the magnitude of the Ce/Ce* anomaly. If related to dissolved oxygen levels in the lower part of the water column (e.g. Liu et al,. 1988), then the trend would imply a gradual upward decrease in dissolved oxygen levels, but this is not supported by total organic carbon measurements, and indeed the relationship between Ce/Ce* and dissolved oxygen in bottom waters remains under debate (e.g. Murray et al,. 1991). 8. Carbon isotopes. (A. Gale, D.S. Wray) A composite curve of bulk carbonate d13C from the Marnes Bleues and basal Calcaires de Risou of the Col de Palluel (road section, and Ravin des Jassines; Bréhéret, 1997) and Risou localities (Gale et al., 1996) is presented here (Fig. 56 ). This extends from beneath the base of the Albian, here taken at the base of the Niveau Paquier (Kennedy et al., 2000), into the Lower Cenomanian, and provides context for the Middle and Late Albian succession described in this paper. Previous descriptions of the carbon isotope stratigraphy of the Col de Palluel Lower Albian succession are to be found in Weissert and Bréhéret (1991) and Herrle (2002). Aspects of the carbon isotope stratigraphy of the Upper Albian-Lower Cenomanian interval at Risou and the Col de Palluel were described by Gale et al. (1996) and Bornemann et al. (2005). The upper part of the Aptian succession and lowest part of the Albian contain three negative carbon isotope excursions associated with thin organic-rich black shales, successively, the Niveau Kilian, 119 Niveau Paquier (Fig. 56, 1) and Niveau Léenhardt (Fig. 56, 2), described in detail by Herrle (2002, fig. 41). A negative d13C excursion of approximately 1.0 ppt is associated with the black shale called the Niveau Paquier ( 474.5 to 475.5 m; see also Herrle, 2002), and comprises three separate short negative excursions which successively increase in magnitude upwards. This is called the Paquier Event and the proposed GSSP for the base of the Albian Stage (Kennedy et al., 2000) is coincident with the lowest excursion. A higher distinctive negative excursion of over 1 ppt is the Leenhardt Event ( 448 to 450 m; see also Herrle, 2002, fig. 41; Fig. 56, 2 herein), and includes the black shale called the Niveau Léenhardt (Bréhéret, 1997) and the overlying 2.5 m of marl. This level yields ammonites of the Lower Albian Douvilleiceras mammillatum Zone (Bréhéret et al., 1986). Ammonites of the uppermost Lower Albian Hoplites (Isohoplites) steinmanni Subzone of the mammillatum Zone are are recorded from 8 m above Niveau Leenhardt at the Col de Pré-Guittard (Kennedy et al., 2000). A prominent negative excursion of approximately 1 ppt, in which values approach 1.0, is present from 398 m to 369 m, adjacent to the sandstone sill G6 (Bréhéret, 1997) and is here called the L’Arboudeysse Event (Fig. 56, 3,4). This event is terminated by a short negative excursion ( 355 m to 369 m). In the absence of diagnostic ammonites from this level, the event cannot be dated more precisely than Middle Albian, T. primula Zone. Above the L’Arboudeyesse Event negative excursion, values of d13C display a progressive overall rise through the O. roissyanum, D. cristatum and M. pricei Zones, culminating in a positive excursion of 2.4 ppt here called the Jassines Event (Fig. 56, 5; 198 to 210 m). The overall rise is punctuated by numerous fluctuations of about 0.5 ppt in d13C. Values fall progressively above the Jassines Event, through the M. pricei, M. inflatum, M. fallax, M. rostratum and lower M. perinflatum Zones. A short- lived negative excursion with values falling to1.076 ppt (Fig. 56, 6; 220 m) is present in the M. fallax/ P. ticinensis Zones. At 220 m, overall values start to rise again. The highest part of the Upper Albian and lowest Cenomanian displays an overall peak in d13C comprised of four secondary peaks. This entire excursion has been called the Albian-Cenomanian Boundary Event (Jarvis et al., 2006), and shows a progressive decrease in peak values from AeE (Fig. 56). The lower part of this excursion, including the two peaks of positive excursion A, was described in some detail at the Col de Palluel by Bornemann et al. (2005). The carbon isotope stratigraphy of the Albian Stage is relatively poorly known, in contrast to the Aptian (Herrle, 2002) and later Cretaceous stages (Jarvis et al., 2006). Research has concentrated on the Lower Albian negative d13C events, (“OAE 1b”), and the terminal Albian positive excursion, called the Niveau Breistroffer (“OAE1d”) which is better called the Albian-Cenomanian Boundary Event (Jarvis et al., 2006). Both are associated locally with black shales, and have been described very widely from both onshore outcrops and cores taken from ocean basins. Herrle (2002) described the detailed carbon isotope stratigraphy of the Aptian-Early Albian succession in the Vocontian Basin and showed the presence of negative d13C events associated with successively, the Kilian, Paquier and Léehhardt black shale horizons (Herrle, 2002, fig. 41). He also identified the Paquier negative excursion from DSDP site 545, on the Mazagan Plateau in the eastern central Atlantic. Bralower et al. (1999) identified the same excursion in organic carbon fractions from sections in the Sierra Madre, northeast Mexico. There has been uncertainty as to the precise correspondance between the negative carbon excursions recorded from the Vocontian Basin and black shale developments elsewhere in Tethys. Leckie et al. (2002) correlated the Paquier horizon with the Monte Nerone level in the Umbria-Marche Basin, and Leenhardt with the Urbino level in Umbria-Marche. Subsequently, Luciani 120 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Fig. 56. Carbon isotope stratigraphy (d13Ccarb) of the Albian and basal Cenomanian Stages at the Col de Palluel and Mont Risou, based on analysis of carbonate in bulk sediment samples. A, lithostratigraphy; B, important carbon isotope excursions (PE: Paquier Event, LE: Leenhardt Event; JA: Jassines Event ); C, inoceramid stratigraphy; D, planktonic foraminiferal stratigraphy; E nannofossil stratigraphy; F, ammonite zones; G, substages. 1e7 are carbon isotope events mentioned in the text; AeD are peaks in the Albian-Cenomanin Boundary Event as identified in Gale et al. (1996). et al. (2004) identified the Paquier negative excursion at the level of the Urbino horizon in the Gargano Promontory in southern Italy. The Albian-Cenomanian Boundary Event was originally identified at Gubbio, Umbria-Marche, central Italy (Jenkyns et al., 1994), and subsequently found at Speeton, Yorkshire, UK (Mitchell, 1996) and at Mont Risou (Gale et al., 1996). Four discrete positive excursions which decrease in maximum value up section appear to correlate between the UK, SE France and Italy (Gale et al.,1996; Jarvis et al., 2006). The Albian-Cenomanian boundary, defined by the FO of Thalmanninella globotruncanoides, occurs between peaks C and D (Fig. 56). Subsequently, Wilson and Norris (2001) identified a positive carbon isotope excursion at the Albian-Cenomanian boundary (appenninica and globotruncanoides Zones) in ODP Site 1052, on the Blake Nose in the western Atlantic, studied further by Petrizzo et al. (2008). A replot of their data on a depth scale (Grocke et al., 2004) shows the presence of three peaks of progressively decreasing maximum values across the Albian-Cenomanian boundary the lower two of which appear to correlate with peaks C and D at Risou (Fig. 56). Bornemann et al. (2005) identified the excursions described by Wilson and Norris at Blake Nose (2001) at the level of Niveau Breistroffer 2e3 (Bréhéret,1997) in the Col de Palluel section. However, this correlation does not take into account the considerable differences in thickness between ODP Site 1052 and Col de Palluel/Risou sections. At Site 1052, the appenninica Zone is 24 m in thickness, whereas at Col de Palluel it is 160 m thick. The negative excursion identified by Wilson and Norris (2001) at Site 1052 falls approximately at the top of the lowest third of the appenninica Zone, and therefore probably correlates with the negative carbon isotope event around the 170 m level at the Col de Palluel, representing the point at which a falling d13C trend starts to rise again. It is also possible to suggest a tentative correlation between the negative excursion recorded in the ticinensis Zone by Wilson and Norris (2001, fig. 2) and the negative excursion developed at 220 m in the same zone at the Col de Palluel (Fig. 56,6). Strasser et al. (2001) recorded the Albian-Cenomanian Boundary Event from the Roter Sattel of the Swiss Prealps. Grocke et al. (2004) attempted to identify the Albian-Cenomanian boundary carbon isotope excursions described by Wilson and Norris (2001) in the non-marine succession of the Western Interior Basin, USA, using d13C derived from organic matter. The presence of numerous negative and positive excursions of nearly 1 ppt throughout the entire Upper Albian at the Col de Palluel (Fig. 56) dictates the necessity of caution in the correlation of individual carbon isotope peaks. Robinson et al. (2008) identified the AlbianCenomanian Boundary event in the Calera Limestone at the Permanente Quarry in central California, the first record of this excursion in sediments originally deposited on the Pacific Ocean floor. The progressive decrease in d13C values seen in the upper ticinensis and A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 lower appenninica Zones, and the subsequent rise through the appenninica Zone in the Permanente Quarry section closely resembles the carbon isotope record from Col de Palluel. There are very few carbon isotope records published through the part of the Albian equivalent to the interval between the Leenhardt Event and the Albian-Cenomanian Boundary Event. This interval includes “OAE 1c”, supposedly in the breggiensis Zone, and called “Toolebuc” by Leckie et al. (2002) after the Toolebuc Formation, a poorly dated organic-rich limestone in the Eromanga Basin, Queensland, Australia (Haig and Lynch, 1993). Tiraboschi et al. (2009) described the carbon isotope stratigraphy from the Early Albian to the Late Albian breggiensis Zone of the Piobbico core, Umbria-Marche, central Italy. This shows a progressive overall decrease in carbon isotope values from about 3 ppt at the level of the Urbino Event to 2 ppt in the high breggiensis Zone. This does not correspond well with the Col de Palluel record. Luciani et al. (2004) described a negative excursion in the subticinensis Zone of the Gargano Peninsula, southern Italy that they identified as the Amadeus Event. No obviously correlative excursion can be detected at Col de Palluel in the highly attenuated subticinensis Zone, and it is possible that this excursion is missing in the hiatus associated with the Petit Vérole (see below). 9. Albian cyclostratigraphy and time scales (A.S. Gale, S.J. Crowhurst, and D.S. Wray) A large part of the Col de Palluel succession is conspicuously cyclic, characterised by metre-scale alternations of lighter coloured impure limestones and darker marls which are particularly obvious after rain (Fig. 6). The presence of lower frequency cyclicity is suggested in the field by “bundling” of units with better-developed limestones and darker marls alternating with intervals dominated by less well defined marly limestones and calcareous marls. This bundling occurs on two scales, the smaller typically involving 4e5 unitary cycles, and the larger approximately 20 such cycles. A total of 12 of the larger bundles was identified in the Ravin de Jassines section. In order to identfy the frequency of these cycles, we have 121 investigated the cyclostratigraphy of the succession quantitatively, generating a long time series by sampling continuously at 0.1 m intervals over 112 m, between the Petite Vérole marker ( 259.5 m) and the base of the Breistroffer level ( 135 m). The samples were crushed and made into pellets prior to analysed for major and minor elements using XRF. Calibration of the instrument was achieved using 60 representative samples taken from the Marnes Bleues at the Col de Palluel which had been previously analysed by ICP-OES. The Al2O3 content was selected for detailed analysis since it is likely to be little affected by diagenesis and shows the cyclicity very clearly (Fig. 57 ). Variance in Al2O3 is of the order of 15e20%. We developed a time domain model using the strategy of Shackleton et al. (1999) and Gale et al. (1999), based on the testable hypothesis that the shortest periodicity signal of the Milankovitch Band is likely to be related to precession (mode at 20 kyr), and that if this is the case, then peaks representing tilt (40 kyr) and both long (406 kyr) and short (100 kyr) eccentricity will show up in the correct positions in the power spectra. “Bundling” of the supposed precession-related cycles into groups of about five, representing modulation of the precession by short ecccentricity (100 kyr) is also evidence that these cycles represent the precession signal. We therefore identified successive high frequency troughs on the Al2O3 time series, and assigned an age of 0 to the lowest, and added 20 kyr to each successive cycle (Fig. 57). The power spectrum from this age model, cross plotted against a random section of the La91 astronomical solution (Fig. 58) shows clearly the presence of peaks corresponding to tilt (40 kyr) and short eccentricity (100 kyr) and weak evidence of a long eccentricity signal (406 kyr) (Fig. 58). Filtering the data using a low bandpass filter indicated the presence of five successive 406 ka eccentricity cycles (Fig. 59), corresponding to the observed thicker bundles. The shorter bundles correspond to the short (100 kyr) eccentricity cycle. It is therefore reasonable to assume that the 12 bundles identified visually in the Ravin de Jassines, bounded by well-developed limestones and marls, are in fact expressions of maxima in the 406 kyr long eccentricity cycle. We can therefore compare the cyclostratigraphy developed at Col de Palluel with other Albian sucessions. Fig. 57. Percentage Al2O3 determined by XRF analysis of bulk samples from the succession above the petit vérole in the Col de Palluel versus age, modelled with control points (crosses) at 20 kyr intervals. Accumulation rate (bottom of figure) is plotted in metres/kyr, and is relatively constant. 122 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 6 20 kyr (tuning) 23 kyr 5 19 kyr 4 spectral power 100 kyr 3 41 kyr 2 1 0 0 0.05 0.1 0.15 0.2 0.25 frequency Fig. 58. Cross-spectrum of Laskar 2001 astronomical solution (random interval) versus age modelled Al2O3 from Fig. 56. The 20 kyr tuning peak is focussed by the age modelling, and the spectrum shows spectral density at the expected additional peaks around 41 kyr (tilt) and short eccentricity (100 kyr). The 400 kyr peak is not resolved because of long wavelength components. Fiet et al. (2001) used cycle counting and identification of bundled cycles to develop an orbital timescale for the Scisti a Fucoidi in Umbria Marche. They estimated the duration of the Albian Stage as 11.60.2 Ma and the base of the Stage was taken at the FO of the nannofossil Praediscosphaera columnata. They used micropalaeontology to correlate into ammonite bearing successions and thus infer the durations of successive ammonite zones (Fiet et al., 2001, fig. 6). It is not clear precisely how this was achieved, in view of the paucity of primary data, although information from the Col de Palluel was presumably used for the Upper Albian (see Parize et al., 1998). Grippo et al. (2004) developed an age model for the Albian Stage based on spectral analysis of cyclicity in Scisti a Fucoidi of the Italian Apennines. Photogrammetry was used to generate time series based on a combination of core (the Piobbico Core) and outcrop. They identified precession, tilt and the 100 and 406 kyr eccentricity cycles and numbered the 406 kyr cycles 1e31 from the base of the Cenomanian (FO Th. globotruncanoides) downwards. Uncertainty concerning the position of the base of the Albian (absence of ammonite data) did not permit a very precise duration to be calculated for the stage, but they calculated the Albian to be 11.80.4 Ma in length, taking a mid-point between the FOs of Praediscosphaera columnata and Ticinella primula as the base of the stage. Using the former datum would make the Stage 12.4 Ma in duration, 0.8 Ma longer than the estimation of Fiet et al. (2001). The new data from the Col de Palluel presented here permit a high-resolution, first-order correlation to be made between ammonite, nannofossil and planktonic foraminifera biostratigraphies, as shown in Fig. 60 . We have used micropalaeontological data to establish biostratigraphical correlation between Gubbio (Premoli Silva and Sliter, 1995; Erba, 1988, 1992b) and the Col de Palluel, and thus apply the orbital timescale of Grippo et al. (2004) to the ammonite bearing Vocontian Basin sequence. On this basis we have tentatively correlated the 406 kyr eccentricity cycles identified at the Col de Palluel with those recognised in Italy (Grippo et al, 2004). A summary of this data forms the basis for a new Albian chronostratigraphy, including an orbital time scale, ammonite, planktonic foraminifera and nannofossil biostratigraphies, and carbon isotope events (Fig. 60). One of the main problems encountered in any review of the Albian Stage or calculation of its duration has been differences in definitions of its base, which have been based variously on ammonite and nannofossil criteria. The GSSP for the base of the Albian Stage taken here is the FO of Leymeriella tardefurcata at Tartonne in SE France (Kennedy et al., 2000), which is coincident with the base of the organic-rich Paquier Event, and a strong Fig. 59. Plot illustrating the 400 kyr cyclicity in the Col de Palluel succession as a modulation of high frequency (20 kyr precession) cycles and as a discrete long period wave form within the data (white line). A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 123 Fig. 60. Albian chronostratigraphy, time scale and correlation between the Piobboco core, central Italy (Grippo et al., 2004) and the Col de Palluel sucession. This is based on the identification of 400 kyr cycles at the Col de Palluel and their correlation to the Piobboco core using planktonic foraminifera and nannofossils. 1, stages; 2, substages; 3, planktonic foram zones; 4, nannofossil first occurrence; 5, 400 kyr cycles in the Piobboco core; 6, 400 kyr cycles, in the Col de Palluel section; 7, planktonic foraminiferan first occurrences; 8, nannofossil first occurrence; 9 ammonite zones; 10, inoceramid bivalve zones. M. r. Mortoniceras rostratum; A.s.b. : Actinoceramus sulcatus biometricus; A.c.p.: Actinoceramus concentricus parabolicus. negative carbon isotope excursion (Herrle, 2002). The Paquier event correlates precisely, on the basis of carbon isotope and microfossil stratigraphy, with the Urbino Event in Umbria-Marche (Luciani et al., 2004), which is identified on the tuned orbital timescale (Grippo et al., 2004). This provides a duration of the Albian of 10.54 Ma, significantly shorter than the 11.8 Ma calculated by Grippo et al. (2004). This “lost time” now needs to be added to the top of the Aptian (see the time scale of Fiet et al., 2001). 124 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Having dated the base of the Stage and correlated nannofossil and planktonic foraminiferal events between Gubbio and the Vocontian Basin, it is then possible to assign approximate durations to the Lower and Middle Albian substages, based on the rather limited faunal material collected from the region. The best evidence for the base of the Middle Albian is the solitary occurrence of Hoplites (Isohoplites) steinmanni from Pre-Guittard, a short distance above the Leenhardt Event (Kennedy et al., 2000). This is the index species of the highest subzone of the upper Lower Albian Douvilleiceras mammillatum Superzone/Otohoplites auritiformis Zone (Owen, 1988), immediately below the basal Middle Albian Lyelliceras lyelli Subzone, the first appearance of the index species of which is currently taken to define the base of the Middle Albian (Owen, 1988; Hart et al., 1996). The base of the Upper Albian is easier to constrain, because we find the three widely used basal markers for the substage at the Col de Palluel; the planktonic foraminiferan B. breggiensis (FO at 297 m) the ammonite Dipoloceras cristatum (FO at 320 m), used as a basal Albian marker, and Actinoceramus sulcatus (FO at 314.9 m). At Gubbio, the FO of B. breggiensis falls at the base of cycle 17, and the ammonite and inoceramid records at Col de Palluel can thus be estimated to predate this by approximately half a 406 ky cyclee200 ky. On the basis of these correlations we infer that the Albian Stage had a duration of 10.64 Ma, the Lower Albian had a duration of approximately 0.6 Ma, the Middle Albian 2.84 Ma, and that the bulk of Albian time: 7.2 Ma, falls in the Upper Albian, which compares well with the estimate of 6.8 Ma of Fiet et al. (2001). The pulse of 10 new ammonite taxa entering the sequence between 314 and 318 m at Col de Palluel, followed by the FO of B. breggiensis, represents the first of three such events in the Upper Albian which are probably related to transgression. These events are of global significance in correlation. The succession from the FO of A. sulcatus up to the Petite Vérole contains 3 cycles that are tentatively identified as cycles 15, 16 and 17 at Gubbio (Grippo et al, 2004). These contain two important biostratigraphical events, the FO of Mortoniceras pricei, marking the base of the eponymous zone, and widely recognised internationally (Kennedy et al, 1999) ( 278.4 m), and the evolutionary transition from A. sulcatus forma sulcatus to A. sulcatus biometricus ( 266.2 m; Crampton and Gale, 2005, 2009). This gives the duration of the D. cristatum Zone as about 0.8 Ma, and that of the A. sulcatus Zone as about 1.2 Ma. Above this level there is a significant mismatch between the Gubbio and Col de Palluel successions, which requires explanation. At Gubbio, the FO of P. ticinensis falls in the middle of Cycle 9 of Grippo et al. (2004), but at Col de Palluel the species appears at 256 m, 3.5 m above the Petit Vérole marker bed, which appears to be a considerably lower level. Additionally, the P. subticinensis Subzone (immediately underlying the Ps. ticinensis Zone), which has a significant thickness at Gubbio, is only 1.7 m thick at Col de Palluel. Such a disparity cannot be accounted for by diachronous migration, because Ps. ticinensis evolved from Ps. subticinensis, and this transition is recorded both at Gubbio and Col de Palluel (Caron and Petrizzo e this paper). It therefore appears that five 406 kyr cycles (Cycles 10e14) representing the higher praeticinensis and lower subticinensis Subzones are missing at the Col de Palluel at about the level of the Petite Vérole. The existence of this hiatus is supported by the fact that later bioevents, such as the appearances of Ps. ticinensis, Planomalina buxtorfi and Eiffelithus turriseiffelii at Col de Palluel are in exactly the predicted positions in relation to the cycles as they are in the Italian records. The Petite Vérole ( 295.5 m) is a thin, glauconitic sandy limestone containing abundant Chondrites packed with foraminiferans and pithonellids, and overlain by a sandy glauconitic lag containing composite moulds of ammonites. Although it was identified as a marking a significant discontinuity (firmground) by Bréheret (1997), there is no known biostratigraphical gap at this level; it falls within the upper part of the Mortoniceras pricei Zone, and above the interval with Actinoceramus sulcatus biometricus. However, this level is marked widely by hiatuses in the UK and elsewhere; for example, the Choanite Bed at Folkestone, UK (top of Bed X; Owen, 1975), and phosphatic nodule beds in Bedfordshire, UK (Owen, 1971), and coincides with the major sequence boundary identified at the limit of the Mortoniceras pricei and M. inflatum Zones (Haq et al., 1987; Immenhauser and Scott, 1999, fig. 1). The large size of this hiatus (about 2 Ma) is surprising, but the only other plausible explanation, massive diachroneity in the evolutionary transition between Ps. subticinensis and Ps. ticinensis between southeast France and Italy, is highly improbable. The FOs of Ps. subticinensis and Ps. ticinensis ( 259.4 and 256 m) coincide approximately with the entry of a highly diverse new ammonite fauna, of which over 20 species appear between 252 and 260 m. This, second large faunal event in the Upper Albian, is probably related to a major transgressive pulse coincident with sequence boundary 98 of Haq et al. (1987). The interval between the FO of Ps. ticinensis ( 256 m) and the FO of P .buxtorfi ( 173.4 m) falls within the unit for which we have studied the cyclostratigraphy in detail (Figs. 3, 4, 7). This includes five filtered 406 ka cycles at the Col de Palluel, an identical number to those found in the equivalent biostratigraphical interval at Gubbio (Grippo et al., 2004). The Ps. ticinensis Zone is coeval with the Mortoniceras inflatum and lower M. fallax zones, which have durations of 200 ka and 800 ka respectively. The M. rostratum and M. perinflatum zones have durations of 0.2 ka and approximately 2.0 Ma. The LO of Ps. ticinensis ( 198.5 m), appearance of Th. appenninica ( 196.6 m) and of P. praebuxtorfi ( 193.2 m) coincide with a major pulse of some 15 new ammonite taxa ( 196 to 202 m), and represents the third and highest major faunal turnover affecting the ammonites seen in the Upper Albian of the Col de Palluel section. This is again likely to be related to a significant transgressive event and coincides with a long recognised sequence boundary (Haq et al, 1987; 96.5 Ma event). It is important to point out that the identification of S. dispar Zone ammonite taxa at the base of the Ps. ticinensis Zone at the Col de Palluel (Parize et al., 1998) was based upon erroneous recognition of the ammonite Stoliczkaia at this level (see above). In view of the difficulty of identifying the correlative levels of bentonites found associated with endemic Albian-Cenomanian faunas in the northern part of the Western Interior Basin (Scott, 2009), we are reluctant to place North American radiometric dates on the new Albian chronostratigraphy proposed here. However, the likely accuracy of a date of 99.16.037 Ma from a volcanic ash bed close to the base of the Cenomanian and within the Th. globotruncanoides Zone in Hokkaido, Japan (Obradovitch et al., 2002) would lead us to place the base of the Albian at about 109.7 Ma, close to the estimate of 110.10.7 of Fiet et al. (2001). The base of the Late Albian would fall at 106.27 Ma, and the base of the Middle Albian at 109.1 Ma. Gradstein et al. (2004) dated the base of the Albian at 112.0 Ma1.0 Ma. 10. Conclusions The present study, taken with the previous account of the highest Marnes Bleues (Gale et al., 1996), allows the recognition of the following sequence of key lithological, stable carbon isotope, faunal and nannofloral events in the 370 m upper Middle Albian to lower Lower Cenomanian sequence represented by the sections in the Marnes Bleues in the Ravin des Jassines and Mont Risou sections in Hautes-Alpes, France: A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130  FO of the planktonic foraminiferan Ticinella madecassiana within the Ticinella primula planktonic foraminiferan Zone at 339.1 m.  FO of the planktonic foraminiferan Biticinella subbreggiensis within the Ticinella primula planktonic foraminiferan Zone at 334.0 m.  LO of the ammonite Oxytropidoceras roissyanum at 334.5 m.  FO of the ammonite Dipoloceras bouchardianum at 321.3 m.  The base of the Actinoceramus concentricus parabolicus inoceramid bivalve Lineage Abundance Zone at 318.5 m.  The base of the Actinoceramus sulcatus inoceramid bivalve Lineage Abundance Zone at 314.7 m.  FO of the ammonite Dipoloceras cristatum at 314.7 m.  FO of the ammonite Hysteroceras orbignyi at 314.7 m.  FO of species of the planktonic foraminiferan Heterohelix in the small-sized fraction from the top of the Ticinella primula planktonic foram Zone at 311.9 m.  The base of the Biticinella breggiensis planktonic foraminiferan Zone at 297.9 m.  LO of the ammonite Dipoloceras cristatum at 294.4 m.  Occurrence of the ammonite Dipoloceras pseudaon at 293.1 to 293.5 m.  LO of the planktonic foraminiferan Biticinella subbreggiensis at 292.3 m.  FO of the planktonic foraminiferan Hedbergella wondersi at 290.2 m.  FO of the ammonite Hysteroceras binum at 278.4 m.  FO of the ammonite Mortoniceras pricei at 278.4 m.  LO of the ammonite Dipoloceras bouchardianum at 271.9 m.  FO of the ammonite Elobiceras newtoni at 271.9 m.  LO of the ammonite Elobiceras newtoni 267.8 m.  The base of the Actinoceramus sulcatus forma munsoni inoceramid bivalve Lineage Abundance Zone at 267.1 m.  The base of the Actinoceramus sulcatus biometricus inoceramid bivalve Lineage Abundance Zone at 266.2 m.  The top of the Actinoceramus sulcatus biometricus inoceramid bivalve Lineage Abundance Zone at 265.4 m.  FO of the planktonic foraminiferan Thalmanninella praebalernanesis at 263.8 m.  The unconformity at the top of the Petite Vérole at 259.5 m.  FO of the planktonic foraminiferan Pseudothalmanninella subticinensis at 259.4 m.  The FO of the nannofossil Eiffellithus monechiae at 257.7 m) marking the base of the NC9b nannofossil Subzone.  LO of the ammonite Mortoniceras pricei at 257.7 m.  The base of the Pseudothalmanninella ticinensis planktonic foraminiferan Zone at 256.0 m.  LO of the ammonite Hysteroceras orbignyi at 254.3 m.  FO of the ammonite Mortoniceras inflatum at 253.1 m.  FO of the ammonite Anisoceras armatum at 250.8 m  FO of the ammonite Lechites gaudini at 250.8 m.  FO of the ammonite Anisoceras perarmatum at 248.6 m.  LO of the ammonite Mortoniceras inflatum at 245.9 m.  FO of the ammonite Mortoniceras fallax at 240.9 m.  FO of the nannofossil Eiffellithus turriseiffelii a 234.5 m marking the base of the NC10 nannofossil Zone (Subzone NC10a, equivalent to the UC0 NF Zone of Burnett, 1998).  LO of the ammonite Mortoniceras fallax at 212.3 m.  The Jassines stable carbon isotope event between 210 m and 198 m.  FO of the ammonite Stoliczkaia dispar at 198.9 m.  FO of the ammonite Stoliczkaia clavigera at 194 m.  FO of the ammonite Mortoniceras rostratum at 186 m.  LO of the ammonite Mortoniceras rostratum at 182.2 m  FO of the ammonite Mortoniceras perinflatum at 181 m 125  The onset of the Albian-Cenomanian stable carbon isotope event at 140 m.  The base of the Niveau Breistroffer at 135 m  The last occurrence of the planktonic foraminiferan Pseudothalmanninella subticinensis at 132 m.  LO of the ammonite Stoliczkaia dispar at 119 m.  The last occurrence of the planktonic foraminiferan Planomalina buxtorfi at 116 m.  The last occurrence of the planktonic foraminiferan Paracostellagerina libyca at 112 m.  LO of the ammonite Mortoniceras perinflatum at 102.8 m.  FO of the ammonite Ostlingoceras puzosianum at 102.8 m.  FO of the ammonite Mariella bergeri at 92.5 m.  LO of the ammonite Ostlingoceras puzosianum at 91 m.  The last occurrence of the nannofossil Arkhangelskiella antecessor at 80 m.  LO of the ammonite Anisoceras armatum at 80 m.  LO of the ammonite Anisoceras perarmatum at 80 m.  LO of the ammonite Mariella bergeri at 50 m.  The first occurrence of the planktonic foraminiferan Pseudothalmanninella? tehamaensis at 48 m.  The last occurrence of the planktonic foraminiferan Pseudothalmanninella ticinensis at 40 m.  The first occurrence of the planktonic foraminiferan Thalmanninella gandolfii, also at 40 m.  The first occurrence of the nannofossil Calculites anfractus, also at 40 m.  The base of the Cenomanian Stage, marked by the FO of the planktonic foraminiferan Thalmanninella globotruncanoides at 36 m.  LO of the ammonite Stoliczkaia clavigera at 32 m.  LO of the ammonite Lechites gaudini at 32 m.  Occurrence of the ammonite Arrhaphoceras briacensis at 32 m  The first occurrence of typically Cenomanian ammonites Neostlingoceras oberlini, Mantelliceras mantelli, Hyphoplites curvatus and Sciponoceras roto at 30 m.  The common occurrence of the planktonic foraminiferan Thalmanninella globotruncanoides at 27 m.  The last occurrence of the nannofossil Staurolithites glaber at 12 m.  The termination of the Albian Cenomanian stable carbon isotope event at 10 m.  The first occurrence of the nannofossil Gartnerago theta at 8 m.  Zero datum, the first limestone in the sequence, marking the base of the Calcaires Marneux de Risou. The study also provides an integrated scheme of ammonite, planktonic foraminiferan, and nannofossil zonations for the interval, as summarised in Fig. 10. Analysis of the Al2O3 content of the sequence is extended to the whole of the 500 m thick Albian to lower Lower Cenomanian part of the Marnes Bleues of the Col de Palluel and Risou sections, and provides the basis for an orbital time scale. The 20 kyr precession, 40 kyr tilt, 100 kyr short eccentricity, and 406 kyr long eccentricity cycles are recognised. Our new planktonic foraminiferan and nannofossil data provide the basis for a correlation between the Col de Palluel and Risou sections and the sequences at Gubbio and in the Piobbico core (Premoli Silva and Sliter, 1995; Erba, 1988, 1992b). This provides a basis for the extension of the orbital time scale of Grippo et al. (2004) to the sequence. It reveals a major break in the Col de Palluel succession at the top of the distinctive marker bed known as the Petite Vérole that may represent as much as 2 Ma. It also provides a basis for the calculation of the length of the Albian Stage and substages. We take the base of the Albian at the FO of 126 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Leymeriella tardefurcata at Tartonne in SE France (Kennedy et al., 2000), which is coincident with the base of the organic-rich Niveau Paquier and associated negative stable carbon isotope event. If the early to Middle Albian boundary is taken at the first occurrence of the ammonite Lyelliceras lyelli (for which the occurrence of the late early Albian Hoplites (Isohoplites) steinmanni in the Col de Pré-Guittard section recorded by Kennedy et al., 2000, is used here as a proxy), the duration of the Early Albian is approximately 0.6 Ma. If the Middle to Late Albian boundary is taken at the first occurrence of the inoceramid bivalve Actinoceramus sulcatus in the Col de Palluel section (as a proxy for the first occurrence of the ammonite Dipoloceras cristatum), the duration of the Middle Albian is estimated as approximately 2.84 Ma. The Albian-Cenomanian boundary is defined by the first occurrence of the planktonic foraminiferan Thalmanninella globotruncanoides in the Risou section, which is coincident with the negative carbon isotope excursion between peaks C and D of the Albian-Cenomanian Boundary Event. This provides an estimate of approximately 7.2 Ma for the duration of the late Albian, and a total duration of the Albian of 10.64 Ma. Acknowledgements Kennedy gratefully acknowledges the technical support of the staff of the Department of Earth Sciences and the University Museum of Natural History, Oxford, and logistic field support from E. E. Rice. Petrizzo acknowledges support from the MIUR-PRINZ 2007 Fund. References Amédro, F., 1992. L’Albien du bassin anglo-parisien: ammonites, zonation phylétique, séquences. Bulletin des Centres de Recherche, Exploration et Production, Elf-Aquitaine 16, 187e223. Amédro, F., 2002. Plaidoyer pour un étage Vraconnien entre l’Albien sensu stricto et le Cénomanien (système Crétacé). Académie Royale de Belgique, Classe des Sciences 4 (3), 128, pp. (republished in English as: Amédro, F., 2008. Support for a Vraconnian Stage between the Albian sensu stricto and the Cenomanian (Cretaceous System). Carnets de Géologie 2008/2 (CG2008_MO2), 83 pp). Amédro, F., Matrion, B., Tomasson, R., Magniez-Jannin, F., Colleté, C., 2004. L’Albien Supérieur de Vallentigny dans la région stratotypique (Aube, F.): nouvelle données et révision de l’ammonite Mortoniceras (M.) inflatum (J. Sowerby, 1818). Bulletin de la Sociéte Géologique de Normandie et des Amis du Muséum du Havre 90, 5e28. Arkell, W.J., 1950. A classification of the Jurassic ammonites. Journal of Paleontology 24, 354e364. Bellier, J.-P., Moullade, M., 2002. Lower Cretaceous Planktonic Foraminiferal biostratigraphy of the Western North Atlantic (ODP Leg 171B), and taxonomic clarification of key index species. Revue de Micropaléontologie 45, 9e23. Black, M., 1972e1975. British Lower Cretaceous coccoliths. I. Gault Clay. Monograph of the Palaeontographical Society, 1e48 (1972); 49e112(1973); 113e142 (1975). Bornemann, A., Pross, J., Reichelt, R., Herrle, J.O., Hemleben, C.G., Mutterlose, J., 2005. Reconstruction of short-term paleoceanographic changes during the formation of the late Albian ‘Niveau Breistroffer’ black shales (Oceanic Anoxic Event 1d, SE. France). Journal of the Geological Society, London 162, 623e639. Boule, M., Lemoine, P., Thévenin, A., 1906e1907. Paléontologie de Madagascar III Céphalopodes crétacés des environs de Diego-Suarez. Annales de Paléontologie 1, 173e192 (1e20), 2, 1e56 (21e76). Bown, P.R., 2001. Calcareous nannofossils of the Gault, Upper Greensand and Glauconitic Marl (Middle AlbianeLower Cenomanian) from the BGS Selborne boreholes, Hampshire. Proceedings of the Geologists’ Association 112, 223e236. Bown, P.R., 2005a. Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology 51, 299e308. Bown, P.R., 2005b. Early to mid-Cretaceous calcareous nannoplankton from the northwest Pacific Ocean (ODP Leg 198). In: Bralower, T.J., Premoli Silva, I., Malone, M.J. (Eds.), Proceedings of the Ocean Drilling Program. Scientific Results 198 [Online]. Available from World Wide Web. http://www-odp.tamu.edu/ publications/198_SR/103/103.htm. Bown, P.R., Rutledge, D.C., Crux, J.A., Gallagher, L.T., 1998. Lower Cretaceous. In: Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy. Kluwer Academic Publishers, Dortrecht, pp. 86e131. Bown, P.R., Young, J.R., 1998. Techniques. In: Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy. Kluwer Academic Publishers, Dortrecht, pp. 16e28. Bralower, T., CoBabe, E., Clement, B., Sliter, W.V., Osburn, C.L., Longoria, J., 1999. The record of global change in Mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, northeastern Mexico. Journal of Foraminiferal Research 29, 418e437. Bralower, T.J., Sliter, W.V., Arthur, M.A., Leckie, R.M., Allard, D., Schlanger, S.O., 1993. Dysoxic/anoxic episodes in the Aptian-Albian (Early Cretaceous). Geophysical Monograph 77, 5e37. Bréhéret, J.G., 1997. L’Aptien et l’Albien de la Fosse Vocontienne (des bordures au bassin). Evolution de la sédimentation et renseignements sur les événements anoxiques. Société Géologique du Nord, Publication 25, xi þ 644 pp. Bréhéret, J.G., Brumsack, H.-J., 2000. Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian basin (SE France). Sedimentary Geology 130, 205e228. Bréhéret, J.G., Caron, M., Delamette, M., 1986. Niveau riches en matière organique dans l’Albien vocontien; quelques caractères du paléoenvironment; essai d’interpretation génétique. Documents du Bureau de Recherches Géologiques et Minières 110, 141e191. Breistroffer, M., 1936. Les subdivisions du Vraconien dans le Sud-Est de la France. Bulletin de la Société Géologique de France 5 (6), 63e68. Breistroffer, M., 1940. Révision des ammonites de l’Albien de Salazac (Gard) et considérations générales sur ce sous-étage Albien. Travaux du Laboratoire de l’Institut de Géologie de l’Universite de Grenoble 22, 17e171 (1e101 in separates). Breistroffer, M., 1947. Sur les zones d’ammonites dans l’Albien de France et d’Angleterre. Travaux du Département de Géologie de l’Université de Grenoble 26, 17e104 (1e88 in separates). Breistroffer, M., 1953. Commentaires taxonomiques. In: Breistroffer, M., Villoutreys de, O. (Eds.), Les ammonites albiennes de Peille (Alpes-Maritimes). Travaux du Laboratoire de Géologie de l’Université de Grenoble 30 (for 1952), pp. 69e74. Brongniart, A., 1822. Sur quelques terrains de Craie hors du Bassin de Paris. In: Cuvier, G., Brongniart, A. (Eds.), Description géologique des environs de Paris, 3e édition. Dufour et D’Ocagne, Paris, pp. 80e101. Brown, T., 1837e1849. Illustrations of the Fossil Conchology of Great Britain and Ireland. Smith, Elder, London, vii þ 273 pp. Burnett, J.A., 1998. Upper Cretaceous. In: Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy. Kluwer Academic Publishers, Dortrecht, pp. 132e199. Butjor, L., 1991. A new Worthoceras (Ammonoidea, Cretaceous) from Hungary, and remarks on the distribution of Worthoceras species. Geological Magazine 128, 537e542. Caggianelli, A.S., Fiore, S., Mongelli, G., Salvelmini, A., 1992. Ree distribution in the clay fraction of pelites from the Southern Apennines, Italy. Chemical Geology 99, 253e263. Caron, M., 1971. Quelques cas d’instabilité des caractères génériques chez les foraminifères planctoniques de l’Albien. Proceedings of the II Planktonic Conference, Roma 1970 1, 145e157. Caron, M., 1985. Cretaceous planktic foraminifera. In: Bolli, H.M., et al. (Eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, pp. 17e86. Collignon, M., 1928e1929. Paléontologie de Madagascar, XVI. La faune du Cénomanien à fossiles pyriteux de Diégo-Suarez. Annales de Paléontologie 17, 139e160 (1e24); 18(1929), 1e56 (25e80). Collignon, M., 1949. Recherches sur les faunes albiennes de Madagascar. I. L’Albien d’Ambarimaninga. Annales Géologiques du Service des Mines de Madagascar 16, 1e128. Cooper, M.R., Kennedy, W.J., 1977. A revision of the Baculitidae of the Cambridge Greensand. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1977. Heft 11, 641e658. Cooper, M.R., Kennedy, W.J., 1979. Uppermost Albian (Stoliczkaia dispar Zone) ammonites from the Angolan littoral. Annals of the South African Museum 77, 175e308. Cragin, F.W., 1894. Description of invertebrate fossils from the Comanche series in Texas, Kansas and Indian Territory. Colorado College Studies 5, 49e68. Crampton, J.S., 1996. Biometric analysis, systematics and evolution of Albian Actinoceramus (Cretaceous Bivalvia, Inoceramidae). Institute of Geological and Nuclear Science Monograph 15, 74 pp. Crampton, J.S., Gale, A.S., 2005. A plastic boomerang: speciation and variation in the Cretaceous bivalve Actinoceramus. Paleobiology 31, 557e577. Crampton, J.S., Gale, A.S., 2009. Taxonomy and biostratigraphy of the Late Albian Actinoceramus sulcatus lineage (Early Cretaceous Bivalvia, Inoceramidae). Journal of Paleontology 83, 89e109. Crux, J.A., 1991. Albian calcareous nannofossils from the Gault Clay of Munday’s Hill (Bedfordshire, England). Journal of Micropalaeontology 10, 203e221. Delamette, M., Charrolais, J., Decrouez, D., Caron, M., 1997. Les Grès Verts Helvétiques (Aptien Moyen-Albien Supérieur) de Haute-Savoie, Valais et Vaud (Alpes Occidentales Franco-Suisse). Analyse stratigraphique et inventaire paléontologique. Université de Genève, vol. 23. Publications du Département de Géologie et Paléontologie. 400pp. Douvillé, H., 1890. Sur la classification des Cératites de la Craie. Bulletin de la Société Géologique de France 18 (3), 275e292. Douvillé, H., 1912. Evolution et classification des Pulchelliidés. Bulletin de la Société Géologique de France 11 (4), 285e320. Dubourdieu, G., 1953. Ammonites nouvelles des Monts du Mellègue. Bulletin du Service de la Carte Géologique d’Algérie. Paléontologie 16 (1), 1e76. Erba, E., 1988. Aptian-Albian calcareous nannofossil biostratigraphy of the Scisti a Fucoidi cored at Piobbico (Central Italy). Rivista Italiana di Paleontologia e Stratigrafia 94, 249e284. Erba, E., 1992a. Middle Cretaceous calcareous nannofossils from the western Pacific (ODP Leg 129): evidence for palaeoequatorial crossings. Proceedings of the ODP. Scientific Results 129, 189e201. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Erba, E., 1992b. Calcareous nannofossil distribution in pelagic rhythmic sediments (Aptian-Albian Piobbico core, Central Italy). Rivista Italiana di Paleontologia e Stratigrafia 97, 455e484. Erba, E., Castradori, D., Guasti, G., Ripepe, M., 1992. Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). Palaeogeography, Palaeoclimatology. Palaeoecology 93, 47e69. Etheridge, R., 1902. The Cretaceous Molluscs of South Australia and the Northern Territory. Records of the Australian Museum 5, 108e115. Fallot, J.E., 1885. Étude géologique sur les étages moyens et supérieurs du terrain Crétacé dans le sud-est de la France. Annales des Sciences Géologiques. Paris 18, 1e263. Fiet, N., Beaudoin, B., Parize, O., 2001. Lithostratigraphic analysis of Milankovitch cyclicity in pelagic Albian deposits of Central Italy: implications for the duration of the stage and substages. Cretaceous Research 22, 265e275. Fleming, J., 1828. A History of British Animals. Bell and Bradfute, Edinburgh and London, xxiii þ 565 pp. Forbes, E., 1846. Report on the Fossil Invertebrata from southern India, collected by Mr. Kaye and Mr. Cunliffe. Transactions of the Geological Society of London 7 (2), 97e174. Gale, A.S., Kennedy, W.J., Burnett, J.A., Caron, M., Kidd, B.E., 1996. The Late Albian to Early Cenomanian succession at Mont Risou near Rosans (Drôme, SE France): an integrated study (ammonites, inoceramids, planktonic foraminifera, nannofossils, oxygen and carbon isotopes). Cretaceous Research 17, 515e606. Gale, A.S., Young, J.R., Shackleton, N.J., Crowhurst, S., Wray, D.S., 1999. Orbital tuning of Cenomanian marly chalk successions; towards a Milankovitch time scale for the Late Cretaceous. Philosophical Transactions of the Royal Society, Series A 357, 1815e1829. Gauthier, H., 2006. Révision Critique de la Paléontologie Française d’Alcide d’Orbigny, 6, Céphalopodes Crétacés. Backhuys, Leiden. 292 þ 662 þ 28pp. Gebhard, G., 1979. Glauconitische Kondensation im Alb der sub-alpinen Ketten (Clars, Escragnolles, SE-Frankreich), deren Ammonitenfauna und Kartierung in der Umgebung von Escragnolles. Unpublished Thesis. University of Tübingen, 152 pp. Gebhard, G., 1982. Glauconitic condensation through high energy events in the Albian near Clars (Escragnolles, Var, SE France). In: Einsele, G., Seilacher, A. (Eds.), Cyclic and Event Stratification. Springer Verlag, New York, pp. 286e298. Gebhard, G., 1983. Taxonomische Konsequenzen aus der Synonymie von Mojsisovicsia Steinmann und Falloticeras Parona and Bonarelli. Paläontologische Zeitschrift 57, 111e119. Gill, T., 1871. Arrangement of the Families of Mollusks. Smithsonian Miscellaneous Collections 227, xvi þ 49 pp. Gonzales-Donoso, J.M., Linares, D., Robaszynski, F., 2007. The Rotaliporids, a polyphyletic group of Albian-Cenomanian planktonic foraminifera: emendation of genera. Journal of Foraminiferal Research 37, 175e186. Gradstein, F.M., Ogg, J.G., Smith, A.G., 2004. A geologic time scale 2004. Cambridge University Press, Cambridge, 589 pp. Grippo, A., Fischer, A.G., Hinnov, L.A., Herbert, T.D., Premoli-Silva, I., 2004. Cyclostratigraphy and chronology of the Albian Stage (Piobboco Core, Italy). In: Cyclostratigraphy: approaches and case histories. Special Publication 81, 57e81. Grocke, D.R., Ludvigson, G.A., Witzke, B.L., Robinson, S.L., Joeckel, R.M., Ufnar, D.F., Ravn, R.L., 2004. Recognising the Albian-Cenomanian (OAE1d) sequence boundary using plant isotopes: Dakota Formation, Western Interior Basin, USA. Geology 34, 193e196. de Grossouvre, A., 1894. Recherches sur la craie supérieure, 2, Paléontologie. Les ammonites de la craie supérieure. Mémoires du Service de la Carte géologique de la France, 264, pp. (misdated 1893). Haig, D.W., Lynch, D.A., 1993. A late early Albian transgressive pulse over northeastern Australia prior to epeiric basin anoxia: foraminiferal evidence. Marine Micropalaeontology 22, 311e362. Hancock, J.M., 2003. Review of Amédro 2002. Plaidoyer pour un étage Vraconnien entre l’Albien sensu stricto et le Cénomanien (système Crétacé). Academie Royale de Belgique. Classe des Sciences 4 (3), 128 pp. Cretaceous Research 24, 95e96. Haq, U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156e1167. Hart, M.B., 1973. Foraminiferal evidence for the age of the Cambridge Greensand. Proceedings of the Geologist’s Association 84, 65e82. Hart, M.B., Amédro, F., Owen, H.G., 1996. The Albian stage and substage boundaries. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique 66 (Supplément), 45e56. Hébert, E., Munier-Chalmas, E.P.A., 1875. Fossiles du Bassin d’Uchaux, 6. Annales des Sciences Géologiques, Paris. 113e132. Henderson, R.A., 1990. Late Albian ammonites from the Northern Territory, Australia. Alcheringa 14, 109e148. Herrle, J.O., 2002. Paleoceanographic and Paleoclimatic implications on MidCretaceous Black Shale formation in the Vocontian Basin and the Atlantic: evidence from calcareous nannofossils and stable isotopes. Tubinger Mikropaläontologische Mitteilungen 27, 114. Herrle, J.O., Kößlere, P., Friedrich, O., Erlenkeuser, H., Hemleben, C., 2004. Highresolution carbon isotope records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP site 545): a stratigraphic tool for palaeoceanographic and palaeobiologic reconstruction. Earth and Planetary Science Letters 218, 149e161. Hill, M.E., 1976. Lower Cretaceous calcareous nannofossils from Texas and Oklahoma. Palaeontographica B156, 103e179. 127 Hill, M.E., Bralower, T.J., 1987. Early evolution, stratigraphy and taxonomy of Eiffellithus eximius and closely-related species. Abhandlungen der Geologischen Bundesanstalt 39, 89e97. Hoepen, E.C.N., 1955. Turonian-Coniacian ammonites from Zululand. South African Journal of Science 51, 361e377. Hoepen, E.C.N., 1946. Die gekielde Ammoniete van die Suid-Afrikanse Gault. IV. Cechenoceratidae, Dipoloceratidae, Drepanoceratidae, Arestoceratidae. V. Monphyletism or polyphyletism in connection with the ammonites of the South African Gault. Paleontologiese Navorsing van die Nasionale Museum. Bloenfontein 1, 174e268. Hyatt, A., 1889. Genesis of the Arietidae. Smithsonian Contributions to Knowledge 673, xi þ 239 pp. Hyatt, A., 1896e1900. Cephalopoda. In: Zittel, K.A. Von (Ed.), Textbook of Palaeontology, (Transl. Eastman, C.R.). Macmillan, London and New York, pp. 502e604. Hyatt, A., 1903. Pseudoceratites of the Cretaceous. United States Geological Society Monograph 44, 351 pp. Immenhauser, A., Scott, R.W., 1999. Global correlation of Middle Cretaceous sealevel events. Geology 27, 551e554. Jacob, C., 1907. Études paléontologiques et stratigraphiques sur la partie moyenne des terrains crétacés dans les Alpes françaises et les régions voisines. Annales de l’Université de Grenoble 19 (2), 221e534 (published also in 1908 in Travaux du Laboratoire de Géologie de l’Université de Grenoble 8, (2), 280e590, and later in 1908 in Bulletin de la Société de Statistique des Sciences Naturelles et des Arts Industriels du Département d’Isère (Grenoble) (4), 10, 201e514). Jacob, C., 1908. Études sur quelques ammonites du Crétacé Moyen. Mémoires de la Société Géologique de France. Paléontologie 15 no 38, 1-63, (for 1907). Jarvis, I., Gale, A.S., Jenkyns, H.C., Pearce, M.A., 2006. Secular variation in Late Cretaceous carbon isotopes: a new d13C carbonate reference curve for the Cenomanian-Campanian (99.6-70.6 Ma). Geological Magazine 143, 561e608. Jenkyns, H., Gale, A.S., Corfield, R., 1994. The carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine 131, 1e34. Jeremiah, J., 1996. A proposed Albian to Lower Cenomanian nannofossil biozonation for England and the North Sea Basin. Journal of Micropalaeontology 15, 97e129. Joly, B., 2000. Les Juraphyllitidae, Phylloceratidae, Neophylloceratidae (Phyllocerataceae, Phylloceratina, Ammonidea) de France au Jurassique et au Crétacé. Geobios, Mémoire Spécial 23, 204 pp. Joly, B., Delamette, M., 2008. Les Phylloceratoidea (Ammonoidea) aptiens et albiens du bassin vocontien (Sud-Est de la France). Carnets de Géologie, Mémoire 2008/ 4 (CG2880_MO4), 60 pp. Jukes-Browne, A.J., 1875. On the relations of the Cambridge Gault and Greensand. Quarterly Journal of the Geological Society of London 31, 256e314. Kennedy, W.J., Bilotte, M., 2009. A revision of the cephalopod fauna of the ‘niveau rouge’ of the Selva de Bonansa, Huesca Province, northern Spain. Bulletin of the Moscow Society of Naturalists, Geology Series 84, 39e70. Kennedy, W.J., Bilotte, M., Hansotte, M., 1996. Cenomanian ammonites from Pech de Foix (Ariège, France). Géobios 29, 307e318. Kennedy, W.J., Cobban, W.A., Gale, A.S., Hancock, J.M., Landman, N.H., 1998. Ammonites from the Weno Limestone (Albian) in Northeast Texas. American Museum Novitates 3236, 1e46. Kennedy, W.J., Cobban, W.A., Hancock, J.M., Gale, A.S., 2005. Upper Albian and Cenomanian ammonites from the Main Street Limestone, Grayson Marl and Del Rio Clay in northeast Texas. Cretaceous Research 26, 349e428. Kennedy, W.J., Delamette, M., 1994. Lyelliceratidae and Flickiidae (Ammonoidea) from the Upper Albian of the Helvetic Shelf (Western Alps, France and Switzerland). Journal of Paleontology 68, 1263e1284. Kennedy, W.J., Gale, A.S., Bown, P.R., Caron, M., Davey, R., Gröcke, D., Wray, D.S., 2000. Integrated stratigraphy across the Aptian-Albian boundary in the Marnes Bleues, at the Col de Pré-Guittard, Arnayon (Drôme), and at Tartonne (Alpes-de-HauteProvence), France: a candidate global boundary stratotype section and boundary Point for the base of the Albian Stage. Cretaceous Research 21, 591e720. Kennedy, W.J., Gale, A.S., Hancock, J.M., Crampton, J.S., Cobban, W.A., 1999. Ammonites and inoceramid bivalves from close to the Middle-Upper Albian boundary around Fort Worth, Texas. Journal of Paleontology 73, 1101e1125. Kennedy, W.J., Gale, A.S., Lees, J.A., Caron, M., 2004. The Global Boundary Stratotype Section and Point for the base of the Cenomanian Stage, Mont Risou, HautesAlpes, France. Episodes 27, 21e32. Kennedy, W.J., Jagt, J.W.M., Amédro, F., Robaszynski, F., 2008. The late Late Albian (Mortoniceras fallax Zone) cephalopod fauna from the Bracqegnies Formation at Strépy-Thieu (Hainault), southern Belgium. Geologica Belgica 11, 35e69. Kennedy, W.J., Klinger, H.C., 1979. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite family Gaudryceratidae. Bulletin of the British Museum (Natural History) Geology 31, 121e174. Kennedy, W.J., Latil, J.L., 2007. The Upper Albian ammonite sucession in the Montlaux section, Hautes-Alpes, France. Acta Geologica Polonica 57, 453e478. Kennedy, W.J., Klinger, H.C., 1993. The affinities of Zuluscaphites Van Hoepen, 1955. Paläontologisches Zeitschrift 67, 63e77. Klinger, H.C., Kennedy, W.J., 1978. Turrilitidae (Cretaceous Ammonoidea) from South Africa, with a discussion of the evolution and limits of the family. Journal of Molluscan Studies 44, 1e48. Kossmat, F., 1895e1898. Untersuchungen über die Südindische Kreideformation. Beiträge zur Paläontologie Österreich-Ungarns und des Orients 9 (1895), 97e203 (1e107); 11(1897) 1e46 (108e153); 11 (1898), 89e152 (154e217). Krauskopf, K.B., 1967. Introduction to Geochemistry. McGraw-Hill, New York. 721pp. 128 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Latil, J.L., 1995. The Dispar zone in south-east France and comments about the biozonation of Albian in the Tethyan realm: biostratigraphy and palaeontology (ammonites). Géologie Alpine, Mémoire 20, 67e111. Leckie, R.M., 1984. Mid-Cretaceous planktonic foraminiferal biostratigraphy off central Morocco, Deep Sea Drilling project Leg 79, Sites 545 and 547. Initial Reports of the Deep Sea Drilling Project 79, 579e620. Leckie, R.M., Bralower, T.J., Cashman, R., 2002. Oceanic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17 (3) 10.1029/2001PA000263. Lehmann, J., 1998. Taxonomy and nomenclature of large desmoceratids (Ammonoidea) from the Cenomanian and Turonian (Upper Cretaceous) of Western Europe. Neues Jährbuch für Geologie und Paläontologie. Abhandlungen 212, 175e210. Lipson-Benitah, S., 2008. Phylogeny of the Middle Cretaceous (late Albian-late Cenomanian) planktonic foraminiferal genera Parathalmanninella nov. gen. and Thalmanninella. Journal of Foraminiferal Research 39, 183e189. Lipson-Benitah, S., Almogi-Labin, A., 2000. Albian planktonic foraminifera from Israel. Geological Survey of Israel Bulletin 86, 1e50. Liu, Y.G., Miah, M.R.U., Schmitt, R.A., 1988. Cerium - a Chemical Tracer for PaleoOceanic Redox Conditions. Geochimica et Cosmochimica Acta 52, 1361e1371. Loeblich Jr., A.R., Tappan, E., 1987. Foraminiferal Genera and their Classification. Van Nostrand Reinhold Company, New York, 970 pp. Luciani, V., Cobianchi, M., Jenkyns, H.C., 2004. Albian high resolution biostratigraphy and isotope stratigraphy: the Coppa della Nuvola pelagic succession of the Gargano Promontory (Southern Italy). Eclogae Geologicae Helvetiae 97, 77e92. Luterbacher, H.P., Premoli Silva, I., 1962. Note préliminaire sur une révision du profil de Gubbio, Italie. Rivista Italiana di Paleontologia 68, 253e288. Mantell, G.A., 1822. The fossils of the South Downs; or illustrations of the geology of Sussex. Lupton Relfe, London. xviþ327pp. Marcinowski, R., Wiedmann, J., 1990. The Albian ammonites of Poland. Palaeontologica Polonica 50, 94 pp. Michelin, H., 1834. Coquilles fossiles de Gérodot (Aube). Magazine de Zoologie 3 CIV. Michelin, H., 1838. Note sur une argile dépendant du Gault, observée au Gaty, commune de Gérodod, département de l’Aube. Mémoires de la Société Géologique de France 3 (1), 97e103. Mitchell, S.F., 1996. Lithostratigraphy and biostratigraphy of the Hunstanton Formation (Red Chalk, Cretaceous) succession at Speeton, North Yorkshire, England. Proceedings of the Yorkshire Geological Society 50, 285e303. Moullade, M., 1966. Etude stratigraphique et micropaléontologique du Crétacé inférieur de la “Fosse Vocontienne”. Documents des Laboratoires de Géologie de la Facultè des Sciences de Lyon 15, 1e369. Murray, R.W., Buchholtzen Brink, M.R., Brumsack, H.J., Gerlach, D.C., Price III, R.G., 1991. Rare-Earth Elements in Japan Sea sediments and diagenetic behavior of Ce/Ce*: Results from ODP Leg 127. Geochimica et Cosmochimica Acta 55, 2453e2466. Mutterlose, J., Bornemann, J., Herrle, J.O., 2005. Mesozoic calcareous nannofossils state of the art. Paläontologische Zeitschrift 79, 113e133. Neumayr, M., 1875. Die Ammoniten der Kreide und die Systematik der Ammonitiden. Zeitschrift der deutschen geologischen Gesellschaft 27, 854e942. Obradovich, J.D., Matsumoto, T., Nishida, T., Inoue, Y., 2002. Integrated biostratigraphic and radiometric study on the Lower Cenomanian (Cretaceous) of Hokkaido, Japan. Proceedings of the Japan Academy Series B 78, 149e153. d’ Orbigny, A., 1840e1842. Paléontologie française: Terrains crétacés. 1. Céphalopodes. Masson, Paris, pp. 1e120(1840); pp. 121e430(1841); pp. 431e662(1842). d’ Orbigny, A., 1850. Prodrome de Paléontologie stratigraphique universelle des animaux Mollusques et rayonnés faisant suite au cours élémentaire de Paléontologie et de Géologie stratigraphiques, 2. Masson, Paris, 427 pp. Owen, H.G., 1971. Middle Albian stratigraphy in the Anglo-Paris Basin. Bulletin of the British Museum (Natural History). Geology 8 (Suppl.), 1e164. Owen, H.G., 1975. The stratigraphy of the Gault and Upper Greensand of the Weald. Proceedings of the Geologists’ Association 86, 475e498. Owen, H.G., 1984. The Albian Stage: European Province chronology and ammonite zonation. Cretaceous Research 5, 329e344. Owen, H.G., 1988. The ammonite zonal sequence and ammonite taxonomy in the Douvilleiceras mammilatum Superzone (Lower Albian). Bulletin of the British Museum of Natural History (Geology) 44, 177e231. Owen, H.G., 1996. Boreal and Tethyan late Aptian to Late Albian ammonite zonation and palaeobiogeography. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 77, 461e481. Owen, H.G., 1999. Correlation of the Albian European and Tethyan ammonite zonations and boundaries of the Albian Stage and substage boundaries: some comments. Scripta Geologica Special Issue 3, 129e149. Paillert, P., 1983. Les nodules barytiques de l’Albien du Sud-Est de la France; un exemple de concentrations minérales en relation avec l’évolution diagénétique du sédiment. Thèse de Trosième cycle. Université de Lyon 1, 236. Parize, O., Caron, M., Fiet, N., Latil, J.-L., Fries, G., Bison, G., Bison, J.J., 1998. Calibrages par ammonites des zones à foraminifères planktoniques de l’Albien Supérieur du bassin du Sud-Est de la France. Comptes Rendus de l’Académie des Sciences, Paris. Sciences de la terre et des Planètes 326, 433e438. Parkinson, J., 1819. Remarks on the fossils collected by Mr. Phillips near Dover and Folkestone. Transactions of the Geological Society of London 5, 52e59. Parona, C.F., Bonarelli, G., 1897. Fossili Albiani d’Escragnolles, del Nizzardo e della Liguria occidentale. Palaeontographica Italica 2 (1e55), 53e107. Passendorfer, E., 1930. Studjum stratygraficzne i paleontologiczne i paleontologiczne nad Kreda serji wierchowej w Tatrach. [Étude stratigraphique et paléontologique du Crétacé de la serie hauttatrique dans les Tatras.]. Prace Polskiego Instytutu Geologicznego 2 (4), 439e677 (for 1929) (in Polish and French). Perch-Nielsen, K., 1979. Calcareous nannofossils from the Cretaceous between the North Sea and the Mediterranean. Aspekte der Kreide Europas. IUGS Series A 6, 223e272. Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils. In: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, pp. 329e426. Pervinquière, L., 1907. Études de paléontologie tunisienne. 1. Céphalopodes des terrains secondaires. Carte Géologique de Tunisie. de Rudeval, Paris, v þ 438 pp. Pervinquière, L., 1910. Sur quelques ammonites du Crétacé algérien. Mémoires de la Société Géologique de France. Paléontologie 17, (2e3), 86 pp. Petrizzo, M.R., Huber, B.T., 2006a. Biostratigraphy and taxonomy of Late Albian planktonic foraminifera from ODP Leg 171B (western north Atlantic Ocean). Journal of Foraminiferal Research 36, 166e190. Petrizzo, M.R., Huber, B.T., 2006b. On the phylogeny of the Late Albian genus Planomalina. Journal of Foraminiferal Research 36, 233e240. Petrizzo, M.R., Huber, B.T., Wilson, P.A., MacLeod, K.G., 2008. Late Albian paleoceanography of the western subtropical North Atlantic. Paleoceanography 23, PA1213, 17 pp. Pictet, F.J., 1847e1854. In: Pictet, F.J., Roux, W. (Eds.), Description des mollusques fossiles qui se trouvent dans les Grès Verts des environs de Genève, 11. Mémoires de la Société de Physique et d’Histoire Naturelle de Genève (1847) 257e412; 12(1849), 21e151; 13(1852), 73e173; 14(1854), 279e341. Pictet, F.J., Campiche, G., 1858e1864. Description des fossiles du terrain crétacé des environs de Saint-Croix, partie 2(1). Description des fossiles. Matériaux pour la Paléontologie Suisse (2) part 1, 380 pp.; part 2, 752 pp. Premoli Silva, I., Sliter, W.V., 1995. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio Italy. Paleontographia Italica 82 (1994), 1e89. Randrianasolo, A., Anglada, R., 1989. La lignée Hedbergella wondersi nov. sp. e Planomalina buxtorfi (Gandolfi) (Foraminifères planctoniques) dans l’AlboCénomanien du Bassin d’Antsiranana (Nord de Madagascar). Géobios 22, 803e823. Reeside Jr., J.B., 1927. Cephalopods from the lower part of the Cody Shale of Oregon Basin, Wyoming. United States Geological Survey Professional Paper 150-A, 1e19. Renz, O., 1972. Die Gattungen Puzosia Bayle, Bhimaites Matsumoto und Desmoceras Zittel (Ammonoidea) im Oberen Albien Venezuelas. Eclogae Geologicae Helvetiae 65, 701e724. Renz, O., 1968. Die Ammonoidea im Stratotyp des Vraconnien bei Sainte-Croix (Kanton Waadt). Schweizerische paläontologische Abhandlungen 87, 99 pp. Robaszynski, F., Amédro, F. (Eds.), 1980, Synthèse biostratigraphique de l’Aptien du Santonien du Boulonnais à partir de sept groupes paléontologiques: foraminifères, nannoplancton, dinoflagellés et macrofaunes. Revue de Micropaléontologie, 22, 195e321. Robaszynski, F., Caron, M., the European Working Group on Planktonic Foraminifera, 1979. Atlas de foraminifères planctoniques du Crétacé moyen. Cahiers de Micropaléontologie 1, 1e185. 2, 1e181. Robaszynski, F., Caron, M., 1995. Foraminifères planctoniques du Crétacé: commentaire de la zonation Europe Méditerranée. Bulletin de la Société Géologique de France 166, 681e692. Robinson, S.A., Clarke, L.J., Nederbragt, A., Wood, I.G., 2008. Mid-Cretaceous oceanic events in the Pacific Ocean revealed by carbon-isotope stratigraphy of the Calera Limestone, California. USA. Bulletin of the Geological Society of America 120, 1416e1427. Roth, P.H., 1978. Cretaceous nannoplankton biostratigraphy and oceanography of the northwestern Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project 44, 731e760. Roth, P.H., 1983. Jurassic and Lower Cretaceous calcareous nannofossils in the western North Atlantic (Site 534): biostratigraphy, preservation, and some observations on biogeography and palaeoceanography. Initial Reports of the Deep Sea Drilling Project 76, 587e621. Salvador, A., 1994. International Stratigraphic Guide: A Guide to Stratigraphic Classification, Terminology, and Procedure, second ed. The International Union of Geosciences and the Geological Society of America, Boulder, Colorado, 314 pp. Scholz, G., 1973. Sur l’âge de la faune d’Ammonites au Château près de St.-Martinen-Vercours (Drôme) et quelques considérations sur l’évolution des Turrilitidés et des Hoplitidés vracono-cénomaniens. Géologie Alpine 49, 119e129. Scholz, G., 1979. Die Ammoniten des Vracon (Oberalb, Dispar Zone) des BakonyGebirges (Westungarn) und eine Revision der wichtigsten Vracon-arten der Westmediterranen Faunenprovinz. Palaeontographica A165, 1e136. Scott, R.W., 2009. Uppermost Albian Biostratigraphy and Chronostratigraphy. Carnet de Géologie, Brest, Article 2009/3 (CG2009_A03). 22 pp. Seeley, H.G., 1865. On ammonites from the Cambridge Greensand. Annals and Magazine of Natural History 16 (3), 225e247. Shackleton, N.J., Crowhurst, S.J., Weedon, G.P., Laskar, J., 1999. Astronomical calibration of Oligocene-Miocene time. Philosophical Transactions of the Royal Society Series A 357, 1907e1929. Sharpe, D., 1853e1857. Description of the fossil remains of Mollusca found in the Chalk of England. 1, Cephalopoda. Palaeontographical Society Monographs 68, 1e26 (1853); 27e36(1855); 37e68 (1857). Sigal, J., 1958. La classification actuelle des familles de Foraminifères planctoniques du Crétacé. Compte Rendus Sommaire de la Société Géologique de France 12, 262e263. A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Sigal, J., 1966. Contribution à une monographie des Rosalines. 1. Le genre Ticinella Reichel, souche des Rotalipores. Eclogae Geologicae Helvetiae 59, 185e217. Sigal, J., 1969. Contribution à une monographie des Rosalines. 2. L’espèce Rotalipora appenninica (Renz, 1936), origine phylétique et taxinomie. Proceedings of the 1st International Conference on Planktonic Microfossils 2, 622e639. Sigal, J., 1977. Essai de zonation du Crétacé méditerranéen à l’aide des foraminiféres planctoniques. Géologie Méditerranéenne 4, 99e108. Sissingh, W., 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw 56, 37e65. Sowerby, J., 1812e1822. The Mineral Conchology of Great Britain. The Author, London, 1e234; 1e251; 1e194; 1e104. Sowerby, J. de C., 1823e1846. The Mineral Conchology of Great Britain (continued), 105e160; 1e171; 1e250; 1e80. Spath, L.F., 1921. On Cretaceous Cephalopoda from Zululand. Annals of the South African Museum 12, 217e321. Spath, L.F., 1922. On Cretaceous Ammonoidea from Angola, collected by Professor J.W. Gregory, D.Sc., F.R.S. Transactions of the Royal Society of Edinburgh 53, 91e160. Spath, L.F., 1923e1943. A monograph of the Ammonoidea of the Gault. Monograph of the Palaeontographical Society 787 1e72 (1923); 73e110 (1925); 111e146 (1925); 147e186 (1926); 187e206 (1927); 207e266 (1928); 267e311 (1930); 313e378 (1931); 379e410 (1932); 411e442 (1933); 443e496 (1934); 497e540 (1937); 541e608 (1939); 609e668 (1941); 669e720 (1942); 721e287, iex (1943). Spath, L.F.,1927. Revision of the Jurassic fauna of Kach (Cutch). Memoirs of the Geological Survey of India, Palaeontologica Indica New Series, 9, Memoir 2, part 1, 1e71. Stradner, H., 1963. New contributions to Mesozoic stratigraphy by means of nannofossils. Proceedings of the Sixth World Petroleum Congress Section 1, Paper 4, 167e183. Strasser, A., Caron, M., Gjermeni, M., 2001. The Aptian, Albian and Cenomanian of Roter Sattel, Romandes Prealps, Switzerland: a high resolution record of oceanographic changes. Cretaceous Research 22, 173e199. Thierstein, H.R., 1973. Lower Cretaceous calcareous nannoplankton biostratigraphy. Abhandlungen der Geologischen Bundesanstalt 64, 459e488. Tiraboschi, D., Erba, E., Jenkyns, H.C., 2009. Origin of rhythmic Albian black shales (Piobbico core, central Italy): calcareous nannofossil quantitive and statistical analyses and paleoceanographic reconstructions. Paleoceanography 24, PA2222. doi:10.1029/2008PA001670. Watkins, D.K., Bergen, J., 2003. Late Albian adaptive radiation in the calcareous nannofossil genus Eiffellithus. Micropaleontology 49, 231e252. Watkins, D.K., Cooper, M.J., Wilson, P.A., 2005. Calcareous nannoplankton response to late Albian oceanic anoxic event 1d in the western north Atlantic. Paleoceanography 20, PA2010. doi:10.1029/2004PA001097. Wedepohl, K.H., 1969. Composition and Abundance of Common Sedimentary Rocks. Handbook of Geochemistry 1. Springer-Verlag, Berlin, pp. 250e271. Weissert, H., Bréhéret, J.-G., 1991. A carbonate carbon-isotope record from AptianAlbian sediments of the Vocontian trough (SE France). Bulletin de la Sociéte Géologique de France 162, 1133e1140. Wiedmann, J., 1962a. Unterkreide-Ammoniten von Mallorca. 1. Lieferung: Lytoceratina, Aptychi. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse. Akademie der Wissenschaft und Literatur, Mainz (1), 1e148. Wiedmann, J., 1962b. Ammoniten aus der Vascogotischen Kreide (Nordspanien). 1, Phylloceratina, Lytoceratina. Palaeontographica A118, 119e237. Wiedmann, J., 1962c. Die Gabbioceratinae Breistroffer. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 115 (1), 1e43. Wiedmann, J., 1965. Origin, limits and systematic position of Scaphites. Palaeontology 8, 397e453. Wiedmann, J., 1966. Stammesgeschichte und System der posttriadischen Ammonoideen; ein Überblick. Neues Jahrbuch fur Geologie und Paläontologie, Abhandlungen 125, 49e79. 127, 13e81. Wiedmann, J., 1973. The Albian and Cenomanian Tetragonitidae (Cretaceous Ammonoidea), with special reference to the Circum-Indic species. Eclogae Geologicae Helvetiae 66, 585e616. Wiedmann, J., Dieni, I., 1968. Die Kreide Sardiniens und ihre Cephalopoden. Palaeontographica Italica 64, 1e171. Wiedmann, J., Marcinowski, R., 1985. Scaphamites passendorferi n. gen., n. sp. (Ammonoidea, Cretaceous). Neues Jahrbuch für Geologie und Paläontologie. Monatshefte, 449e463. Wilson, P.A., Norris, R.D., 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412, 425e429. Wiltshire, T., 1869. On the Red Chalk of Hunstanton. Quarterly Journal of the Geological Society of London 25, 185e292. Wonders, A.A.H., 1978. Phylogeny, classification and biostratigraphic distribution of keeled Rotaliporinae. Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen 81, 113e114. Woods, H., 1911. A monograph of the Cretaceous Lamellibranchia of England. Monograph of the Palaeontographical Society, 285e340. Wray, D.S., Wood, C.J., 1998. Distinction between detrital and volcanogenic clay-rich beds in TuronianeConiacian chalks of eastern England. Proceedings of the Yorkshire Geological Society 52, 95e105. Wright, C.W., 1953. Notes on Cretaceous ammonites. I, Scaphitidae. Annals and Magazine of Natural History 12, 473e476. Wright, C.W., Kennedy, W.J., 1984e1996. The Ammonoidea of the Lower Chalk. Monograph of the Palaeontographical Society 403, 1e126 (1984); 127e218 (1987); 219e294 (1991); 295e319 (1995); 320e403 (1996). 129 Wright, C.W., Kennedy, W.J., 1994. Evolutionary relationships among Stoliczkaiinae (Cretaceous ammonites) with an account of some species from the English Stoliczkaia dispar Zone. Cretaceous Research 15, 547e582. Wright, C.W., Wright, E.V., 1949. The Cretaceous ammonite genera Discohoplites Spath and Hyphoplites Spath. Quarterly Journal of the Geological Society of London 104, 477e497. Zittel, K.A. von, 1884. Handbuch der Palaeontologie. 1, Abt. 2; Lief 3, Cephalopoda. R. Oldenbourg, Munich and Leipzig, pp. 329e522. Zittel, K.A. von, 1895. Grundzüge der Palaeontologie (Palaeozoologie). R. Oldenbourg, Munich and Leipzig, viiþ 972 pp. Appendix 1. List of calcareous nannofossil taxa identified in this study The taxa identified during this study and/or cited in the text are listed below, in alphabetical order, along with taxonomic authorship. Bibliographic references can be found in Perch-Nielsen (1985) and Bown et al. (1998). Arkhangelskiella Vekshina, 1959 Arkhangelskiella antecessor Burnett, 1998 Assipetra terebrodentarius (Applegate et al., in Covington and Wise, 1987) Rutledge and Bergen in Bergen, 1994 Axopodorhabdus albianus (Black, 1967) Wind and Wise, in Wise and Wind, 1977 Axopodorhabdus dietzmannii (Reinhardt, 1965) Wind and Wise, 1983 Biscutum constans (Górka, 1957), Black, 1959 Biscutum gaultensis (Mutterlose, 1992) Bown, in Kennedy et al., 2000 Braarudosphaera Deflandre, 1947 Braarudosphaera africana Stradner, 1961 Braarudosphaera hockwoldensis Black, 1973 Braarudosphaera stenorhetha Hill, 1976 Broinsonia galloisii (Black, 1973) Bown, in Kennedy et al., 2002 Broinsonia matalosa (Stover, 1966) Burnett, in Gale et al., 1996 Broinsonia signata (Noël, 1969) Noël, 1970 Bukrylithus ambiguus Black, 1971 Calcicalathina alta Perch-Nielsen, 1979 Calculites anfractus (Jakubowski, 1986) Varol and Jakubowski, 1989 Ceratolithina Perch-Nielsen, 1988 Calciosolenia fossilis (Deflandre, in Deflandre and Fert, 1954) Bown in Kennedy et al., 2000 Calculites anfractus (Jakubowski, 1986) Varol and Jakubowski, 1989 Calculites percernis Jeremiah, 1996 Chiastozygus litterarius (Górka, 1957) Manivit, 1971 Chiastozygus platyrhethus Hill, 1976 Cleistorhabdus williamsii Black, 1972 Corollithion kennedyi Crux, 1981 Corollithion protosignum Worsley, 1971 Corollithion signum Stradner, 1963 Cretarhabdus conicus Bramlette and Martini, 1964 Cretarhabdus striatus (Stradner, 1963) Black, 1973 Cribrosphaerella ehrenbergii (Arkhangelsky, 1912) Deflandre, in Piviteau, 1952 Crucibiscutum hayi (Black, 1973) Jakubowski, 1986 Crucicribrum anglicum Black, 1973 Cyclagelosphaera margerelii Noël, 1965 Cyclagelosphaera rotaclypeata Bukry, 1969 Cylindralithus nudus Bukry, 1969 Diazomatolithus lehmanii Noël, 1965 Discorhabdus ignotus (Gorka, 1957) Perch-Nielsen, 1968 Diloma Wind and Cepek, 1979 Eiffellithus Reinhardt, 1965 Eiffellithus equibiramus Watkins and Bergen, 2003 Eiffellithus eximius (Stover, 1966) Perch-Nielsen, 1968 Eiffellithus hancockii Burnett, 1998 Eiffellithus monechiae Crux, 1991 Eiffellithus paragogus Gartner, 1993 Eiffellithus parvum Watkins and Bergen, 2003 Eiffellithus praestigium Watkins and Bergen, 2003 Eiffellithus primus Applegate and Bergen, 1988 Eiffellithus striatus (Black, 1971) Applegate and Bergen, 1988 Eiffellithus turriseiffelii (Deflandre, in Deflandre and Fert, 1954) Reinhardt, 1965 Eiffellithus vonsalisiae Watkins and Bergen, 2003 Eiffellithus windii Applegate and Bergen, 1988 Eprolithus floralis (Stradner, 1962) Stover, 1966 Flabellites oblongus (Bukry, 1969) Crux, in Crux et al., 1982 Gaarderella granulifera Black, 1973 Gartnerago chiasta Varol, 1991 Gartnerago nanum Thierstein, 1974 Gartnerago praeobliquum Jakubowski, 1986 Gartnerago stenostaurion (Hill, 1976) Perch-Nielsen, 1984 Gartnerago theta (Black, in Black and Barnes, 1959) Jakubowski, 1986 Grantarhabdus coronadventis (Reinhardt, 1966a) Grün, in Grün and Allemann, 1975 Haqius circumradiatus (Stover, 1966) Roth, 1978 Hayesites albiensis Manivit, 1971 130 A.S. Gale et al. / Cretaceous Research 32 (2011) 59e130 Hayesites irregularis (Thierstein, in Roth and Thierstein, 1972) Applegate et al., in Covington and Wise, 1987 Helenea chiastia Worsley, 1971 Helicolithus compactus (Bukry, 1969) Varol and Girgis, 1994 Helicolithus leckiei Bown, 2005b Helicolithus trabeculatus (Górka, 1957) Verbeek, 1977 Hemipodorhabdus gorkae (Reinhardt, 1969) Grün, in Grün and Allemann, 1975 Laguncula dorotheae Black, 1971 Lapideacassis glans Black, 1971 Lapideacassis mariae Black, 1971 Lithraphidites carniolensis Deflandre, 1963 Loxolithus armilla (Black, 1959) Noël, 1965 Manivitella pemmatoidea (Deflandre, 1965) Thierstein, 1971 emend. Black, 1973 Nannoconus Kamptner, 1931 Nannoconus elongata Brönnimann, 1955 Nannoconus quadriangulus quadriangulus Deflandre and Deflandre, 1967 Nannoconus truittii Brönnimann, 1955 frequens Deres and Achéritéguy, 1980 Nannoconus truittii Brönnimann, 1955 rectangularis Deres and Achéritéguy, 1980 Nannoconus truittii Brönnimann, 1955 truittii Deres and Achéritéguy, 1980 Octocyclus reinhardtii (Bukry, 1969) Wind and Wise, in Wise and Wind, 1977 Orastrum Wind and Wise, in Wise and Wind, 1977 Orastrum perspicuum Varol, in Al-Rifaiy et al., 1990 Owenia Crux, 1991 Owenia dispar (Varol, in Al-Rifaiy et al., 1990) Bown, in Kennedy et al., 2000 Owenia hillii Crux, 1991 Owenia partitum (Varol, in Al-Rifaiy et al., 1990) Bown, in Kennedy et al., 2000 Percivalia fenestrata (Worsley, 1971) Wise, 1983 Pickelhaube furtiva (Roth, 1983) Applegate et al., in Covington and Wise, 1987 Prediscosphaera columnata (Stover, 1966) Perch-Nielsen, 1984 Prediscosphaera ponticula (Bukry, 1969) Perch-Nielsen, 1984 Prediscosphaera spinosa (Bramlette and Martini, 1964) Gartner, 1968 Radiolithus hollandicus Varol, 1992 Radiolithus orbiculatus (Forchheimer, 1972) Varol, 1992 Radiolithus planus Stover, 1966 Repagulum parvidentatum (Deflandre and Fert, 1954) Forchheimer, 1972 Retecapsa crenulata (Bramlette and Martini, 1964) Grün, 1975 Retecapsa surirella (Deflandre and Fert, 1954) Grün, in Grün and Allemann, 1975 Rhagodiscus achlyostaurion (Hill, 1976) Doeven, 1983 Rhagodiscus amplus Bown, 2005b Rhagodiscus angustus (Stradner, 1963) Reinhardt, 1971 Rhagodiscus asper (Stradner, 1966) Reinhardt, 1967 Rhagodiscus hamptonii Bown, in Kennedy et al., 2000 Rhagodiscus infinitus (Worsley,1971) Applegate et al., in Covington and Wise,1987 Rhagodiscus splendens (Deflandre, 1953) Verbeek, 1977 Rotelapillus laffettei (Noël, 1956) Noël, 1973 Scapholithus Deflandre in Deflandre and Fert, 1954 Seribiscutum primitivum (Thierstein, 1974) Filewicz et al., in Wise and Wind, 1977 Sollasites horticus (Stradner et al., 1966) Black, 1968 Staurolithites Caratini, 1963 Staurolithites angustus (Stover, 1966) Crux, 1991 Staurolithites crux (Deflandre and Fert, 1954) Caratini, 1963 Staurolithites gausorhethium (Hill, 1976) Varol and Girgis, 1994 Staurolithites glaber (Jeremiah, 1996) Burnett, 1998 Staurolithites mutterlosei Crux, 1989 Staurolithites rotatus Jeremiah, 1996 Staurolithites siesseri Bown, in Kennedy et al., 2000 Stoverius achylosus (Stover, 1966) Perch-Nielsen, 1986 Tegulalithus tesselatus (Stradner, in Stradner et al., 1968) Crux, 1986 Tegumentum stradneri Thierstein, in Roth and Thierstein, 1972 Tetrapodorhabdus coptensis Black, 1971 Tranolithus gabalus Stover, 1966 emend. Köthe, 1981 Tranolithus orionatus (Reinhardt, 1966) Reinhardt, 1966 Tranolithus praeorionatus Bown, in Kennedy et al., 2000 Tubodiscus burnettiae Bown, in Kennedy et al., 2000 Watznaueria barnesiae (Black, 1959) Perch-Nielsen, 1968 Watznaueria biporta Bukry, 1969 Watznaueria britannica (Stradner, 1963) Reinhardt, 1964 Watznaueria fossacincta (Black, 1971) Bown, 1989 Watznaueria manivitiae Bukry, 1973 Zeugrhabdotus burwellensis (Black, 1972) Burnett, 1998 Zeugrhabdotus clarus Bown, 2005b Zeugrhabdotus diplogrammus (Deflandre, in Deflandre and Fert, 1954) Burnett in Gale et al., 1996 Zeugrhabdotus embergeri (Noël, 1958) Perch-Nielsen, 1984 Zeugrhabdotus howei Bown in Kennedy et al., 2000 Zeugrhabdotus kerguelenensis Watkins, 1992 Zeugrhabdotus noeliae Rood et al., 1971 Zeugrhabdotus cf. P. fibuliformis (Reinhardt, 1964) Hoffmann, 1970 Zeugrhabdotus streetiae Bown, in Kennedy et al., 2000 Zeugrhabdotus xenotus (Stover, 1966) Burnett, in Gale et al., 1996