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(ABSTRACT) 

Box-Behnken designs are used to estimate parameters in a second-order response 

surface model (Box and Behnken, 1960). These designs are formed by combining ideas 

from incomplete block designs (BIBD or PBIBD) and factorial experiments, specifically 

2* full or 2*~! fractional factorials. 

In this dissertation, a more general mathematical formulation of the Box-Behnken 

method is provided, a general expression for the coefficient matrix in the least squares 

analysis for estimating the parameters in the second order model is derived, and the 

properties of Box-Behnken designs with respect to the estimability of all parameters in 

a second-order model are investigated when 2* full factorials are used. The results show 

that for all pure quadratic coefficients to be estimable, the PBIB(m) design has to be 

chosen such that its incidence matrix is of full rank, and for all mixed quadratic coeffi- 

cients to be estimable the PBIB(m) design has to be chosen such that the parameters 

Ay, A2,..., Am are all greater than zero. 

In order to reduce the number of experimental points the use of 2*-! fractional 

factorials instead of 2* full factorials is being considered. Of particular interest and im- 

portance are separate considerations of fractions of resolutions III], IV, and V. The



construction of Box-Behnken designs using such fractions is described and the properties 

of the designs concerning estimability of regression coefficients are investigated. Using 

designs obtained from resolution V factorials have the same properties as those using full 

factorials. Resolutions III and IV designs may lead to non-estimability of certain coef- 

ficients and to correlated estimators. 

The final topic is concerned with Box-Behnken designs in which treatments are 

applied to experimental units sequentially in time or space and in which there may exist 

a linear trend effect. For this situation, one wants to find appropriate run orders for 

obtaining a linear trend-free Box-Behnken design to remove a linear trend effect so that 

a simple technique, analysis of variance, instead of a more complicated technique, anal- 

ysis of covariance, to remove a linear trend effect can be used. Construction methods 

for linear trend-free Box-Behnken designs are introduced for different values of block size 

(for the underlying PBIB design) A. For k=2 or 3, it may not always be possible to find 

linear trend-free Box-Behnken designs. However, for k 2 4 linear trend-free Box- 

Behnken designs can always be constructed.
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Chapter 1. Introduction 

Response surface methodology is essentially a particular set of mathematical and 

statistical methods used by researchers to aid in the solution of certain types of problems 

which are pertinent to scientific or engineering processes (Myers, 1976). The response 

variable is the measured quantity whose value is assumed to be affected by changing the 

levels of the factors (or input variables) which are subject to the control of the exper- 

imenter. The response surface procedures are a collection involving experimental strat- 

egy, mathematical methods, and statistical inference which enable the experimenter to 

make an efficient empirical exploration of the system in which he is interested. Preceding 

statistical analysis using the regression method, the experiment must be designed, that 

is, the input variables must be selected, their values during the actual experimentation 

designated, and an appropriate model for analysis must be chosen. Generally, the model 

is fit by the method of least squares. The response surface analysis that follows the ex- 

perimental strategy revolves around (1) prediction of response values, (2) exploring the 

response surface in the region of the designated experiment, and (3) possibly finding 

conditions on the design variables that give rise to optimum response. The most fre- 

quently used approximating polynomial models are of degrees one and two. The general 
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form of a first-order model (i.e., models of degree one) in v input variables x, x2, ... , x, 

iS 

y 

y= Bo+ >, Bet é 

where y is a response variable, fo, B;(i=1,...,v) are unknown parameters, and ¢ is a 

random error term. The 2‘ factorial designs, fractional replicates of the 2‘ factorial de- 

signs, simplex designs, and Plackett-Burman designs are first-order designs. When the 

first-order model suffers from lack of fit arising from the existence of surface curvature, 

the first-order model is upgraded by adding higher-order terms to it. The next higher- 

order model is the second-order model 

v v > v 

y=Bot+ >, Bx + Y Bux + » Bipxixp + € (1.1) 
i=] i=1 if=1 

i<t 

where y is a response variable, fo, 6, Bu(i=1,...,v), Be i,” =1,...,v, i< i’) are un- 

known parameters. A design, by means of which observed values of the response are 

collected for estimating the parameters in the second-order model is called a second- 

order design. Experimental designs for fitting a second-order respone surface must in- 

volve at least three levels of each variable so that the coefficients in the model can be 

estimated. Examples of a second-order designs are a 3* factorial design, central com- 

posite designs, equiradial designs, hybrid designs, and so on. Second-order composite 

designs usually require five levels coded — a, —1,0, 1, a for each of the variables where 

a is a positive value. Circumstances occur, however, where second-order arrangements 

are required which must employ the smallest number of different levels, namely three. 

One useful class of such designs, which are economical with respect to the number of 
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runs required, is due to Box and Behnken (1960). Box-Behnken designs are formed by 

combining two level factorial designs with balanced incomplete block designs (BIBD) 

or partially balanced incomplete block designs (PBIBD) in a particular manner. Box and 

Behnken showed how to construct the designs, and illustrated the method with some 

useful designs of second order. In chapter 2 of this dissertation, we 

(i) provide a more general mathematical formulation of the Box-Behnken method, 

(ii) derive a general expression for the coefficient matrix in the least square analysis for 

estimating the parameters in model (1.1), and 

(iii) investigate the properties of Box-Behnken designs with respect to the estimability 

of all parameters in a second-order model when we use 2 full factorials. 

In chapter 3, we elucidate the properties of Box-Behnken designs using 2‘-! fractional 

factorials of resolutions III, IV, and V or higher instead of using full factorials. For each 

case, we obtain the coefficient matrix, and illuminate the properties of the estimators for 

the parameters in a second order model. And, we investigate the use of appropriate 

fractional factorials in Box-Behnken designs. Finally, in chapter 4, we consider the sit- 

uation in which the experiment using a Box-Behnken design is conducted sequentially, 

one run at a time, and a linear trend is assumed to exist over the experimental plots, i.e. 

over time. The adjustment of linear trend has been accomplished by the use of analysis 

of covariance in which covariate is a linear trend. The problem is that we face the 

complication of analysis of covariance in the presence of linear trend over plots. Instead 

of using analysis of covariance, we introduce linear trend-free (LTF) Box-Behnken de- 

signs to eliminate a linear trend as a solution for simplifying the method. That is, we 

show how to assign treatment combinations to experimental plots in a particular way in 

order to remove the linear trend. When the design is linear trend-free, we use an analysis 

of variance technique which is very simple. That is, sums of squares for the estimates 

of coefficients we are concerned with are calculated as though there were no linear trend, 
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sums of squares for the estimates of coefficients are calculated easily, variation due to 

the linear trend may be removed for the error sums of squares, and design efficiencies 

are increased. Depending on the block size k of PBIB designs, we consider two cases, for 

k=2 or 3 and for k > 4 to construct LTF Box-Behnken designs. Linear trend-free Box- 

Behnken designs may not always exist fork=2 or 3. Fork =>4, however, we can always 

find LTF Box-Behnken designs. 

Chapter 1. Introduction 4



Chapter 2. Properties of Box-Behnken designs 

2.1. Construction of Box-Behnken designs 

Box-Behnken designs (Box and Behnken, 1960) are a class of three-level incom- 

plete factorial designs for the estimation of parameters in a second-order response sur- 

face model. These designs are formed by combining two-level factorial designs with 

incomplete block designs in a particular manner. The method can be described as fol- 

lows: 

1. Consider a response surface design with v input variables x, ,...,x,. Use as an 

auxiliary design an incomplete block design with v treatments and b blocks of size 

k, characterized by incidence matrix of the incomplete block design (BIBD or 

PBIBD) N =(n,), with , = 1 if treatment i occurs in block j and n,; = 0 otherwise. 

2. Identify the v treatments with the v input variables. and consider the transpose of 

the incidence matrix N’. Each row of N’ contains k unity elements. 
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3. Suppose in the first row the unity elements occur in columns 4,h,...,4 ( 

l<i<h<--<k<v). Replace each of those k unity elements by column vectors 

F, (w= 1, 2,...,k). The elements of F, are either 1 or -1, and the F, ’s are chosen 

such that they are orthogonal to each other where the k factors correspond to the 

input variables numbered 4, h, ... , . The F, can be interpreted in two different ways; 

(i) If the levels of the factors in a 2‘ factorial are denoted by -1 and +1 and if the 

treatment combinations 2’, = (2,, Za, ... , Za) (i= 1, 2,...,2* =) are written in stand- 

ard order with z, = + 1, then 

Foy = (Ziws Zaws «+ + Z5w) 

(this is indeed the choice described by Box and Behnken (1960) ), 

(ii) each F, represents a vector of the coefficients defining main effects and inter- 

actions for the 2‘ factorial (there are 2 — 1 such vectors but only & are needed, for 

example the contrast vectors for A independent two-factor interactions as long as 

one two-factor interaction is not the generalized interaction of the other two-factor 

interactions). 

4. The v - K zeros in each row are replaced by 2* x 1 vectors of zeros. 

5. | This procedure is repeated for each row of N’ resulting in b2‘ experimental points, 

using the same vectors Fj, Fo, ... , F. 

6. Finally, m) center points are added with all elements being zeros to the b2* exper- 

imental points. 

If we denote by n the number of observations (runs), we get the Box-Behnken design 

matrix of size of n x v where m = b2* + m for a full factorial. The following example will 
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be used to illustrate how a Box-Behnken design can be constructed (see p.457 in Box and 

Behnken, 1960). 

Example 2.1 

Below is shown a transpose of the incidence matrix of a balanced incomplete block de- 

sign for v=4 treatments in b=6 blocks of size k=2. Each treatment appears r= 3 

times in the design, once with each of the other treatments (i.e. 4 = 1 ). 

o
O
 o

o —
 

—
 

oS
 

    
Since k = 2 we consider the 2? factorial design, the treatment combinations of which are 

assigned in standard order as follows: 

—] -l 

1 -1 
A= 

—| j 

1 1 

The contrast vectors for the main effects and two-factor interaction are given by 
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1 -l -l 
B= 

—1 1 -l 

1 1 1 

A three-level design in four variables (i.e. treatments) is then obtained by combining this 

incomplete bock design with the 2? factorial. The two 1’s in every row of the incomplete 

block design are replaced by either the k = 2 columns of the matrix A or any two col- 

umns of the matrix B. Wherever a 0 appears a column of zeros with size 2? x 1 is in- 

serted. The design is completed by the addition of a number ™ of center points (0, 0, 0, 

0), say m= 1 center point for this arrangement. The resulting three-level Box-Behnken 

design in four variables (x, x2, x3, Xs) is shown in Table 2.1 consists of the following 25 

points: 
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Table 2.1. Box-Behnken design for 4 input variables 

xy 
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> 
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-1   
Box and Behnken (1960) _ listed 
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m
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m
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C
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C
O
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C
D
C
 

si—
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 D
D 

—_
 

—1 

—1 

—1 

go 
85
 

Oo 
2
 

8&8 

a 

  

x3 %& 

0 0 

0 0 

0 0 

0 O 

-1 -1 

1 -1 

-1 1 

1 1 

0 -1 

0 -1 

0 1 

0 1 

-1 0 

-1 0 

1 0 

1 0 

0 -1 

0 -1 

0 1 

0 1 

~1 0 

-1 0 

1 0 

1 0 

0 0 

number 

v = 3,4, 5, 6, 7,9, 10, 11, 12 and 16 variables. 
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2.2. Box-Behnken design matrix 

In order to discuss some of the properties of Box-Behnken designs in general terms 

it is useful to introduce the following notation and definitions. 

Definition 2.1. The vector-valued transformation @ defined on { 0, I } into the set of 

2* x 1 vectors is given by 

Di = O(n;;) = NyLwyp 

where W(j,i) = m+ Mp+ + + my, With w taking the values 0,1,... ,k, and Fyj.) is as defined 

in Section 2.1, and /,’ = (1, 1,..., 1). 

Definition 2.2. Let g’ = (gi, g,...,g,)andh’ =(h, hy, ...,h,) bel xs vectors. The 

element-wise multiplication of g and h, denoted by goh , is given by the sx 1 vector 

goh = (gihy, gohv, ... , Zhe)’ 

The design matrix D of the Box-Behnken design consists of two parts, one gener- 

ated by the incomplete block design and the 2‘ factorial as described in Section 2.1, and 

the other consisting of center points. We write this as 

D= (2.1) 

Using the notation of Definition 2.1. we have 
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On G2 +--+ Pry My Ew,1) ME wt 2) sons 1 Ew, v) 

21 $22 - Pry Ny £y2,1) NF W2,2) sons NEw, v) 

D =(¢)= = (2.2) 

Gor Ppa Poy NL w,1) Nort w(b,2) sons Nove ewis, » |       
consisting of 52‘ design points. The matrix 0,5... = (Qno, Ono) «++ » Ong) represents m > 0 center 

points. We now write the design matrix as D = ( xi,%,..,x, ) Where 

x = (mEwaa’s Maik vay » ore 9 vbw.’ s Ono’) isa 1 x (b2* + Mo) vector. 

2.3. Second-order model 

Consider the second degree polynomial model 

yu = Bo + » BiXin + » Birk + » Bir XuXru + Eu, u= 1,2, vy (2.3) 

f=1 i=] Liv =1 

i<? 

where y, iS a response variable, fo, 8, 8: and £8, are unknown parameters with 

i,’ =1,2,...,¢ i</ , and e, is an unknown and unobservable random error with mean 

0 and variance o?. In matrix notation, we can write (2.3) as 

Y=XBt+eE 
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where Y is ann x | observation vector, X is ann x p known matrix, f 1s a p x 1 vector 

of parameters, and ¢ is an ax 1 vector of unknown and unobservable random errors 

with mean Q and variance o7/,,,. Here, p=1+2v+v(v—1)/2, 

2 2 2 
X= (1,, X yy XQ. vee y Kyy Hy 9 XQ gy vee y My » XN, XjX3, --. y My 1X,) (2.4) 

where lL, is an m x 1 vector of unity elements, x? = xox, xX; = XOx;, and 

B = (Bo, Bi, Bo, srry By, Bir, Boa, one Bays Bia, Bi3, vee B, ~1,v) (2.5) 

2.4. The coefficient matrix 

For the second-order model (2.3), the X matrix in (2.4) can be partitioned as 

X= (1, xX; Xx; X3) 

where X,, X, are nx v matrices, and X; is an n x v(v —1)/2 matrix. The coefficient vector 

B in (2.5) is partioned correspondingly as 

B’ = (Bo, By’, Bo’, Bs’) 

where f;, 82 are vx 1 vectors, representing first and pure quadratic regression coeffi- 

cients respectively, and f; is a v(v —1)/2 x 1 vector, representing the mixed quadratic re- 

gression coefficients. We then rewrite model (2.3) in the partitioned form as 

Y= 1By + XB; + X48. + X3B3 +8 (2.6) 

The properties of the design are determined essentially by the properties of the coeffi- 

cient matrix of the normal equations for the model (2.6). This matrix is given by 

Chapter 2. Properties of Box-Behnken designs 12



n VX, VX, VX | 

XL XX, XX> XX, 
XX = 

Xol1 Xy'X, Xq'X_ Xy'X; 

Xy'1 Xy'X, Xy'X_ Xq'X;y     
It is proved in Section 2.5 that for a Box-Behnken design constructed by using a PBIB 

design with m associate classes, denoted by PBIB(m), X’X has the following form 

    

n Q’ r2* 1! 0’ 

0 rr Oo 0 
XX=| | ' (2.7) 

21 0 2(NN’) 0 

0 O 0 G 

In (2.7), the form of the matrix G can be described as follows: If we label the rows and 

columns of G by ( i’ )(i,? =1,2,..,v,i< i ) , and the general element of G by 

Brie ims then 

Bu, = A,2* if treatments i and 7 are y -th associates (l<y<m) 

and 

Sricin =O if( i’) # (i”i” ), Le. all off-diagonal elements are zero. So, given 

the values of parameters (v, r, b, k, Ai, Aa, ..., Am) of the incomplete block design PBIB(m), 

and the structure of the incidence matrix, we can derive the X’X matrix of the second- 

order model which contains information about the estimability of the parameters in the 

second order model (see Section 2.5 for discussion on the estimability). 

Chapter 2. Properties of Box-Behnken designs 13



2.5. Derivation of the coefficient matrix 

We first list some properties of the factorial structure and of PBIB(m) de- 
signs which will be used to obtain the general form of X'X 

Property 1. For the 2* x 1 vectors, F,,w = 1,2,...,k, introduced in 
Section 2.1, we have 

(1) Fu o Fy = 

(2) FL Py = 
(3) Loe - Fu = 

(4) Lye + (Fu o Fw) 
(5) Loe - (Fu o Fw) 

(6) Fy, «(Fur 0 Fun) 
(7) (Fu 0 Fur)! Fun 0 Fu) = 

ok 

0 

all w 

wu’ 
all w 

all w 

w x w’ 
all w, w’, w” 
w= w’, w" _ wi" orw= w", w’' _ aw" 

otherwise 

where 1» is a 2* x 1 vector of unity elements, 0 is a 2* x 1 vector of zeros. 

Property 2. For the PBIB(m) design with 7 = 1,2,...,6, 2 = 1,2,...,yv 

and parameters (v,6,r,k,1,...,Am) , the elements of N’ = (n;;) satisfy 

b b 

(1) Dong = do*ny =r 
=1 j=1 j 

b b 
(2) So njinjy = Do *njnje =A, if i,v’ are 7" associates 

= j=l 
b 

where the )_ * notation denotes summation over non-zero elements (this 
j=l 

notation will be useful later; see property 3). 

In what follows we need to sum over terms like (nj,Fucj,))'(nj# Fug) OF 
b 

(25: Fugjay) (N57 Fuga 0 30 FwG,iy)s* ++, 80 on. By introducing the }_ * no- 
j=l 

tation, (see above), we exclude terms in which at least one of the n,,; - terms 
is zero. This simplifies the computation of the different parts of X’X, be- 
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cause we can take advantage of the following 
Property 3. 

b b 
(1) 5} * is equivalent to > 

j=1 j=l 

(2) w(j,2) takes values 7 = 1,2,---,k, greater than zero. 
(3) w(j,2) is less than w’ = w(j,2’) when 7 < 2’ since nj;; appearing in 

b 
> “ must be one. 
j=1 

Using the notation introduced in Sections 2.2 and 2.3 we now write X’X 
as 

  

1. UX, UX, UXs 
X'X = Xil XjX1 XyX2 X {Xz 

Xgl XjX, X4X_. XUX3 

Xal X3X1 X3X2. X3X3 

La 1's, see 1's 1(z, °21) aes 1(s,0z,) 1'(e,°22) _ Lheeieey _ 

Z41 242) 2i2¢ zi(z,°%)) . £4(2,°2,) zi(e,°29) » ley ez)) 

  

Kz, 02,)'1 (z1 02,)'z) tes (z; oz3)'z, (£1 02;)'(z, 02) «.. (z, oz,)(z, oz.) (xz; oz,)'(z; ©z2) ore (x, oz ween ©z,) 
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(e,02,)'1 (zp0z,)'z1 ++» (epo2g)'Zg] (eee2,)e, 021) --. (zy 024)'(z¢0%,)| (egoz,)'(z19%2) --- (y024)(z 4-1 02)) 

21°22) (21°z%2)'z1 --- (£10z9)'s, (2) °z)'(z,02z;) ... (=, °29)'(z,ez,)] (2: °2z9)'(zy025) «.. (£1 °2z9)(z,.°2,) 

Ee oz,4)'1 (24-1 °2,)'2} see (z 9-4 = 2)'2y (ze. ©z,)'(z1°2}) eee (Z¢.4 oz,)'(z,°2;) (Z¢-1 oz,)'(z, 024) wee (24-4 05) (Z4-1 oz,)   

15



Then, making use of property 1, property 2, and property 3, we obtain 

the following expressions for the various section of the X’X matrix: 

(a) 14 

11 = b2*+np=n 

(b) 1X, 

b b 

Ve, = DU (nj Fuga) = onal: Fug) = 90 allt 
j=l j=1 

(c) 1X, 
b 

U(zior) = DOL: (np Fug oniFuyay) alli 
j=l 

b 

= So *nynj (ll (Fug. ° Fuga) 
j=l 

b 

= So*nj(11) = r2* 
j=l 

(d) 1X3 
b 

l'(2; ° Zr) = yo . (25: Fw(5,2) O N54 w( j,i") ) 1, v= 1,2, 220 VY, ~< 2 

j=l 

b 
* i 

= So tnjinje[l!- (Fug ° Fug) 
j=l 

b 

= So'njinjo[l'- (Fo Fy))=0 w<w' 
j=l 

(e) XiX1 

For 71 =12' (diagonal elements) 

b 
(tit;) = Yo (niFugay) (ni Fuga) t= 1,2,...,7 

j=l 

b 

= > *njingi( Fug.) , Fu(j,)) 

j=l 
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>
 

= Do 'ni(F, F,) = r2* 
j= 

For 142’ (off-diagonal elements) 

b 

(x;zi) = (nik w(j,t) )'(n52 Fos) 1,27 = 1,2,...,y, Zi 

"1 jiT ji" (FY w(j,i) Foi’) 

Il 

wR
, iM 

3 
—_
 

b 

= Dornjiny(F,- Fu) =0 wAw' 
j=l 

It follows that (X/X,) =r2*- Ly, . 

(f) X,X2 

2; (zy © zjr) = So (25 Fu(jay)! (rege w(j,") O N54 w(i,i")) all 2, i! 

j=l 

= > “nine [Pag * Fug 0 Fug) 
j=l 

= Snell (Fy o Fy)}=0 all w, w! 

(g) X,X3 

b 

ti(teorm) = SO(n Fuga) (ne Fugen 0 nj Fugen) 10,0" = 1,2,..., 
j=l 

= > *njinjonjin[Fy, w(j, i)" (Fug. ') oO Fug, iy) 

j=l 

= = njinjnjin[Fy, (fF wi O F wv") | = = 0 w' < we 

j=l 

(h) X2X2 

' Chapter 2. Properties of Box-Behnken designs 
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For 2 =12! 

6 

(x, 02,)'(ti02;)) = SO(n Fuga oni Fuga) (ni Fog oN Fugay) alli 
j=l 

b 
* 4 

= Do *njinji( Fug.) ° Fug)’ (Fuga) ° Fuga) 
j=l 

b 

= So*nji(Fu °o Fy)'(Fu ° Fu) 
j=1 

b 

= 2m ji(1'- 1) = r2* 

For 147 

b 
/ (2,02,)(tvozy) = Di (nj Fug ong Fugay) (nye Fugen © 25 FwG,0) j=l 

b 

= Do nyinjr(Fy o Fo)'(Fur 0 Fur) 
j=l 

b 
= Y'njynj(ll-1) = 2,2" i, i’ 7"*associates 

j=l 

It follows that X53 X29 = 2*(I + A,B, + AoB, tore t AmBm) = 2*( NN‘) ; 

where B, is the 7“ association matrix of size v x v 

(i) X2Xz 
b 

(xj 0 2i)'(tvomm) = Soni Fug, 0 ri Fuuay) (rir Fugan 0 rg Fugaen) <i 
j=l 

b 

= > “ning njin( Fy 0 Fw) (Fut 0 Fur) w' < we 

j=l 
b 

= Do *njinjonsen[ll- (Fu 0 Fu) = 0 
j=l 

(j) X3X3 

Chapter 2. Properties of Box-Behnken designs 
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For i=72", 2! =" (diagonal elements) 

b 

(xp0 zy)'(xgoav) = DU(ngi Fuga) ori Pugin) (ni Fuga 0 DFG) t<t 
j=1 

b 
= > *njingi (Py oO Fw)'(Fu ° Fu) w<w’ 

j=1 

b 
= So *njinju(2*) = \2* i, i associates 

j=1 

For 7472” or 142” ( off-diagonal elements g 

b 
“W / 4 ° °f 

(xi 0 xi)'(zmo am) = Di (niiFugiiy 0 ri Pugin) (nae Fuciiy 0 Di Fuga) <7, < 
j=l 

b 

= » “nn; ynjnjen( Fy oO Fy)’ (Fon oO Fy) w< w’, w" < we 

j=l 

= 0 

Now, let X3X3 = G. Then G is a diagonal matrix with (72’, 722’) element 
equal to \2* if ¢ and 2! are y** associates, and zero for all off-diagonal ele- 

ments. 

The results (a) - (j) lead then to the form of X'X as given in (2.7). Because 
the notation is somewhat complex we illustrate the general derivation given 

above by an example. Consider the Box-Behnken design using the PBIB(2) 

design with parameters, vy = 6, r= 2, b= 3, k = 4, Ay = 2, A. = 1 and 

treatment pairs (1,4), (2,5), and (3,6) being first associates with 4; = 2 and 
the remaining treatment pairs being second associates with Az = 1. This 
PBIB design has incidence matrix 

lI 

O
r
 

KF 
O
F
 

KP
 
O
r
R
r
F
 

O
r
 

e
o
 

a
 

a
o
)
 

(see Design S1 of Clatworthy, 1973). 
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Then, 

N'= 
110411 0 

103131041 

01104141 

  

From this, the design matrix D with 3 center points can be obtained as 
follows: 

D = (21, 22,°**, Zv) 

21 Fy1) 212 F (1,2) 0 74 Fw(1,4) 215 Fw(1,5) 0 

_ | 21 F w(2,1) 0 No3F w(2,3) N24 F(2,4) 0 noo f, w/(2,6) 

0 n32F, w(3,2) n33 fF, w(3,3) 0 nas Fi, w(3,5) n3eF w(3,6) 

O3 Os Os 03 Os O3 

where z; is a (3-24 +3) x 1 vector, i =1,2,---,v 

Now, consider riz, when 2 = 2, 2’ = 5. 

3 

rg°5 = Y_(Nj2F u(j,2))'(rjsFu(s,5)) + 0303 
j=l 

= (m12Fu2))(misFucs)) + (M22 Fo(2,2))'(m25 Fu(2,s)) + (32 Fw(a,2)) (nasFwi3,s)) 

= (mF vqa,2))'(m5Fu(,s)) + 0'0 + (n32Fua,2))' (ras Fussy) 

= myomis( Fo Fs) + n32n35(F) Fs) 

= 1x(0)+1-x (0) 

= 0 

Then, conditions (1), (2) and (3) of property 3 are satisfied since 

3 ' 

> *(njoFuj,2)) (2735 Fw,5)) = (n2Fw1,2)) (15 Fwcas)) +(r32Fu(3,2)) (r35Fu(3,5)) 

jl 

and 

w(1,2) =nit+ni2 = 2 w(1,5) =n +ni2tniatnris = 4 
w(3, 2) = N32 = 1 w(3, 5) = N32 + 1233 + N35 = 3 

b 
which implies that all w(j,i) appearing in )_* are greater than zero. And 

j=l 
w(1,2) is less than w(1,5), And w(3,2) is less than w(3,5) which implies 
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b 
that w(j,2) is less than w(j,5) in 5 >*. 

j=l 

Let us consider now z,z, when 2 = 1, # = 3. 

3 

Ti°23 = 22 (mit Fagan) (msaFuisa)) + 0303 

= (ni Fwyr3y)’ » + (21 Faya1y)/ (223 Fw(2,3)) + 0'(n33-Fu(3,3)) 

= (n21 Fw2,1)) (M23 Fw(2,3)) 

= FF, =0 

Also conditions (1), (2) and (3) of Property 3 are satisfied, since 

3 
Xu “( (nj1 Fu)’ (njaFuG,3)) = = (na Fu, 1))’ (n23 Fuca, 3)) = = Fy Fy 

and 

w(2,1)=ny=1 w(2,3) = no + n23 = 2 
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2.6. Estimation of parameters 

We now consider estimability of the regression coefficients in model (2.6). For 

purposes of this discussion we define f°. = (Bo, Bu, Bu, ..., Bw). Clearly, we can see from 

(2.7) that the estimates of the parameters f, are orthogonal to both the estimates of ’, 

and to the estimates of the parameters f; , and the estimates of f°, are also orthogonal 

to the estimates of the parameters f; in the second-order model. 

Concerning the estimators for these three sets of parameters we can draw the following 

conclusions: 

(i) X’,X; is of full rank v since rank ( J,,, ) = v. Accordingly, we get uniformly minimum 

variance unbiased estimators (UMVUE) for £, , namely Bi = (X'X) MY. 

(11) The rank of X,'X, is less than or equal to v , say s, since rank ( NN’ ) = s <v. This 

implies that we have s estimable functions among fu, Bu, ..., 8. For a given PBIB(m) 

design the rank of NN’ can be determined easily from general results about the charac- 

teristic roots of NN’ (see for example, Raghavarao, 1971). Of course, only if rank 

(NN’) = v can all Bi = 1, 2,..., v) be estimated. 

(111) Now we consider the estimates of the coefficients By , i,’ =1,2,...,v,i< i. For 

the PBIB(m) design we have A,>0 (y=1,2,...,m) with at least one 1,>0. If all 

A, > 0 it is obvious that X3’X3 is of full rank v(v —1)/2 since then rank (G) = v(v —1)/2. 

As a result, we obtain the UMVU estimator of £3 such that Bs = (X4'X3)-1X3'Y , which 

implies that all £, are estimable, i,’ =1,2,...,v,i< i’ . If A,;=0 then all elements 

Zi, ie = 0 corresponding to those treatments i, 7’ which are 6 -th associates, which implies 

that the corresponding parameters f,, are not estimable. 
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2.7. Example 

Consider the Box-Behnken design with the cyclic PBIB(2) characterized by the 

parameters v= 5,r=2,b=5,k =2,/1, =1,/A,=0, and the following association scheme 

.aSS lassoc. 2.assoc. 

] 3,4 2,5 

2 4,5 3,1 

3 5, 1 4,2 

4 1,2 5,3 

5 2,3 1,4 

( Design Cl in Clatworthy, 1973 ) 

with the following incidence matrix WN and its transpose NV’ : 

f10010) [10100 
01001 010410 

w=|10100], we=loo101 
01010 10010 
soo101 | so1 001         

Then we get the following design matrix with m = 3 
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Fo09&® O 

0F 0 £& Q 

00, OLE 
D= 

fFraggds Q 

0Ff 29 OF 

0; 0; 0; 03 Q,   
where £, is a 4x 1 vector with elements of +1 and-1,w = 1,2 witheg., A’ = (1, 

1,-1,-1),B’ = (1,-1,1,-1), Q0isa4x 1 vector of elements being zeros, and Q; is a 

3 x 1 vector of elements being zeros. 

Then, for the model 

5 5 5 

Yu = By + » BiXiy + » Bit + » Bi XnXiyt ey u=1,2,...,23, 
i=] i=1 i=) 

i<f 

We have 
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Bo By, Bz B3 By Bs Biy Bar B33 Bag Bss Bi2 Biz Bia Bis Box Bra Bas Bsa Bas Bas 

2310 0 0 0 078 8 8 8 8]/0 0 0 0 0 0 0 0 90 9 

018 0000/0 0 0 0 0;/0 0 0 0 0 0 O O QO 

010 8 00 0/]0 0 0 0 0 ];,0 0 0 0 0 0 0 0 0 90 

010 0 8 0 0/0 0 0 0 0;]0 0 0 0 0 0 0 0 0 0 

010 00 8 01/0 0 0 0 9010 0 0 90 0 0 0 0 0 0 

6;0 0 00 8;0 0 0 0 0;0 0 0 0 0 0 90 0 90 0 

810 0 0 00;8 0 4 4 0];90 0 0 0 0 0 0 0 0 0 

810 00 0 0;0 8 0 4 4],0 0 90 0 0 0 90 0 90. 90 

8/0 00 00 ]4 0 8 0 4];0 0 0 0 0 0 0 0 0 90 

8/0 00 00/4 4 0 8 0;0 0 0 0 0 0 0 0 0 90 

axe 8/0 0 0 0 0;0 4 4 0 8,0 0 0 0 90 90 0 0 0 90 

0/0 00 00j;0 0 0 0 0 ;0 0 0 0 0 0 0 0 90 90 

0/0 0 0 0 0/];0 0 0 0 0/70 4 0 0 0 0 0 0 0 0 

010 000<0/]0 0 0 0 0/0 0 4 0 0 0 0 0 0 0 

0/0 0000 ];0 0 0 0 0 ;0 0 0 0 0 0 0 0 0 90 

01/0 00 0 0];0 0 0 0 0;060 0 0 0 0 0 0 0 0 0 

010 00 00j;0 0 0 0 0 ;7;0 0 0 90 0 4 0 0 0 90 

0/0 0000;0 0 0 0 0/;0 0 0 0 0 0 4 0 0 90 

01/0 000 0/;0 0 0 0 0;0 0 0 0 0 0 90 0 90 9D 

0/0 000 0;0 0 0 0 0 ];0 0 060 0 0 0 0 0 4 JQ 

010 0000;0 0 0 0 0 ;0 0 0 0 0 0 0 0 0 90   
The form of X’X implies immediately that all pure quadratic coefficients are estimable 

since rank (VN’)=5 and the mixed quadratic coefficients fis, Bia, Br, Bos, and Bss are 

estimable, but B12, Bis, Bas, Bus, and B43 are not estimable. 
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2.8. Conclusions 

In deriving the general form of the coefficient matrix X’X of the normal equations 

for estimating the parameters of model (2.3) with a Box-Behnken design we have estab- 

lished the following results: 

(i) For all B, to be estimable the PBIB(m) design has to be chosen such that rank 

(NN") =v; 

(1i) For all By (i< 7’) to be estimable the PBIB(m) design has to be chosen such that all 

A,>0(y =1, 2,..., m). 
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Chapter 3. Box-Behnken designs using fractional 

factorials 

One practical difficulty with the Box-Behnken design, using an incomplete block 

design together with the full 2‘ factorial, is that the number of design points increases 

rapidly as k, the block size increases. Instead of using a full factorial, Box and Behnken 

(1960) advocate using a fractional factorial, say a = th fraction of the 2‘ factorial, hence 

reducing the number of design points from 62‘ + 1 to b2*-'+ 1. Box-Behnken designs 

using fractional factorials are constructed by combining incomplete block designs with 

2*-' fractional factorials. The procedure of constructing such Box-Behnken design is 

essentially the same as that described in Chapter 2, that is by means of & generators 

F,, F2,..., F, . The problem of choosing these generators depends on the resolution of 

the 2*-! fraction. Generally speaking, we choose fF, f,..., &—, as the first k —/ main 

effect contrasts of the 2‘-’ factorial. The remaining F’s, 1.e. Fyea1, Fe-isa,-. » Fe are 

obtained by appropriate (to be described in subsequent sections) element-wise multipli- 

cation of Fi, fo,..., F,-,. It will be shown that the F ’s obtained in this way satisfy the 
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properties given in Chapter 2. We now explore the possibilities of constructing Box- 

Behnken designs using fractional factorials of resolution III, IV, and V. 

3.1. Resolution III Case 

We first consider the smallest fraction which is a main effect plan or resolution III 

design. The basic property of a resolution III design is that main effects are confounded 

with two-factor interactions. The main effect plan is obtained by specifying the so-called 

identity relationship. For the 2*-',, we have 

[= E,=£,=--=E,= all possible generalized interactions 

where each of the terms &,, £,... consists of at least 3 letters. The E ’s refer to inter- 

actions for the 2’ factorial. Now, to choose the generators Fi, F,..., F, for the Box- 

Behnken design we choose for F, f:,..., Fj, the first kK—/ main effect contrasts 

F,, F2,..., F,-, for the 2*-! factorial. The remaining F,_;41, F—142, ..., F, are determined 

by the alias structure given by the defining relation. More specifically, the E; ’s represent 

interactions of the 2* factorial, represented by, say, F,,oF,,0F, , etc. Then we take each 

Of Fyei4i, Fe-isa,, Fy, aS one of alias of the main effects Fy_)41, Fe-s42, 5, Fe , Te 

spectively. A consequence of this is that (6) and (7) of Property 1 (see Section 2.5) do 

not hold, 1.. we have for some w,w',w”,w” that F,=F,oF,- and hence 

F, «(F,oF,-)#0 , and (FoF ,)' «(F,-oF,-) #0 . Consequently, the elements of 

X;'X3 are no longer 0 and the off-diagonal elements of X3'X3 are not 0. In this case, we 

can write X’X as follows: 
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XX = (3.1) 

    
where K now is not a 0 matrix and G is not a diagonal matrix. This form of the XX 

matrix tells us then that the estimates of f°. = (fo, B2')’ are orthogonal to the estimates 

of (B,’, B3’)’. Thus, using a resolution III design instead of the full factorial does alter the 

properties of the estimators in the sense that Bi and Bs are no longer uncorrelated, and 

the Bili <i’) are no longer uncorrelated. Now, we illustrate the construction of a Box- 

Behnken design using a resolution III fraction in example 3.1. 

Example 3.1. 

Consider the Box-Behnken design using a resolution JII design with the PBIB(2) 

based on a Regular group divisible association scheme, with parameters 

v=8,r=5,b=8,k=5, A, =2, A. = 3, and the following association scheme 
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Q.assoc. l.assoc. 2.ASSOC. 

I 3 2, 3, 4, 6, 7, 8 

2 6 3, 4,5, 7, 8, 1 

3 7 4,5, 6, 8, 1,2 

4 8 5, 6, 7, 1, 2, 3 

3 ] 6, 7, 8, 2, 3,4 

6 2 7, 8, 1,3, 4, 5 

7 3 8,1, 2,4, 5,6 

8 4 1, 2, 3, 5, 6,7 

( Design R134 in Clatworthy, 1973 ) 

with the following incidence matrix N and its transpose N’ : 

        

1001414110 10111100 

01001111 010114110 

10100111 001011411 

11010011 10010111 
N= , N= 

111031001 11001011 

111104100 11100101 

011131010 11110041 0 

001111041 01111001 

For the 25-7), fractional factorial, we specify the identity relationship as 

I= Fioofok, = fioksoks = ofsofofs . To obtain the generators fi, £, ..., s, we choose 

for Fi, B, & the first 3 main effect contrasts F,, F2, 3; for the 2°-? factorial. The re- 

maining [,, fs; are determined by the defining relation given by F4,£'s such that 
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a= FoF. Fs =F i0F3, respectively. These main effect contrasts can be written spe- 

cifically ass Fy’ =(—1,1,-1,1,-1,1,-1,1), &’ =(-1,-1,1,1,-1,-1,1, )), 

Fy =(-1,-1,-1,-1, 1,1, 1, 1). Thus, F, =(1,-1,-1, 1,1, -1, -1, 1), and 

F' = (1,-1,1,-1,—-1,1,—1, 1). Also for w=4,w'=1,w” =2, KF’ ¢(Fiok)= FF, = 8 

, not 0. Similarly, for w=2,w=3,w” =4,w” =5, 

(F,0F3)’ « (FioFs) = (Fi0F3)’ * (FioF,ofiofs) = (FoF)' «(Fooks) = 8 , again not 0. In order 

to obtain the Box-Behnken design matrix, we replace the first 3 unity elements of each 

row by the main effect contrasts F; (i= 1,2,3) of the 2° factorial. We replace the re- 

maining 2 unity elements of each row by F., F's; Then we obtain a Box-Behnken design 

matrix using fractional factorial of resolution III, i.e., 25-?,,, , adding 3 center point 

£ 0 £ fF; Ey Es 0 0 
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where Q is a 8 x 1 vector of elements being zeros. 

Then, for the model 

8 8 8 
2 

Yu = Bot » By t »; Bitty” + » BirXnXpy + by u=1,2,..., 67, 
i=1 i=l i=l 

i<f 
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~12 

~13 

X14 

*15 

~16 

X17 

~i8 

~23 

X24 

X25 

X26 

%27 

~28 

X34 

X35 

X36 

*37 

~38 

45 

X78 

From the X’X matrix, we can see that the estimates of f°: = (Bo, Bu, Bu, ... 

  

X12 X13 Xyqg X15 X16 X17 X19 %23 %2q X25 X26 X27 X29 %3q X35 %36 %37 %3Q X45 
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24 0 0 O 

0 0 24 0 9 

0 0 O 16 OD 

0 0 0 O 24 

0 0 0 0 0 

0 0 0 O OD 

0 0 0 0 9 

0 0 0 0 9O 

0 0 0 0 90 

0 0 0 0 0 

0 0 0 0 90 

0 0 60 0 0 
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orthogonal to the estimates of (f;’, B3’)’ = (Bi, Ba, ... , Bey Biz, Bis, --. » Bra). However, Bs and 

f3; are no longer uncorrelated since K is not 0 matrix. In G, some of off-diagonal ele- 
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ments are not 0. For example, gu,3 , defined as the element of row x» and column x3 

in G, is not 0, because the vector for xy is given’ by 

x2,0X%, = (0, i, 0, 0, 0, 0, bE, Fis, 03)’, and the vector for x is given by 

x30x, = (0, 0, AiR, 0, 0, 0, A, 0, 03)’, £04,397 then 1S obtained by 

82,37 = (X24)' (2X37) = (B)'(EB) = (BAB) = (BEB) = F'Ri=8. Thus the estimates of 

mixed quadratic coefficients £,, i, i’ = 1,2,...,8, i< i’, are no longer uncorrelated each 

other. 

3.2. Resolution IV Case 

Next we consider using a resolution IV design, in which two-factor interactions are 

confounded with each other. For the 2‘-/;y we have the identity relationship 

[= E,=E,=-- = E,= all possible generalized interactions 

where each of the terms £,, E;,... consists of at least 4 letters. The £, ’s refer to inter- 

actions for the 2‘ factorial, represented by, say, F,,0F,,0F,,0F,, , etc. The procedure for 

choosing the generators Fi, F;,..., F, for the Box-Behnken design is the same as that for 

the resolution III case. That is, we choose for Fi, fy, ..., F,-, the first k —/ main effect 

contrasts Fy, F2,..., Fy, for the 2*-/ factorial. The remaining F,_).;, Fy_i+2,.-., /% are 

determined by the alias structure given by the defining relation. Then we regard each 

Of Pyeisa, Fe-taa, 5, Fy as alias of the main effects Fy_143, Fy-ia2,..., Fe , respectively. 

A consequence of this is that (7) of Property 1 (see Section 2.5) does not hold, i.e. we 

have for some w,w’,w” ,w”™ that (F,oF,)' «(F,-oF,-) #0. For example, we con- 

sider 24-',,, 1.e. the fractional factorials of resolution 1V with 3 contrast vectors for main 

effects F,, Ff; and F; which are orthogonal to each other, and F, being aliased with three- 
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factor interaction F,oF,0F;. These main effect contrasts can be written as 

F/ =(-1,1,-1,1,-1, 1,—1, )), EB’ =(-1,-1, 1, 1,-1,-1, 1, 1), 

FY =(-1,-1,-1,-1,1,1,1,), and = F! =(Rohoh) =(-1,1,1,-1, 1,-1, -1, 1). 

Thus for w=l,w=2,w” =3,w” =4, 

(FioF,)’ « (Fr0oFs) = (Fiohy)’ « (FyoFhiofnoFs) = (hioF)’ «(Fiof;) = 8 is not 0, which implies 

that the off-diagonal elements of X3'X3 are no longer 0 (see (/) X’3.X3 in Section 2.4). In 

this case, we can get an X’X matrix similar to (2.7): 

n Q’ rey Q’ 

io
 

™“
 
i
 a
 | 

—
 Oo Oo 

XX = (3.2) 

IS
 

o o a     
except that G is not a diagonal matrix. 

From the form of the X”’X matrix we can see that the estimates of f, and £2 have the 

same properties as those with the full factorial. But the estimates of the mixed quadratic 

coefficients 2; do not have the same property as those with the full factorial since G is 

no longer diagonal. In addition, for some PBIB designs some columns of G can be a 

linear combination of other columns with the result that G is less than full rank (Table 

3.1). This means that for some Box-Behnken designs even when all 1, >0 we may not 

be able to estimate all mixed quadratic coefficients. Thus it may not be advisible to use 

a resolution IV design. But for some Box-Behnken designs with PBIB(2) when 4, >0, 

A2>0, Gis of full rank (Table 3.2). Then we can estimate all mixed quadratic coeffi- 

cients such that Bs = G"'(X3'Y) , which implies that all mixed quadratic coefficients are 

estimable. In these cases the number of observations can be reduced greatly by making 

use of fractional factorials. 
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Table 3.1. PBIB(2) designs in which G is of less than full rank 

DesignNo. trk b Ady Ay 

SR35 6649 3 4 

R94 6446 3 2 

733 1004410 1 2 

LS26 9449 1 2 

S18 8 36 4 3 2 

T57 100365 3 1 

S53 1228 3 2 1 

Table 3.2. PBIB(2) designs in which G is of full rank 

DesignNo. t rk b Ad, A, 

SR65 9669 3 4 

LS72 9 466 3 2 

771 107710 5 4 

R172 9 779 6 5 

S351 1048 5 4 3 

R186 12 8 8 12 6 5 

It does not appear from the Table 3.1 and Table 3.2 that the property of G, i.e. whether 

it is of full rank or not, is associated with any particular type of PBIB(2) design having 

A,>0 and A> 0. 

Example 3.2. 
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Consider the Box-Behnken design using a resolution IV design with the PBIB(2) 

based on a 

v=9,r=4,b=6,k =6, A, = 3, A, = 2, and the following association scheme 

( Design LS72 in Clatworthy, 1973 ) 

Latin Square 

] 

2 

3 

O.assoc. 

type 

L.assoc. 

2,3,4,7 

1,3,5,8 

1, 2, 6,9 

1,5, 6,7 

2, 4, 6, 8 

3,4, 5,9 

1,4, 8,9 

2,5,7,9 

3, 6, 7,8 

association 

ASSOC. 

5, 6, 8,9 

4,6,7,9 

4,5,7,8 

2,3, 8,9 

1,3,7,9 

1,2,7,8 

2,3, 5,6 

1,3, 4, 6 

1,2,4,5 

with the following incidence matrix N and its transpose JN’ : 
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For the 2°-2,, fractional factorial, we specify the identity relationship such that 

l= fohooks = hofjokoks = Fokofsofs. To obtain the generators fi, £,..., £5, we 

choose for Fi, F, fs, & the first 4 main effect contrasts F., F2, F'3, Fs for the 2-? facto- 

rial. The remaining £;, & are determined by the defining relation given by Fs, F's such 

that F; = Fiofk.0F3, Fs = F.0F30F 4 , respectively. we then replace the first 4 unity 

elements of each row by the main effect contrasts F (i= 1,2,3,4) of the 2¢ factorial. We 

replace the remaining 2 unity elements of each row by Fs, Fs Then we obtain a Box- 

Behnken design matrix using fractional factorial of resolution IV, ie., 2°-?,, , adding 1 

center point such as 

997 V7AEAREZEL 

ibhA®CAKRE E 

fAib&E Es & 0 9 

D=|0 FA HRYXQOEBEA Fs £& 

f 
Co 

lo
 

FRhHI~BRADVEEK Y 

00000 00 0 0     
where Fy w= 1,2,...,6 iS a 16x 1 vector with 

Fy’ =(1, 1,1, 1,1, 1,1, 1,-1, -1, -1, -1, -1, -1, -1, -)), 

&’ =(1,1,1,1,-1,-1,-1,-1,1, 1,1, 1,-1,-1, -1, -)), 

F/ =(1,1,-1,-1,1,1,-1,-1, 1, 1, —-1, -1, 1, 1, -1, -1), 

F/ =(1,-1,1,-1,1,-1,1,-1, 1, -1, 1, -1, 1, -1, 1, -1), and Fs = Rook, 

Fo = Book, 0 is a 16 x 1 vector of elements being zeros. 

Then, for the model 
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9 9 9 

Jy = Bo + > BiXin + > BiXin” + \ Bip iuXiy + Ey u=1,2,...,97, 
i=1 f=1 Lf=1 

i<? 

    

We have 

i 97 0’ 64 |’ 0’ 

Q 64] 0 0 
X'X = 

641 0 16(NN’) 0 

0 0 0 G 

with 

X12, -%13 X14 X15 X16 %17 *%1g X19 X23 X24 X25 + + + Xgg 

x2/48 0 0 0 0 0 0 0 0 0 0 0 

x3/ 0 48 0 0 0 0 0 0 0 0 16 0 

x4] 0 O 48 0 0 0 0 0 0 90 8 0 

x5/ 0 0 O08 32 0 0 0 0 16 0 0 0 

xe | 0 © O 0 32 0 O 0 o OQ 0 

X7/ 0 0 0 0 O0 4 0 0 0 16 O 16 

oe 0 0 0 0 0 0 32 0 16 0 0 0 

xo} 0 0 DOD 0D DO D0 D0 32 0 DO ODO 0 

x3;{ 0 0 0 16 0 0 16 0 48 0 QO 0 

X44} 0 O0O 0 0 0 16 0 0 O 32 O 0 

x95 | 0 16 0 0 0 0 0 0 0 0 48 0 

x9 | O O08 O08 O08 0 160 0 0 0 9 48 

L :     
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From the X’X matrix, we obtain UMVUE for first order coefficients £,. We have 5 

estimable functions among pure quadratic coefficients Bu, B2,..., Bs since rank 

(NN’) = 5 with 

N
 

Ny
 

NN
 3 

(WN’)=| 2 3 

2 

Nn
 

N
 Ww WwW 

Ww 

w
 

td
 

mh 
HN 

KN 
WY 

NY 
NY 

Ww 

Nw ww
 

N
v
 

N
O
 

a]
 

we
     

For example, 8: — Bss — Bes — Bas — Boo, B22 + Bss + Bes, Bss + Bos + Bos, Baa + Bss + Bos, and 

B17 — Beg are estimable functions. In G, some of off-diagonal elements cannot be 0 since 

two-factor interactions are confounded with each other. For example, the vector for xs 

is given by xox; = (0,0, AiFs,0,0,AiE,0)’ , the vector for x» is given by 

x,0x%; = (0, 5/, BB, HE, 0, 0, 0)’, and gis,2, represents an element of row xs and column 

Xx in G. Then Lis,23 can be expressed as 

815,23 = (%102s)' (2202) = (F5)'(AB) = (44.458) (BB) = (BB)'(BB) = 16. So gis,23 is not 

0 due to the confounding of F.F; with £4. However, for this Box-Behnken design using 

LS72 design, all mixed quadratic coefficients B,, i, i’ = 1,2,...,9, i<i’, are estimable 

since G is of full rank, i.e. 36. 
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3.3. Resolution V or Higher 

Using fractional factorials of resolution V or higher leads to the same form of X’X 

as for the full factorial, except that 2* is replaced by 2*-! ,1e., 

; n 0’ r2k-4y" 

QO rko-'7 0 
XX=| 0, ey (3.3) 

1 0 2 NN’) 

    qo 
co 

So 

0 0 0 

where G is a diagonal matrix with elements being /,2*-' if treatments i and /’ are y -th 

associates (1<y<m_). It is noted that the off-diagonal elements of G are 0 since we 

use fractional factorials of resolution V, which implies that for off-diagonal elements of 

G a two-factor interaction £.£, are not confounded with other two-factor interactions 

F,-E.- , 1.€. (7) (FWoF,)'(E.- oF, ~) = 0 of Property 1 in Section 2.5 holds (see (j) X’3X3 in 

Section 2.5). Thus, the estimates of all parameters have the same properties as for the 

full factorial. But just as the full factorial, the resolution V design leads to a large 

number of treatment combinations for even moderate values of k, and hence to large n. 

3.4. Conclusion 

We have seen in this chapter that using fractional factorials instead of full facto- 

rials has the following consequences concerning estimability and properties of estimators 

for the parameters in model (2.3): 
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(i) For resolution III fractions Bs and Bs are no longer uncorrelated, 

(ii) for resolution III and IV fractions the estimators for the elements in f; are no longer 

always uncorrelated; 

(ii) for some Box-Behnken designs using resolution IV fractions, not all elements of f3 

are estimable; 

(iv) fractions of resolution V or higher lead to designs with the same properties as dis- 

cussed in Chapter 2. 
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Chapter 4. Trend-free Box-Behnken designs 

In this chapter, we are concerned with Box-Behnken designs in which treatments 

are applied to experimental units (plots) sequentially in time or space and in which there 

may exist a linear trend effect. For this situation, the objective is to find appropriate run 

orders such that the estimates of the parameters in model (2.3) are not affected by such 

a trend. These designs will be referred to as trend-free Box-Behnken designs. 

4.1. Background 

First, we consider experimental situations in which a run order is to be conducted 

Over time or space and in which there may be unknown variables influencing the exper- 

imental process that are highly correlated with the order in which the observations are 

obtained. In the experimental designs to be used in some time order sequence, the re- 

sults obtained may be affected by the particular time order chosen, and we should take 

this into consideration when the experiment is planned. Time order itself is seldom an 
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important variable, but it frequently serves as a proxy for other important lurking vari- 

ables such as temperature, humidity, changing operator, materials and so on. 

We present a few examples to illustrate this point. 

(i) In an experiment to evaluate the accuracy of a facility to calibrate meters for use with 

sales of cryogenic fluids (liquid nitrogen, liquid oxygen, and so on), the meters at par- 

ticular point in time represent the experimental units. It is known that the meters, i.e. 

the experimental units deteriorate over time due to the temperature of the liquid being 

measured (Joiner and Campbell, 1976). 

(1i) if a batch of material is created at the beginning of an experiment and treatments are 

to be applied to experimental units formed from the material over time, then there could 

be an unknown effect due to aging of the material which influences the observations 

obtained (Jacroux, 1990). 

It might be suggested that the treatment assignment be made in random order to remove 

a time effect. But it may be that randomization will lead to a run order that is undesir- 

able. It is sometimes preferable in such situations to use a systematic , rather than a 

randomized , ordering of the treatments. It is often possible to find an ordering which 

will allow estimation of treatment effects independently of any polynomial time trends 

or spatial trends that might be present in the experiment. Such an ordering of the 

treatments is known as a trend-free design. 

Experimental designs to be used in the presence of trends to avoid the complication of 

analysis of covariance and to increase design efficiencies have been developed. 

Cox (1951, 1952) initiated the study of trend-free and nearly trend-free designs for the 

efficient estimation of treatment effects in the presence of a smooth polynomial trend. 

He considered the assignment of treatments to plots ordered in space or time without 

blocking and with a trend extending over the entire sequence of plots. Box (1952) and 

Box and Hay (1953) in similar experimental sequences investigated choices of levels of 
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quantitative factors. Hill (1960) combined the designs of Cox and Box to form new de- 

signs to study the effects of both qualitative and quantitative facors in the presence of 

trends. Daniel and Wilcoxon (1966) and Daniel (1976) provided methods of sequencing 

the assignments of fractional treatments combinations to experimental units to achieve 

better estimates in the presence of a trend in time. Bradley and Yeh (1980) introduced 

trend-free block designs to eliminate a time effect for block designs in the presence of 

common polynomial trends over plots within blocks. Cheng and Jacroux (1988) gave 

some methods for complete and fractional factorial designs in which the estimates of 

main effects and two-factor interactions are othogonal to some polynomial trends. Lin 

and Dean (1991) gave some general results on the existence of trend-free and partially 

trend free designs for both varietal and factorial experiments, and investigated trend-free 

properties of cyclic and generalized cyclic designs. 

4.2. Trend-free block designs 

We review the trend-free block (TFB) designs introduced by Bradley and Yeh 

(1980) to remove a time effect for block designs since Box-Behnken designs are con- 

structed by combining incomplete block designs with 2‘ factorial designs. These designs 

can completely eliminate the effects of defined components of a common trend over 

plots within blocks. We use 7F,CB for a complete block design free of a common trend 

of degree p within blocks, and 7F,B/B and TF,PBIB for similar balanced and partially 

balanced incomplete block designs. The usual additive model for a block design with 

polynomial trend is written in terms of plot position t and block designation j as 
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y P 

Y= ut x 51, + B+ 2, Babel) +6) (4.1) 

j=1,...,6, t=1,...,k, where y; is the observation on plot t of block j; yp, t, 8; are re- 

spectively the usual mean, treatment, and block parameters; ¥ G.b4(0) is the trend effect 

on plot t, with 6, being the regression coefficient of the orthogonal polynomial ¢,(t) of 

degree a; the designation of the treatment applied to plot (j, t) is effected through indi- 

cator variables, 6!,= 1 or 0 as treatment 1 1s or is not applied on plot (j, t), i= 1,...,v. 

The model (4.1) in matrix notation is 

YHX p+X,t+Xph + XO + € (4.2) 

where Y is a bk x J observation vector, t’ = (t,...,7,), B’ =(fi,..., Bs), 0’ =(6,... , 8) . 

Bradley and Yeh (1980) defined trend-free block designs such that a block design mod- 

elled by (4.2) is trend-free if 

R(z|u, B, 6) = R(zln, B) 

where R(t|u, £, 6) represents the treatment sum of squares adjusted for block effects and 

trend effects and R(t|u, 6) represents the corresponding sum of squares with the trend 

effect deleted (i.e. ignored). And they showed that a necessary and sufficient condition 

for a block design to be trend-free is that each trend component is orthogonal to the 

treatment allocations throughout the experiment; that is, 

bok 

Y > 66()=0, a=lsp, i=l,..,v 
j=ilt=l 

or, equivalently, 
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X/X, =0 

For example, we consider the balanced incomplete block design (BIBD) characterized 

by the parameters v = 5,b = 10, k = 3, r= 6, A =3 with the given incidence matrix 

1111110000 

1110001110 

1001101101 

0101011011 

le
 | 

mr 
oO 

Q 
Bw 

&® 

  0010110111   
And we assume that a linear trend (i.e. p= 1) exists over experimental units within the 

blocks, taking values ¢,(t) = —1, 0, 1. Now we assign treatments to plots within blocks 

not at random (as is usually done) but in the following manner (where -1, 0, 1 refer to 

positions 1, 2, 3, respectively, in a block): 

block -—l1 9 |l 

block1 A B C 

block2 A B D 

block3 A B E 

block4 C D A 

block5 C E A 

block6 D E A 

block7 D BC 

block8 E B C 

block9 E B D 

block10 C D E 

Chapter 4. Trend-free Box-Behnken designs 47



10 3 

This design satisfies the condition > >)6i¢,()=0, for all treatments since 
j=it=1 

10 3 10 3 

> + 646(t) =-1-1-1414141=0 , ¥3¥62b()=04+04+04+04+04+0=0 , 
j=lt=1 J=it=1 

10 3 10 3 
>» + 69o,() =1-1-14+141-1=0 _, + Hoot} =1+0-1-141+0=0 , 

j=lt=l j=lt=l 
10 3 

y vdFb(t) =1+0+0-1-141=0, 
j=l=l 

or equivalently satisfies the condition X,’X, = Q = (0, 0, 0, 0, 0)’ since 
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Thus, we obtain a balanced incomplete block design free of a common trend of degree 

1 within blocks ( TF,B/B ). That is, each treatment is orthogonal to a linear trend ( for 

more examples see Bradley and Yeh, 1980). 

The selection of X, may be viewed as a two stage process. The first stage is the deter- 

mination of a way of blocking specified by the incidence matrix N = X’,X, , and the 

second stage is the allocation of treatments to plots within blocks. Then we have the 

following properties of trend-free block designs: 

(i) Let a’t be any estimable function of treatment effects for the block design. Then a’t 

is also estimable for the TFB design. 

(ii) Let t, and t be the least squares estimators of t under model (4.2) for the TFB design, 

and the corresponding block design with within-block treatment randomization respec- 

tively. Then var(a't,) < var(a’t) 

(iii) The ordinary analysis of variance sums of squares for treatments and blocks are 

preserved and variation due to the trend may be removed from the error sum of squares. 

These properties assures us that TFB designs will be optimal in comparison with the 

analysis of covariance for the corresponding block design with treatments randomized 

over plots within blocks. 

Yeh and Bradley (1983) also have discussed the existence and construction of TFB 

designs. Sometimes a TFB design does not exist, and this provides the motivation for 

considering a nearly trend-free block (NTFB) design. For given design parameters, 

v,b, k,n, ...,%, ™ being the number of replications of treatment i, a block design under 

model (4.1) is said to be a NTFB design of type A if 

y mp Sse. ] 
a=li=i| f=it=1 

is minimum among the class of connected designs with the same incidence matrix. 
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Under model (4.1), the information matrix for a design is 

C= R—(1/k)NN' — (1/b)XX_X_'X, (4.3) 

where R = diag (n,...,7,), X, is the bk x v matrix with ¥ 8 (the number of times that 
jz 

treatment i appears on plot t, i=1,2,..,v, f=1,2,...,4) in row t and column i, and 

X, is the bk x p matrix with @¢,(t) in row t and column a. 

The matrix C in (4.3), obtained from the reduced normal equations for estimating the 

treatment parameters in model (4.1), is central to the analysis and the efficiency of a 

design. When the design is trend-free, C= R —(1/k)NN’ depends only on the incidence 

matrix N and the analysis is simple. When the design is not trend-free, the usual analysis 

of covariance using trend terms as covariates must be employed to remove the con- 

founding between treatments and trend terms. It is shown that NTFB designs for first- 

and second-order trends can be constructed with good efficiency properties (Yeh, 

Bradley, and Notz, 1985). NTFB designs do have the disadvantages of requiring some- 

what more complicated covariance analysis computations. 

4.3. Property of the factorial design 

The properties of 2* factorial designs are useful to find a LTF Box-Behnken design. 

We define symmetric and anti-symmetric properties of a vector before we discuss the 

property of the 2‘ factorial design. 

Definition 4.1. The vector (Qt, Cr, .0+ 5 Oey Aes ty Aya ay vee 5 Ars) or 

(Ai, Ga, ..- 5 Ass O, Ges 15 Aas +++ » Gas) 18 Said to be symmetric if a; = ay_j41, j= 1,2,...,5 
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Definition 4.2. The vector (Ay, Gay...» Asy Asay Apa 2y ove y Ads) or 
  

(Ay, Gay -0. 5 Asp O, Asay Qe 425-0» 9 Aas) iS said to be anti-symmetric if 

Qj = — Qs -j4ty J= 1,2, cen gg S 

We apply the notions of symmetric and anti-symmetric vectors now to the contrast 

vectors of main effects and two-factor interactions for the 2* factorial. In what follows 

we always assume that the 2‘ treatment combinations are assigned in standard order (see 

Section 2.1). It is then easy to write down the contrast vectors for the main effects 

A, Aa, ..., Ay. The contrast vectors for the two-factor interactions A,, i.e. the interaction 

between the i-th and j-th factor, is then given by 4,=A,0A;. This is illustrated for 

k =3 in Table 4.1. Even though it has no meaning in the context of the 2* factorial itself 

but only in the context of the Box-Behnken design, we also define pure quadratic effects 

for the i-th factors by A? = AoA, . 
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Table 4.1. STANDARD ORDERING OF THE 2? FACTORIAL 

2 42 42 
A, A, A; A, A,” A; Ai, Aj3 Ap3 

1 -1 -1 -1 1 1 1 i it 4 

a, 1-1 -1 1 ot 2 -1 -1 1 

ay -1 1-1 tot 2 -1 4 -1 

aa 1 1-1 1 1 1 1 -1 -1 

ay -~l-1 1 1 1 1 1-1 -1 

a, 1-1 1 toto. o-1 ot -1 

aya -l 11 1 1 1 -1 -1 1 

Ay Aya, i 11 1 1 1 1 1 1 
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From the Table 4.1, we observe that the main effect contrasts are anti-symmetric. 

However, the pure quadratic terms and two-factor interactions are symmetric. The 

anti-symmetric property for the main effect contrasts A,, i= 1,2,...,k, and the symmet- 

ric property for the pure quadratic terms A?, i= 1,2,...,k, and two-factor interactions 

Ay, i,j =1,2,...k, i<j, holds for all 2* factorials. 

Next, we consider the case where one center point is inserted into the middle of the 

2‘ treatment combinations in standard order. For example, when k=3, the 23 treatment 

combinations can be written as (1, a, @, @:d2, 0, a3, 3, G,Q3, 44,03) Where 0 is an inserted 

center point. Then, the main effect contrasts A, A42,A; are written as 

A, =(-1,1,—1, 1,0, -1, 1, -1, 1)’, 42. =(-—1, —-1,1,1, 0, -1, -1,1,1)’, 

A; =(—1,—1, —1, —1, 0, 1, 1, 1, 1)’. The pure quadratic terms A,?, A,*, A? and the two- 

factor interactions Aj2, Aj3, Aj, are shown in Table 4.2. 
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Table 4.2. STANDARD ORDERING OF THE 23 FACTORIAL with a center point 

ay 

a, 

Q3 

a; Q3 

a7 

&Q7Q3 
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A; 
A A, A? 

1 1 1 

] ] ] 

1 1 | 

] ] 1 

0 oO 90 

1 1 1 

1 1 I 

I 1] 1 

1 1 1 

Ay? Ai; Ay; 
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From Table 4.2, we see, of course, that just as in Table 4.1 the main effect con- 

trasts under standard ordering are anti-symmetric with respect to 0, and the pure quad- 

ratic terms and the two-factor interactions are also symmetric with respect 0. We 

consider now the coefficients for a linear trend, ¢,(t) = T say, they are given by the co- 

efficients of the orthogonal polynomial of degree 1 and order s equal to number of ex- 

perimental runs. Specifically, ifs = 2q, then 

T =(-(s— 1), —(s—3),...,-3, -1,1,3,...,5-3,s—-—1) 

and if s=2q+1, then 

T =(-q,-(q-1),...,-1,0,1,..,¢—-1,4) 

In both cases, T is anti-symmetric. As a consequence, we see, for example, that for 

s = 23 as in Table 4.1 and for s = 2? + 1 as in Table 4.2 the pure quadratic terms and the 

two-factor interactions are orthogonal to the linear trend, i.e. 

(A,)'T =0, (A2)'T=0, (42)! T=0 and (A,)'T=0, (Ass)'L=0, (Az)'T=0. These 

properties can obviously be generalized for all 2* factorial designs without or with a 

center point inserted in the middle of the treatment combinations of the standard order. 

We take advantage of these properties in Section 4.4 to construct a LTF Box-Behnken 

designs when there exists a linear trend over experimental plots. At this point we in- 

troduce some further notation which will simplify the description of LTF Box-Behnken 

designs. For any of the coefficient vectors A for a 2* factorial, similar to those given in 

Table 4.1, define 
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AY 

af“) | (4.4) 

where AY is called the upper half and A+ is called the lower half of the vector A. AY¥ and 

A¥ are of course 2*-! x 1 vectors. 

When there exists a polynomial trend in a complete 2* factorial design, Cheng and 

Jacroux (1988) showed that for the standard order of a complete 2* design, any h-factor 

interaction is orthogonal to a (h-1)-degree polynomial trend. Consequently, in the 

standard order of a complete 2* design, two or more factor interactions are orthogonal 

to a linear trend ¢ taking values 1+ a,2+a,...,2*+ a, where a is an arbitrary integer. 

1e. , (Ai2)’T = 90, (Ais) = 0, ... , (Ag—1,4)’Z = 0, (Aias)’Z = 0, ..., (Ava...) = 0. For exam- 

ple, when k = 3, a= —17, we have (A,2)’T = 0, since A,. = (1, —1, —-1, 1, 1, -1, —1, 1)’ and 

IT =(-16, —15, —14, -13, —12, —11, —10, —9)’. The main effect contrasts A,, Az, ... , Ak; 

however, are not orthogonal because A,’7 = 2*/2, A,’ T = 2*, A;’'T = 2+ 2',..., and so on 

where 7 = (1, 2,..., 2")’ for a=0. 

The same property holds for the upper half or the lower half of the h-factor interactions 

(h> 3): 

Property 4.1. For the standard ordering of a complete 2‘ designs, any half of an h-factor 

interaction contrast vector (h=3) is orthogonal to a linear trend ¢ taking values 

l+a,2+a,...,2'-!'+a where a is an arbitrary integer, i.e. (Ai23")'T = 0, 

(Ain')’T=0,..., (Ar-an-1e') DL =9, (Ai-aa-18°) T= 0,..., (Aia.2”)’ LD = 9, 

(Aizs..x*)’L = 0. 

For example, when k=4, the various AY and A+ vectors are given in Table 4.3. 

Choosing, for example, a=—9, the corresponding linear trend ¢ takes the values 
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T=(-8, —7, —6, —5, —4, -—3, —2,—-1)’. We then obtain (Aj23")’7 =0, (A1s*)’T=0,..., 

(Azy”)'T = 0, (Anat) T = 0, (Aja34)'T = 0, (Ajaza")’ = 0. 

Property 4.1 is used in Section 4.5.2 to construct linear trend free Box-Behnken designs 

fork >4. 
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Table 4.3. STANDARD ORDERING OF THE 24 FACTORIAL 

A, A, A; A, Aj93 Aina Ay34 Ay34 A134 

] —] -1 -1 -l —-l1 -1 -1 -!l 1 

a; 1 -1 -1 -1 1 1 1 —-1] —1 

a, -1 1-1 -l ] 1 -l 1 ~] 

a, ] 1 -1 -!l —1 —1 1 ] ] 

Q3 -1 -l1 1 -!l 1 -l 1 1 —1 

a, 3 1-1 1 -l —| 1 -l 1 ] 

AQ; -1 1 1-1 —1 l 1 -l 1 

A, aya, 1 1 1 -! 1 -1 -1 -l ~—1 

ay -1 -1 -1 1 —] 1 ] ] —1 

a, a4 1-1 -1 1 1 -1 -l 1 l 

Ay A, -1 1-1 1 1 —-1l 1 -l | 

AA, A, 1 1-1 1 —1 1 -1 -l ~—1 

a3M4 -1 -) 1 1 1 1 -1 -l l 

Q,A3a, 1-1 1 1 -l -l 1 -l —1 

Q,A3A4 —| ] 1 l —| —] —| ] —] 

A) A,A3Q4 1 1 1 1 1 ] 1 1 ] 
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4.4, Linear trend-free Box-Behnken designs 

We now consider Box-Behnken designs in which a linear trend is assumed over 

experimental units, and each observation is designated to one experimental unit se- 

quentially. We write the model as follows: 

v v > v 

Yu = Bot >, Brut >, Bik + >, Bar uXry + Oty + by (4.5) 
i=] i=1 iv=! 

i<? 

u=1,2,...,, where y, is a response variable, #, £;, Bi and B, are unknown parameters 

with i,’ =1,2,...,v i<i’ , @ is the regression coefficient of the linear trend ¢ over ex- 

perimental units, i.e. , a polynomial trend of degree 1, and e, is a random error with mean 

QO and variance o? . It is noted that a linear trend ¢ takes values 

  

n—-] n—-1 n-\l1 _,n-l . 
TT TG +1,...,—1,0,1, ..., 5 1, 5 if ¢ (or n) is odd, and 

—n+1,—n+3,...,—-1,1,...,2—3,n2—1 if ¢ (or n) is even. 

In matrix notation, we can write 

Y=1fo + X,B; + Xo B+ X383 +TO+¢e (4.6) 

where T = (h, h, ..., f,)’ is an x 1 linear trend vector. 

Now, we define a linear trend-free Box-Behnken design as follows: 

Definition 4.1. A Box-Behnken design under model (4.5) is said to be linear trend-free 

(LTF) if 

n n n 

> Xiuty = 9, » Xu ly = 0, » XiXiyty =9, i? =1,...,9 (4.7) 
u=] u=l u=] 
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or, equivalently 

X/T=0, X/T=0, X,'T=0. 

The main objective then is to obtain a run order such that the design is a linear trend- 

free Box-Behnken design. Such a method will be described in Section 4.5. 

For LTF Box-Behnken designs using the model 

Y=1fo + X18, + XB. + X38, + TO +8 

and using a full 2‘ factorial we have, according to Definition 4.1, the following X’X ma- 

trix: 

n VX, VX, VX, VI n Q rr gr 0 

XV 1 Xy'X, XX X'Xy XL 0 r*r 0 0 Q 

X'X =| Xy'1 XX, XX, XX, KT \=| 2 0 WN) 0 0 (4.8) 

0 Xq!1 X'X, Xq!Xq XX XL 0 0 oO G 

        Pl LX, Lx, Lx LT 0 0d 06M LW TT 

We can see from the XX matrix that the estimates of the first-order coefficients £,, and 

the second-order coefficients £2, 8; are orthogonal to the estimates of the estimate of the 

linear trend coefficient 6. Concerning the estimators of these parameters we can state the 

following properties: 

(1) The estimates of the first-order coefficients f,, i= 1, 2,...,v, the pure quadratic co- 

efficients Bu i=1,2,...,v, and the mixed quadratic coefficients 

Bw, i, =1,2,...,v, i< i are not affected by a linear trend. The properties of these es- 

timators are same as those discussed in Section 2.5. 

(ii) We obtain the UMVUE of the linear trend coefficient @ as 6 = (LY TY. 
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4.5. Construction of LTF Box-Behnken Designs 

We now consider Box-Behnken designs when there exists a linear trend over ex- 

perimental plots. We consider first a design with one center point, which implies that 

we have an odd number of design points (observations), i.e. n= 52*+ 1. Thus, we use 

a linear trend ¢ taking values 454 , -454 41, we, 7 1,0,1, ... 254 1,454 

over n experimental units. We first modify the Box-Behnken design matrix D’ , given 

by (2.1) and (2.2). Without loss of generality, we replace the F, by main effect contrasts 

under standard ordering A, , for the factorial part of Box-Behnken design matrix D* in 

(2.2). Then we rewrite D’ as 

B, M11 Awt 1) MA 2) sof 1 Awa, v) 

B, M1 Ayer) M24war + + + “ayv4we,v 

D = = (4.9) 

B, My Awe) "er4wo2) - + + NovAwe,y         
where B;, is a 2* x v matrix, W(j,l) = mat n2+- +n, With w taking values 0,1, ... ,k, and 

Ay 18 a 2* main effect contrast of the standard ordering (i.e. 2x1 vector), and 

A,’ =(1,1,..., 1). We divide the B, i= 1, 2,..., 5, into two parts, the upper half of B,, 

and the lower half of B, denoted by BY and B/, respectively, so that 

U U U U 
B; Ny Aw?) NA wir » +e MyAya, ») 

B= L |. L L L (4.10) 
B; ny Aya) Ni2A wi - 1 + MyAya, vy 

where BY, BE are 2‘-! x v matrices. 
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We then write the Box-Behnken design matrix D augmented with linear trend 7 ,say S, 

as 

and T=(- 

(D, T) 

2 

  
n—1 

U 
11 Aya1) 

L 
ny 14wa,1) 

U 
M2) Ay,1) 

L 
Ny A,,,1) 

U 
Ny Aywe,1) 

L 
Ny Aw.) 

0   
AT) 

  
+1,..., —1,0,1,... 

U 
1A 2) 

L 
My Aw 2) 

U 
Ny Aw,2) 

L 
Ny Ayy2,2) 

U 
Ny2Aw,2) 

L 
Ny2Aw,2) ' 

0 

n—1 ~1, 

7 2 

. 1 Awa, v) 

» MhAwy, vy 

+ MyAye, v) 

+ MyAya, v) 

, NoyAwe, v) 

U 

L 

U 

L 

My
 

L 
7 NyA we, v) 

aoty. 

  
(4.11) 

For example, for the Box-Behnken design ( No.1 in Box and Behnken, 1960) with 

the BIBD with the parameters v = 3,r=2,b=3,k =2,A=1, and the transpose of the 

incidence matrix given by 

N 

110 

10 1 4|, 

01 1 

N 

110 

011 

10 1 

we obtain Box-Behnken design matrix D with one center point as 
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-1 -1 9O 

1-1 90 

—| 1 0 

l 1 9O 

_ - -i OO -Il 

B, A, A, % 
1 O-!1 

B, A, 4 Ay 
D= = =/-l1 0 1 

B; Q, A, A, 
1 oO 1 

0 0 0 O 

~ - 0 -1 -l 

0 1-1 

0 —!1 ] 

0 1 1 

0 0 O 

where 

—1 -1 0 —1 0 -1 0 -!I —-l 

1 -1 0 10-1 0 1-1 

B, = ’ B, = ’ B; = 
—] 1 0 —-1 0 1 0 —-l 1 

1 1 0 10 1 0 1 1 

are 2? x 3 matrices, the 2? main effect contrasts of the standard ordering A, A, are de- 

fined as A; =(—1,1,—1, 1)’, 42 =(-—1,—1, 1, 1)’, and Q is a 4 x 1 zero vector. 

Thus, we can express the upper half of B,, and the lower half of B, i= 1,2,3 as 
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y -1 -10 
B, = 

1-10 

—-1 10 

110 

y —1 0-1 
BL,” = 

10-1 

-101 
BY = 

101 

|» 0-1 -l 

: 1 -1 

0-1 1 

0 1 1 

Consequently, A,,i=1,2 are divided into AY, AP with AP=(-—1,1)’, Af=(-1, 1), 

A¥ =(-1,-)’, 4F=(1, 1’. 

Hence, we can write the Box-Behnken design matrix with a center point as follows: 

where Q, 1s a 2 x 1 zero vector. 

      

A,” A,” Q, 

A,” Ax” Q 

A,” 0 A,” 
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Now, we consider the situation of Box-Behnken experimental design in which a run or- 

der is to be conducted in time order sequence over the experimental plots, assuming that 

there exists a linear trend ¢ taking values —6, —5,..., —-1,0, 1, ...,5, 6 over the 13 exper- 

imental units. Writing the Box-Behnken design in the usual way we have 

      

-1 -1 0 -6 

1-1 0-5 

- ; -1 1 0-4 

AY AY 0 1 1 0-3 

A,” A,” 0, -1 0-1 -2 

Avy Q A,” 1 0-1 -1 

S=(D,N=| 4,5 ® 4° 7 |=|]-1 0 1 «0 

0, A," A,” 1011 

Q, A,” A,” 0-1-1 2 

0 0 0 0 1-1 3 

: 0-1 1 4 

0 1 1 5 

0 0 0 6   
The problem then is how to arrange treatment combinations so that the resulting design 

is a LTF Box-Behnken design. We shall take advantage of the symmetric property of 

the second order terms (pure quadratic terms and the two-factor interactions) and anti- 

symmetric property of the main effect contrasts of the 2‘ factorials shown in Section 4.3 

in order to construct a LTF Box-Behnken designs by putting a center point on the 

middle of the experimental units associated with the 0-value of the linear trend, and 
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placing the halves of each B,, i = 1,2, ..., 5 symmetrically with respect to the center point 

since the structure of the Box-Behnken designs is based on the 2‘ factorial designs. We 

consider two cases (i) for k=2 or 3 and (i1) A > 4 to arrange run orders. 

4.5.1. Construction method of LTF Box-Behnken designs for k=2 or 3 

For k=2 or 3, a LTF Box-Behnken design can be constructed by the following 

method: 

1. In(4.11), we place a center point in the middle of the experimental units associated 

with 0-value of J. 

For convenience of describing the following method we partition the Box-Behnken 

design then into three parts: P, consists of the first b2‘-' runs, Py consists of the 

center point, and P, consists of the last b2*-! runs, i.e. 

Written in this order P, is associated with the negative values of J , Py is associated 

with the 0-value of ZT , and P, 1s associated with the positive values of J. We par- 

tition Z correspondingly into 
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2. 

5. 

For each B, i= 1,2,..., 6, we put BY in P, and B+ in P, symmetrically with respect 

to the center point (Po) or vice versa. 

Obviously, there exist 2’ such arrangements. We call them D,, D,,..., Dy. In all 

cases, the vectors for the pure quadratic terms x’, x,7,...,x, and for the mixed 

quadratic terms X12, X13, ... ,X,-),, are symmetric. This implies that the pure quadratic 

terms and mixed quadratic terms are orthogonal to a linear trend J, ie. (x,*)’7 =0, 

(x7) T=0,..., (x7)'T=0, and (x2)'T=0, (x3) T=0,..., (x-1,.)'2=90. And the 

vectors for the first-order terms x, %2,...,X, are anti-symmetric. We thus have to 

consider run orders such that also the vectors for the first-order terms x1, X2, ..., Xv 

are orthogonal to Jie. (x,)'T=0, (~%)'T=0,..., (x)/7T=09. 

We choose any one of the 2' arrangements D,, D,, ... , Dy. 

For the given D,; we number the individual design points in P, starting from the 

center point (i.e. Py ) as design point 1, design point 2, ..., design point b2*-' since 

P, contains b2*-' design points. Similarly, we number the individual design points 

in P,, starting again from the center point P, as design point 1, design point 2, ..., 

design point b2*-!, 

The next problem is to position the individual b2*-! design points associated with 

P, to obtain (x:*+)’ = 0, (a*)’ =0,..., (x,*+)’22 =0 where x*,j = 1,2, ..., v repres- 

ents the vector of x; associated with P, , and is to position the individual b2*-'! de- 

sign points associated with P,; to obtain (x,-)’'7;=0, (~7)’71=0,..., (x) Ti =0 

where x, j = 1,2, ..., v represents the vector of x; associated with P, . 

Let {c, i=1,2,...,52*-'} represent a permutation of the integers 1, 2, ... , b2*-!. 

And let { c, i= 1, 2,...,52*-!} represent the values of the positions of experimental 
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units in which the corresponding design point i, i= 1,2...,62*-! in P, should be 

placed to obtain a LTF Box-Behnken design; that is, the design point 1 moves to 

Cc, position, the design point 2 moves to c position, ... , the design point 52*-! moves 

tO C,.k-1 position of the experimental unit. Similarly, let {—c, i= 1,2,..., b2*~'} 

also represent a permutation of the integers —1,—2,...,—b2*-'. And let 

{-—c, i= 1, 2,...,b2*-1} represent the values of the positions of experimental units 

in which the corresponding design point i, i = —1, —2,...,—b2*-1 in P, should be 

placed; that is, the design point 1 moves to —c, position, the design point 2 moves 

to —c, position, ..., the design point b2*-1 moves to —cypk-1 position of the exper- 

imental unit. We then obtain a LTF Box-Behnken design. 

If we define Ct = (c, Ca, ... , Cyge-1) and C- = (—cy, —C2, ... , —Cyx-1) We Want to find 

C* and C- such that 

xjV'C7=0, f=1,2,...,¥, (4.12) 

and 

x'C=0, j=1,2,..,9, (4.124) 

i.e. find permutations {c,} and { —c;} such that the v equations above are satisfied. 

If we find a solution to (4.12) then we also satisfy (4.12a). 

6. Suppose we have found C+ such that the equations (4.12) are satisfied. Denote the 

solution by Cyt = {c}o Then C+ represents the orders of the runs 1, 2,..., b2* 

(numbered in standard order). Let C,*(D,) denote the rearrangement of the runs 

D, according to the permutation C,*. Also, let Co- = { —c}o. Then the LTF Box- 

Behnken design is given by 
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Cy (Pi) 

D = Po 

Cy*(P2) 

7. If we cannot find solutions for equation (4.12) we choose another D, from the re- 

maining arrangements, and repeat the whole procedure. 

If we cannot find solutions for equation (4.12) for any of the 2° arrangements, then there 

does not exist a run order which yields a LTF Box-Behnken design. On the other hand, 

if we can find a C* satisfying equation (4.12), then the design constructed by this method 

is not unique since there may be other solutions. 

Example 4.5.1 

We refer to the previous example of a Box-Behnken design in this section (Design No.1 

in Box and Behnken, 1960). Again we rewrite the design matrix S with 7 
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3,2 Ay” Ay” OQ, 

By” A\” Ay” Qs 
By” Av? 0, A,” 

S=(D,T) =| BY T\=) 4," ® A T 
By” Q, 4,7 A” 

B,” 0, A,” A,” 

Q 0 0 0         

By following step | and step 2, we have 23 arrngements. 

B,” B,” | pe 

BY BY Bo” 

B;” B,. B,~ 

D.=| 0 |, D,=| 0 |, D=}| 0 
B,” b,” By” 

B,” by” B” 

By” by” By”           
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oC
 

co 
S&S

 
S&S 

©& 

-1 0-5 

1 Q -4 

1 0 -3 

0-1 -2 

0-1 -!1 

0 1 0 

0 1 1 

—-!1 -1 2 

1-1 3 

-l1 1 4 

1 1 5 

0 0 6 

    

 



1.€., 

  

  
Ds= 

Xy x3 

-1 0 

—-1 0 

0-1 

0-1 

—1 -1 

1 -1 

0 0 

—-1 1 

1 1 

0 1 

0 1 

1 0 

1 0   

    
x, 2 

—1 -1 
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x3 

0 

  

  

  

  
x4 

  

  

  

  
x2 X3 

oS
 

72 

 



      

x, Xy X; XX. 3 XX 3 xX, XX; 

-1-l1 0 -1 1 0 —-1 1 0 -1 1 0 

1-1 0 1 1 0 1 1 0 1 1 0 

-1 0 1 -1 0-1 -1 0 1 -1 0O 1 

1 0 1 1 0-1 1 0 1 1 0 1 

0-! 1 0-1 1 0-1 -1l 0-1 1 

0 1 1 0 1 1 0 1-1 0 1 1 

Ds = De = D, = Dy = 
0 0 0 0 0 0 0 0 0 0 0 0 

0-1 -l 0-1 -1 0-1 1 0-1 -1l 

0 1-1 0 1-1 0 1 1 0 1-1 

-l1 0-1 -1 0 1 -1 0-1 -1 0-1 

1 0-1 1 0 1 1 0-1 1 0-I1 

-! 1 0 -I-1 0 —-1-1 0 -l1-l1 0 

1 1 QO 1-1 0 1-1 0 1-1 0           
For all cases, the generated pure quadratic terms x, x”, x;? and the mixed quadratic 

terms XiX2, XiX3, X2Xs are symmetric, implying that 

(x?) T= 0, (xx-)’T=0, i, =1,2,3, i<i’ . The first-order terms x, x2, x; are anti- 

symmetric with respect to the center point. So, we consider run orders for the first order 

terms, while keeping the symmetric property of the second order terms. 

Choose D,. In this case, we have b2*-! = 6 design points in P, associated with positive 

values of 7 starting from the center point, i.e. (0, -1, 1) is called a design point 1, (0, 1, 

1) is called a design point 2, ..., and (1, 1, 0) is called a design point 6. Similarly, we 

define design points in P, associated with negative values of 7 starting from the center 
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point. ie. (0, 1, -1) is called a design point 1, (0, -1, -1) is called a design point 2, ..., 

and (-1, -1, 0) is called a design point 6. And we have v = 3 equations. 

Find Ct = (ci, Ca, ... , cs)’ to satisfy (x,*)’C* = 0, (2*)’'C* =0, (x;*)’C* = 0. But, we cannot 

find solutions C+ due to the fact that all elements of C* take positive integer values, 

ranging from | to 6, resulting that (x3*)’C+ > 0. 

Choose D;. In the same way as D, we have b2*-! = 6 design points in P, associated with 

7, starting from the center point, i.e. a design point | is given by (0, -1, -1). a design 

point 2 is given by (0, 1, -1), ..., a design point 6 is given by (1, 1,0). Likewise, we define 

design points in P, associated with JZ; starting from the center point. i.e. (0, 1, 1) is 

called a design point 1, (0, -1, 1) is called a design point 2, ..., and (-1, -1, 0) is called a 

design point 6. And we have v = 3 equations. 

We next Find Ct = (cq, 2, ... , Cs)’ to satisfy (x,*)’Ct = 0, (x,.*)’Ct =0, (a3+)’C* = 0. Then, 

we have X matrix with J as follows: 
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- - 

2 2 3 
X, X_ Hy XY HQ HZ Ky HX_ Hy X3 MYX, Os Cc 

-l1-1 0 11 0 1 OO oO  -6 —C6 

1-1 0 11090 -l 0 0. =5 —C5 

t ] -1 0-1 10 1 0 1 O -—-4 —C4 
By” 

1 O-! 10 1 0-1 0 -3 —C3 
U 

B, 
o-1 1 01 1 0 O -l -2 —C, 

L 
B; 

0 1 1 01 1 0 oO 1 —1 —Cy 
(XD=| 09 T]= 

00 0 00 0 0 O 90 0 
B,” 

3 
0-1-1 01 1 0 0 l ] Cy 

L 
B, 

0 1-1 01 1 0 oO -1l 2 Cy 
B,” 

L | -! 0 1 10 1 0-1 0 3 C3 

1 0 1 1041 0 1 O 4 C4 

-1 10 110 -!1 0 9 3 Cs 

1 10 12110 1 0 0 6 C6     
According to step 4, we want to find C+=(c, C2, C3, Ca, Cs, Cs)’ satisfying 

(x:*)'Ct = 0, (x:*)'Ct =0, (25*)’Ct = 0, ie. 

—C+%—Cs tc, =0 (4.13) 

—Cy + +e5 +e, =0 

—Cy—%+¢,+e,=0 

We use the LINDO programming package (Schrage, 1984) to solve these equations 

(Appendix). We obtain one of the possible solutions as Ct = (6, 3, 4, 5, 2, 1)’. But, this 
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is not unique since C+ = (6, 3, 5,4, 1, 2)’ is another solution. Following step 6, we ar- 

range run orders according to C* = (6, 3, 4, 5, 2, 1)’ such that for P, associated with 7), 

design point 1 = (0, -1, -1 ) is placed on the position of c; = 6 value of J, design point 

2 = (0, 1, -1 ) is placed on the position of c, = 3 value of JZ, and so on. Finally, design 

point 6 = (1, 1, 0 ) is placed on the position of cs = 1 value of Z;. We also arrange run 

orders according to C- =(—6, —3, —4, —5, —2,—1)’ such that for P, associated with J; 

design point I = (0, 1, 1 ) is placed on the position of —c, = —6 value of Jj, design point 

2 = (0, -1, 1 ) is placed on the position of —c, = —3 value of J, and so on. Finally, 

design point 6 = (-1, -1, 0 ) is placed on the position of —c, = —1 value of 7). Then we 

obtain LTF Box-Behnken design such as 

    

0 1 1 

-1 0-1 

1 0 -1 

0-1 1 

1-1 0 

Cy (P;) -1 -1 0 

Dirr = Py =| 0 0 0O 

Cy* (Pp) 1 1 0 

-1 1 0 

0 1-1 

-1 0 1 

1 0 1 

0-1 -1 

L / 

We then write the X matrix with J for LTF Box-Behnken design such as 
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2 2 2 T 
x) x4 x3 XxX, xX X3 X1Xq Xj X3 X7X3 

0 1 1 901 1 0 0 +1 =-6 

1 oO -1l l 1 0 -!l 0 —4 

0 -! 1 0 1 1 0 0 -!l —3 

1-1 0 1 10 -1 0 0 —2 

-1 -l 0O 1 1 0 | 0 0 —] 

(X, T) = 
0 0 0 0 0 0 0 0 0 0 

1 1! 0 1 1 0 ] 0 0 1 

-!1 1 0 1 1 0 -!l 0 0 2 

0 1 -! 0 1 1 0 -!l 3 
—
 ) 

N
 Gr
 

bb
     

Hence, for the model 

3 3 3 

Yue=Bot >, Bint > But? + D, Bukntry t+ Ot +e  uU=1,2,...,13 
i=l i=1 | 

i<? 

we have the following coefficient matrix 
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n QO 72% or O 13 o sl oOo 0 

0 rr 0 0 0 0 8. 0 0 Q 
XX XT 

|- r2*. 0 2*NN) 0 O [=| 81 0 4(NN’) 0 0 
TX TT 

0 oO 0 GQ 00 oO 4 Q 

0 dQ Q’ Q TT | 0 Q’ Q’ Q’ 182   
From the X’X matrix, we can obtain a UMVUE of the linear trend coefficient @ such 

as @ = Gra WY, without affecting the other coefficients. 

Example 4.5.2 

The following example shows that there may not exist a LTF Box-Behnken Design. We 

consider the Box-Behnken design with the PBIB(2) characterized by the parameters 

v=6,r=2,6=4,k =3,4,=0,4,=1, and treatment combinations (1,4), (2,5), (3,6) 

being first associates with 4, = 0 and the remaining treatment combinations being second 

associates with A, = 1, (Design SR18 in Clatworthy, 1973). Then the transpose of the 

incidence matrix is: 

111000 

100011 
N’= 

010101 

00111 0 

The Box-Behnken design matrix D with a linear trend J can be written as 
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where 

AY =(-1,1,-— 1,1)’, 414 =(—1,1, — 1,1)’, 422 =(—1, — 1,1,1)’, At = (—1, — 1,1, 0)’, 

      

Av AY AZ 0 0 0 

A,” A” AX 0 Q Q 
AY 0 0 0 AY A,” 

Ae 0 0 0 Aye Age 

0 4° 0 A” Q AY FT 

0 A” QO 4” Q A,” 

0 0 A," 4," A” 
0 9g At Aye Ay” 0 

0 0 0 0 0 0   
A;¥ =(-1,-1,-1,—1)', A3#! =(1, 1,1,1)’ are 2? factorials, 0 is a 4x 1 vector of ele- 

ments being zeros, 7’ = (—16, —15,..., —1,0,1,..., 15, 16). 

There are 2‘ possible ways to arrange by step 1 and step 2. 

S | 
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Bt B, U 

BY B,” 

B, By” 
By” Be 

D,=| 0 D.=| 0 

By” By” 
B,” By” 

BY By” 

B,” B,”       
B,” B,” 

B,” B,” 

B,” B,” 

B,” B,” 

Dy=| Q Dip=| 

B,” By” 

B,” B,” 

B,* B,* 
B,? B,?       
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" . 7 

Bt B,” BY BY 

By” B,” B,* B,* 

B,” B;” B,” B” 

Br B,” B,” By” 

Diy3=| 9 Dig=| Q Dis=| Q Dig=| 

By” B,” By” B,” 

B,” B,” B,” B,” 

B,” B,” By” By” 

BY BY BY BY                 
For all cases, the second order terms are orthogonal to a linear trend 

T=(-16, —15,..., 16)’, since x:?, x7, ..., X67 and Xix2, Xi%s, ... , XsXs are symmetric. But 

the first order terms x1, X2,..., Xs are anti-symmetric. 

We exclude the cases D,, D2, Ds, Ds, Do, Diz, Dis, and Dy. since x.* consists of 1 and 0, or 

-1 and 0 so that they will not satisfy the equation (x,*)’C+t = 0, due to the fact that all 

elements of C* take positive integer values, ranging from | to 16. 

Choose any case, say, D;. Then, we rewrite D,; as 
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—C16 

C15 

—C14 

—¢C13 

—C12 

ey 

—Ci9 

—C4 

Cy 

>) 

6 

4 

Cs 

& 

C7 

cg 

Cg 

C10 

CH 

C12 

C13 

C14 

Cis 

C16 

 
 

XX % SL Xz XY x, 

—16 -1 -!1 1 

—15 -1 -1 1 

—14 

~13 

—1 —12 

—10 —| 

-9 —1 

—8 

-7 

—6 

—5 

-1 | 0 

—3 —i —1 

-1 —! 

—1 0 -1 0 

—1 

10 

11 -1 

12 

13 -1 -1 

14 -1 

15 —1 

16 
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Now, we want to find C+ = (cq, c,... , Cs)’ satisfying 4+. C* = 0, Ct =0,... , x" C* = 0, 

resulting that 

— Cg + CyQ — Cy + Cyn — Cy3 + Cyg — C5 + Cig =O 

— Cy +6 — Cp + Cg — C13 — Cg t Cys t+ Cy, = 0 

— Cy $y — Cz HOH C3 HCH C5 + Cig =O 

— Cy — Cg $03 + Cg — C5 — Cg +07 +06, =0 

Cy + Cy +03 +g — Cy — Cy $C, + C1. =9 

— C5 — Cg — Cp — Cg $Cg t Cig t Cy, + C1, =9 

Again, we use LINDO to solve the case of 16 variables with 6 equations in similar way 

to example 4.6.1. We , however, could not find a set of the solutions which satisfies the 

constraints. There does not exist a solution for the other arrangements 

D,, Ds, Dj, Dio, Dir, Dis, and Dy, either. So, in this design, there does not exist a LTF 

Box-Behnken design for the model 

6 6 6 
2 

t=1 i=1 i=l 

i<l 

4.5.2. Construction method of LTF Box-Behnken designs for k > 4 

Before we construct LTF Box-Behnken designs for k > 4. we investigate the prop- 

erties of F,, F:,...,/ such that F, = A,0A20 ... 0A;_10A;410 ... OAx, i= 1,2,..., k when k 
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is even, F,= A,0A20 ... 0A;~;0A;4;0 ... OA,-1, = 1,2,...,K —1, and F, = A,0A20 ... OA; 

when k is odd where F; is a 2* x 1 vector, A; is a main effect contrasts of the standard 

ordering. We let F,Y be the upper half of F,, F+ be the lower half of F,, where F,", Fi are 

2*-! x 1 vector. Then these F, and F,", F+ satisfies the following properties: 

(i) The k F, i= 1,2,...,k 

are independent in the sense that no F; is the generalized interaction of other F, ’s. 

(ii) both FY and F#, i= 1,2,...,k are orthogonal to a linear trend taking values 

T=(lt+a,2+a,...,24-'+a) in which a is an_ arbitrary integer, i.e., 

(F,")'T =0, (F4)'T = 0, i= 1,2, ..., k because of property 4.1, 

(ili) the generated two-factor interaction terms with an inserted center point FF, = 4,A; 

, defined as FF, = FoF, A,A; = AA;, are symmetric, implying that FF; are orthogonal 

to a linear trend ZT which is anti-symmetric as we have shown earlier in Section 4.1. 

For example, when k=4, we choose 

F, = A,0A;0A4, Fy = A,0A30A4, Fy = A}OA20Aa, Fg = AyOA20A3, Where F; is a 2‘ x 1 vec- 

tor, A, is a main effect contrast of the standard ordering of 24 factorial (Table 4.4). Then, 

these factorials satisfy the following properties: 

(i) These F,, F:, Fs, Fs are independent such that no F, is the generalized interaction of 

others in the set. 

(ii) Both FY and F/, i= 1,2, 3,4 are orthogonal to a corresponding linear trend, which 

was already discussed in the same example of Section 4.3. 

(iii) The two-factor interaction terms with an _ inserted center point 

FF, FFs, FFs, FFs, FFs, F3Fs are symmetric with respect to 0 (Table 4.6). Hence, these 

interaction terms are orthogonal to a linear trend T which is anti-symmetric with respect 

to 0 since F.F; = AoA, 
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Table 4.4. 2* FACTORIAL 

1 1-1 -1l 1 -1 -1 -1 -!I 1 

1 1-1 1 1 -l 1 —-!l 1 -1l 

I -! 1 -l —] I -!l -Il I -! 

~l 1 1-1 -1 -l J 1 -1l -l 

-1 -1!1 -1 1 1 1 —1 1 -1l -l 

1 1 1-1 | 1 —-! 1 -1 -l 

1-1 -1 1 -!l -l 1 -1 -!l 

where F; = A,0A3;0Ag, F, = A,0A30Aa4, F; = A;0A20A4, F; = A,0A20A3, 
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Table 4.5. The UPPER HALF and LOWER HALF OF 24 FACTORIAL 

Chapter 4. 

FY OF,” FY FAY 

-!1 -1 -l1 -!l l 

—1 1 ] ] —1 

1 -l ] —1 

1 1 -1l -l I 

1 1 —1 1 I 

1 -l 1 -1 —1 

—1 1 1 -l —1 

-1 -1l -l I 1 

1 3d 1-1 

1 -l -1 1 

-!1 1-1 1 

—-!1 -1 1 -l 

-1 -1 1 1 

-l1 1-1 -1 

1 -1 -1 -!1 

1 1 1 1 

Trend-free Box-Behnken designs 

| 

Fi’ FRY FRY F)Fyo FyFy? FyFy? 
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Table 4.6. Two-factor interactions of 2* factorial with an inserted center point 

F\F, F\Fy F\Fy FoF; FoF FF, 

1 ot 2d 1 1 1 

-l -1 -1 4% #1 41 

-l1 ot 41-1 -1 1 

Now, we are in position to construct LTF Box-Behnken designs for k > 4 by the fol- 

lowing method: 

1. For k is even, choose F,= A)0A20 ... 0A,;_;0A;410 ... OAy, f= 1,2,...,k. When k is 

odd, choose F, = A,0A20 ... 0A,_-:0A;410 ... OA,-1,2= 1,2,...,k—-1, and 

F, = A\0A20 eee OA, . 
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2. Replace A, i=1,2,...,k by F, i= 1,2,...,k into the Box-Behnken design matrix 

(4.9) or (4.11). 

3. In(4.11), position a center point on the middle of the experimental units associated 

with 0-value of 7. 

4. For each B,i=1,2,...,b, put BY in the experimental units associated with the 

negative values of J and B# in the experimental units associated with the positive 

values of T symmetrically with respect to the center point or vice versa. 

Then we obtain a LTF Box-Behnken design since the first order terms x, x, ... ,X, are 

orthogonal to a linear trend, and the second order terms are also orthogonal to a linear 

trend because all pure quadratic terms x/, x,’,...,x,, and the mixed quadratic terms 

Xi2, X13,» » X14,» are Symmetric with respect to the center point. Here is one of LTF 

Box-Behnken design matrices constructed by the above method. 
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where 

(D, T) 

      

U 
m1 Fy) 

U 
nF) 

U 
Ny F w(b,1) 

0 

L 
My F w(b,1) 

L 
11 Fy@,1) 

L 
My Fw1) 

U 
nF, w(1,2) 

U 
Ny F w(2,2) 

U 
Nya Fwp,2) 

0 

L 
NyF w(b,2) 

L 
NaF w(2,2) 

L 
M2 Fw 2) 

F, = A,0A20 ... OA;- 104A; 410 ... OAg, f= 1,2, ..., Kk. 

. ny Fc, ») 

. mF w(2, v) 

U 
Noy we, v) 

L 
Nyy i w(b, v) 

ny yf w(2, ¥) 

nF w(1, v) 

when k 

L 

L   
iS 

(4.14) 

even, 

F, = A\oA20 ... 0A, 1047410 ... OAg_ 1, = 1,2,..., kK —1, and F, = 410420 ... oA, when k is 

odd. 

Example 4.5.3 

Consider the Box-Behnken design with the PBIB(2) characterized by the parameters 

v=6,r=2,b6=3,k=4,1,;=2,4.=1, and treatment combinations (1,4), (2,5), (3,6) 

being first associates with 1, = 2 and the remaining treatment combinations being second 
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associates with J, = 1, (Design S1 in Clatworthy, 1973). Then the transpose of the in- 

cidence matrix 1s: 

110110 

N=/}101101 

011011 

Thus, the Box-Behnken design matrix D with linear trend vector J can be written as 

        

BY Av A,” 0 A,” Ay? 0 

Bt At Ae 0 A,” Age 0 

BY AY 0 A,” A,” 0 Aq? 

(D.D=| BY Tl=| 4° 0 A” AY 0 AY T 
BY 0 A” A,” 0 A,” Aq” 

B,t 0 Ae A,” 0 A,” Age 

0 0 0 0 0 0 0 

where A =(—1,1,—-1, 1, -1, 1, -1, 1)’, 444 =(-1,1,—-1, 1, -1,1,-1, 1’, ..., 

Ag’ =(-1,—-1, -1, -1, -1, -1, -1, —-1)’, As? = (1, 1,1, 1, 1,1, 1,1)’ are 2* factorials (see 

Table 4.4), 0 is an 8 x 1 zero vector, and 7’ = ( —24, — 23,..., —1,0,1, ... , 23, 24). 

Now, we want to construct a LTF Box-Behnken design using the method fork >4. 

1. Choose F, = A,0A30Aa, F, = A,0A30Aag, F; = A,0A20Aa, F, = A,\0A20A3 since k=4 

is even, where 

Ay” 
A; = _ | f= 12,34 

A; 
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2. Using Fi, Fi, F, F, as the generators of the Box-Behnken design, we then rewrite 

the design matrix D with J as 

Pu a FY 0 FY FY 0 

Bt Ft Ft 0 Ft F,t 0 

BY FY 0 FY FY 0 FY 

(DD=) BY Tl=|F° 0 FY BY 0 RT 
B,” 0 FY FY 0 A” EF,” 
B,t 0 FL Ft 0 Ft F,t 

0 0 0 0 0 0 «0 
: Job _         

3. Place a center point in the middle of the experimental units. 

4. Move BY, BY, BY in the experimental units associated with the negative values of 

T , and the corresponding Bf, B}, Bk are placed on the experimental units associ- 

ated with the positive values of J symmetrically with respect to the center point. 

Then, we obtain a LTF Box-Behnken design matrix as follows: 

ru FU ad 0 FU FY 0 

BY FY 0 FY FY 0 FU 

BY 0 FY FY 0 FY FU 

Daw=| 0 |=|0 0 0 0 0 0 
BE 0 Ft Ft 0 Ft Ft 

By” FY 0 FF” Oo F° 

BE Ft Ft 0 Ft Ft 0         
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Accordingly, we obtain X matrix for LTF Box-Behnken design with I such as 

X=[Dirr X T] 

where 

X11 -%22 %33, Xaq X55 X66 X12 X13 Migs ts X56 

11041410 FF" 0 FR’ 0 

1014104 0 FF,” FF,” 0 

ye 01104141 0 0 0 . yk? 

0 0 0 0 0 90 0 0 0 . O 

013104141 0 0 0 | FyF ye 

1o31t10o041 0 AR’ FRY 0 

1101 1 0 FRY 0 FE 0     
Here, FF," and FF} are defined as the upper half and the lower half of FF, respectively, 

1 is an 8 x 1 vector with elements being 1. 

Then, for the model 

6 6 6 

Ju = Bo + » Bitty + » Burin + » Bip XiuXry + Ot, + Ey; u=1,2,...,49 

i=l i=! L’=1 

i<i 

we have the X’X matrix 
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n QO r2ky Of IT | 49 0’ 321’ Q' 0 ] 

0 r*r 0 0 Q 0 37 O O Q 

XX=| r2*. 0 2*NN’) 0 O |=| 321 0 16(NN’) 0 Q 

0 0 0 G oO 0 0 0 G oO 

lr Q’ 0’ rT 0 0’ Q’ 9800         
where G is a diagonal matrix with diagonal elements being 32 or 16. 

Up to now, we considered linear trend-free (LTF) Box-Behnken designs with one 

center point. We now consider LTF Box-Behnken designs with an odd number of center 

points, Le. m=2n'+1 . Thus, we use a linear trend ¢ taking values 

~Hal wali ,-1,0,1, .. fot 1 n= 
2 2 2 

n= b2* + 2n’ + 1 is a number of observations with b2* experimental points and 2n' + 1 

1 ; ; 
over n experimental units where   

center points. In this case the construction methods for LTF Box-Behnken designs are 

the same as those shown in Section 4.5.1 and Section 4.5.2 except that we put n’ center 

points on the first n’ experimental units associated with the negative values of T , 1e 

— a »— — +1,...,— — | +n’ —1 values of the linear trend, 1 center point on 

the middle of the experimental units associated with the 0-value of J, and the remaining 

n’ center points on the last m’ experimental units associated with the positive values of 

. n—-1 n—-Il n— 
I , 1.e on the values 7? —1,.., 5 

ample, suppose we have m= 5 center points. Then we put 2 center points on the first 

experimental units associated with the — fat io aot +1 values of J, 1 center point 

on the middle of the experimental units associated with the 0-value of 7, and 2 center 

points on the last experimental units associated with the fot ; aot 

1 n’ +1 of the linear trend. For ex-   

—1 values of T 
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, where n = b2'+5. And we apply the same procedures of the construction methods in 

Section 4.5.1 and Section 4.5.2 depending on the value of k . 

4.5.3. LTF Box-Behnken designs with orthogonal blocking 

Where insufficient homogeneous experimental material is available for all the ex- 

perimental runs it become desirable to run them blocks. Where possible it is desirable 

to achieve orthogonal blocking, that is to arrange the runs such that the block contrasts 

are uncorrelated with all the estimates of the coefficients in the second-order model (Box 

and Behnken, 1960). Box and Behnken illustrate this with the following example: 
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Table 4.7. Box-Behnken design No.2 (Box and Behnken, 1960). 

- 

1 4% 4% % 

-1 -1 0 0 

1-1 O 0 

-1 1 0 O 

1 1 0 90 

0 0-1 +1 

0 0 1 =-1 

0 #0 -1 1 

0 0 1 1 

0 0 60 O 

-1 0 0-1 

1 0 0 -!1 

-1 oO 0 1 
Block1 

1 0 0 1 
D=j] Block2 | = 

0 —1 -1l 0 

Block3 
0 1-1 0 

0-) 1 =O 

0 1 1 #90 

0 0 0 0 

0-1 0 —1 

0 1 #0 =-1 

0-1 0 1 

0 1 0 1 

-1 0-1 O 

1 0 -1 0 

-1 0 1 0 

1 0 1 9 

0 0 0 O 

L a     
Chapter 4. Trend-free Box-Behnken designs



The Box-Behnken design is a rotatable second order design suitable for studying four 

variables in 27 trials and is capable of being blocked in three sets of nine trials with one 

center point in each block. 

Now we consider Box-Behnken designs with orthogonal blocking in which a common 

linear trend is assumed over experimental units within each block and each observation 

is designated to one experimental unit sequentially. We write the model as follows: 

v v v b 

Ju = Bo + » BXty + » Biri + » Ba XpXpy + » 6 m(Zmu ~~ Zm) + Ot, + ey (4.15) 

i<i 

u=1,2,...,, where fo, 8, Bi and By are unknown parameters, 6, is coefficient of 

corresponding block effect z,, , zm, 1S unity if the u th observation arises from an exper- 

imental run in the m th block, @ is the regression coefficient of the common linear trend 

t over experimental units in each block, and e, is a random error. 

In matrix notation, we can write 

Y=18) + XB, + XB. + X38,+ 26+ 70+ (4.16) 

where 6 is a mx | block effect vector. 

Now, we define a linear trend-free Box-Behnken design with orthogonal blocking as 

follows: 

Definition 4.3. A Box-Behnken design with orthogonal blocking under model (4.15) is 

said to be linear trend-free (LTF) if 

> Xtuly =, > Xu ty =0, > ar puty =0, (m=1,..., 5) (4.17) 
bl.m bl.m blim 
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The b/.m notation indicates that the sum is being taken over the observations in the m 

th block. The objective then is to construct a run order within blocks such that the de- 

sign is a linear trend-free Box-Behnken design. The construction methods are the same 

as those shown in Sections 4.5.1 and 4.5.2. We apply the method of Section 4.5.1 when 

k=2 or 3, and the method of Section 4.5.2 when k > 4. 

Example 4.5.4 

We consider the Box-Behnken design No.2 shown in previous example assuming now 

that there exists a linear trend over experimental units within each block. The design 

matrix with a linear trend T is as follows: 
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Block\ 

(D,Z) = | Block2 | = 

Block3 

We follow the method 4.5.1 to find a run order to be linear trend-free since k= 2. 

  

  

  

XX % % 4A Tt 

-I1-l1 0 0 100 -4 

1-1 0 0 100 -3 

~1 100 100 -2 

1 1 0 0 100 1 

0 O-!1 -1 100 0 

0 0 t-l 100 1 

0 O-1 1 100 2 

0 Oo 1 1 2100 3 

0 0 0 0 100 4 

-1 0 0-1 010 -4 

1 0 0-1 010 -3 

-~1 00 1 010 -2 

100 1 010 =! 

0-1-1 0 010 0 

0 i-l1 0 010 1 

0-1 1 0 010 2 

0 1 1 0 010 3 

0 00 0 010 4 

0-1 0-1 001 -4 

0 1 0-1 001 3 

0-1 0 1 001 -2 

Oo 1 90 1 0 0 1. -—!1 

-1 0-1 0 O01 49 

1 0-1 0 OoO1 1 

~1 0 1 0 001. 2 

1 0 1 0 001. 3 

000 0 001 4   
By step 1, we put a center point within each block on the middle of the experimental 

units whose linear trend value is 0. Then, we obtain run orders as follows: 
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Block 

(D, J) = | Block2 | = 

Block3 
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Here, we consider the first block to find a run order to be linear trend-free. the first block 

can be written as 
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Block| = 
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a
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By step 2, we have 2? cases for first block to arrange. 

X % %y % % % % % € 

-1 -1 O 0 -1 ~1 O 9 —4 

1-1 0 0 1-1 0 0 —cy 

0 0-1 -1 0 O-1 1 ~Cy 

Block\(D\) = oe 8 Rt , Block\(D.) = ee 4 , “4 
0 oO OO 0 0 0 0 0 

0 0-1 1 0 0-1 -1 Cy 

001 1 0 0 1-1 C) 

-1 1 0 O -1 1 0 0 C3 

1 1 0 0 1 1 0 0 4         
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XX XO 4 % % % c 

—1 1 0 0 -1 1 0 0 —C% 

1 1 0 0 1 1 0 0 -¢ 

0 0-1 =-1 0 0-1 1 ~¢y 

0 0 1-1 001 1 —<, 
Block\(D3) = » — Blocki(D,) = 

0 0 O 0 0 0 O 0 

0 0-1 1 0 0 =-1 -1 C 

00 1 1 0 0 1-1 Cy 

~1-1 0 0 -1-1 0 0 ¢3 

1-1 0 0 1-1 0 0 C4   
We can see that the all cases Block1(D,), Block\(D.), Block\1(D3) and Block1(D,) will not 

satisfy the equations x*'Ct =0, x,*"C* = 0, since x,+ , x,* consist of 1 and 0, or -1 and 0 

due to the fact that all elements of C* take positive integer values, ranging from | to 4. 

So, in this design, there does not exist a LTF Box-Behnken design with orthogonal 

blocking. 

4.6. Conclusions 

When a linear trend exists over experimental units in the Box-Behnken designs, 

we use two different methods for constructing LTF Box-Behnken designs, depending on 

the value of k . We apply the method of Section 4.5.1 when k = 2 or 3, and the method 

of Section 4.5.2 when k>4. We then have the following results: 

(i) For k=2 or 3, we can generally but not always find a LTF Box-Behnken design using 

the construcion method first described in Section 4.4. 

(ii) For k = 4, there always exist LTF Box-Behnken designs. 
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(iii) For Box-Behnken designs with orthogonal blocking, there always exist LTF Box- 

Behnken designs when k > 4, however, we have not been able to find arrangements that 

are linear trend-free within blocks when k=2 or 3. 
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Chapter 5. Summary 

Box-Behnken designs (Box and Behnken, 1960) are a class of three-level incom- 

plete factorial designs for the estimation of parameters in a second-order response sur- 

face model. These designs are formed by combining two-level factorial designs with 

incomplete block designs in a particular manner. Box and Behnken showed how to 

construct the designs, and illustrated the method with some useful designs of second 

order. 

In Chapter 2, we consider the properties of Box-Behnken design with respect to the 

estimability of all parameters in a second-order model when we use 2* full factorials. 

The design matrix of the Box-Behnken design is expressed as a more general math- 

ematical formulation. We can derive the X’X matrix which contains information about 

the estimability of the parameters in the second order model. The properties of the de- 

sign are determined essentially by the properties of the coefficient matrix of the normal 

equations. Concerning the estimators, we can draw the following conclusions from the 

XX matrix: 
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(i) We get uniformly minimum variance unbiased estimators for the first-order coeffi- 

cients. 

(ii) The rank of X,’X, is less than or equal to v , say s, since rank ( NN’ ) = s <v. This 

implies that we have s estimable functions among Bu, Bu, ..., B.. So, for all Bi; to be 

estimable the PBIB(m) design has to be chosen such that rank (NN’) =v. 

(iii) If A,, A2,..., Am are all greater than zero, the mixed quadratic coefficients are all 

estimable. If A;=0 then all elements gj, = 0 corresponding to those treatments j, i’ 

which are 6 -th associates, and this implies that the corresponding parameters f;, are not 

estimable. So, for all Bi» (i< i’) to be estimable the PBIB(m) design has to be chosen 

such that all J, >0 (y = 1,2,..., m). 

In Chapter 3, we consider the properties of Box-Behnken design when we use 2*-! 

fractional factorials. One practical difficulty with the Box-Behnken design, using an in- 

complete block design together with the full 2* factorial, is that the number of design 

points increases rapidly as k, the block size increases. Instead of using a full factorial, 

Box and Behnken (1960) advocate using a 2‘-! fractional factorial, hence reducing the 

number of design points from 52‘ + 1 to 62‘-'+ 1. 

We first consider the smallest fraction which is a main effect plan or resolution III de- 

sign. The basic property of a resolution III design is that main effects are confounded 

with two-factor interactions. A consequence of this is that for the coefficient matrix the 

elements of X’.X; are no longer 0 and the off-diagonal elements of X’3X3 are not 0. Thus, 

using a resolution III design instead of the full factorial does alter the properties of the 

estimators in the sense that the estimates of the first-order coefficients and the estimates 

of the mixed quadratic coefficients are no longer uncorrelated, and the estimates of the 

mixed quadratic coefficients are no longer uncorrelated with each other. 
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Next we consider using a resolution IV design, in which two-factor interactions are 

confounded with each other. A consequence of this is that X’3X; is not a diagonal ma- 

trix. From the form of the X’X matrix we can see that the estimates of the first-order 

coefficients and the pure qudratic coefficients have the same properties as those with the 

full factorial. But the estimates of the mixed quadratic coefficients do not have the same 

property as those with the full factorial since X’:X; is no longer diagonal. In addition, 

for some PBIB designs .X’3X;3 is less than full rank. This means that for some Box- 

Behnken designs even when all A, > 0 we may not be able to estimate all mixed quadratic 

coefficients. Thus it may not be advisible to use a resolution IV design. But for some 

Box-Behnken designs with PBIB(2) when 4,>0 , 42>0 , X’3X; is of full rank, which 

implies that all mixed quadratic coefficients are estimable. Using fractional factorials 

of resolution V or higher leads to the same form of X’X as for the full factorial, except 

that 2‘ is replaced by 2‘-'. Thus, the estimates of all parameters have the same prop- 

erties as for the full factorial. 

In Chapter 4, we are first concerned with Box-Behnken designs using 2* full fac- 

torials in which treatments are applied to experimental units (plots) sequentially in time 

or space and in which there may exist a linear trend effect. For this situation, the ob- 

jective is to obtain a linear trend-free Box-Behnken design so that the estimates of the 

first-order coefficients, the pure quadratic coefficients, and the mixed quadratic coeffi- 

cients are not affected by such a trend. We take advantage of the symmetric property 

of the second order terms (pure quadratic terms and the two-factor interactions) and 

anti-symmetric property of the main effect contrasts of the 2‘ factorials in order to con- 

struct a LTF Box-Behnken design by putting a center point on the middle of the exper- 

imental units associated with the 0-value of the linear trend, and placing the halves of 

each B, i= 1,2, ..., 5 symmetrically with respect to the center point since the structure 
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of the Box-Behnken designs is based on the 2* factorial designs. We use two different 

methods for constructing LTF Box-Behnken designs, depending on the value of k . We 

apply the method of Section 4.5.1 when k = 2 or 3, and the method of Section 4.5.2 when 

k>4. We then have the following results: 

(i) For k=2 or 3, it may not always be possible to find linear trend-free Box-Behnken 

designs. 

(ii) For k > 4, there always exist LTF Box-Behnken designs. 

We next consider Box-Behnken designs with orthogonal blocking in which a common 

linear trend is assumed over experimental units within each block and each observation 

is designated to one experimental unit sequentially. The objective then is to construct 

a run order within blocks such that the design is a linear trend-free Box-Behnken design. 

The construction methods are the same as those shown in Sections 4.5.1 and 4.5.2. For 

Box-Behnken designs with orthogonal blocking, we always find linear trend-free Box- 

Behnken designs when k = 4 , however, we have not been able to find arrangements that 

are linear trend-free within blocks when k= 2 or 3. 

The following topics require further research: 

(i) For Box-Behnken designs with orthogonal blocking and k= 2 or 3 we want to find run 

orders within blocks such that the design is a linear trend-free Box-Behnken design. 

(11) In addition to linear trends we may also want to include quadratic trends and con- 

struct Box-Behnken designs which are both linear and quadratic trend-free. 
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Appendix. The modified LINDO Program 

The computer program LINDO (Linear, INteractive, and Discrete Optimizer) was 

develpoed by Schrage (1981) and updated as recently as 1991 (Release 5.0). It is an 

interactive linear, quadratic, and integer programming system designed for maximizing 

or minimizing linear objective functions subject to several linear constraints of equality 

or/and inequality. In order to use this program in the context of Chapter 4, i.e. to solve 

equations like (4.13), several modification must be made since (i) equations (4.13) do not 

have a_ specific objective function to be optimized, and (ii) the solution 

Ct = (ci, Ca, ... , Cs)’ has to be such that the c, i= 1,2, ..., b2*-! are distinct integer values 

between 1 and b2*-'!. 

To solve linear equations like (4.13), first we assign a dummy objective function (it can 

be either a minimization or maximization problem). Then we assign our linear system 

ar’Ct=0, x¢’C+=0,..., xt’C* =0 as constraints in the optimization problem. Note 

hae 5g OD 
To make the solutions c, distinct, we use standard assignment technique. Define as- 

since the solutions c, are distinct integers from 1 to b2*-'. 

62k -1 k-1 

signment matrix {y,}, i,i=1,..., 624! such that ¥ y,=1 for alli, ¥ y,=1 for all j 
j=l i=1 

where y, ’s can only take either 0 or 1. Then, each row and each column of the assign- 
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ment matrix {y,} has only one nonzero element (i.e., 1). After assignment of y, , we as- 

sign actual integers varying from 1 to 62*-' to the c,; ‘s according to the indicator 

variables y, ‘s such that c= 5 j Vy + 

We illustrate the procedure for the specific equations (4.13) with 6 variables and 3 

equations since b2‘-!'=6, v=3. We modify the LINDO program as follows: 

(1) MINC1 + C2 + C3 + C4 + C5 + C6 

ST 

(2) -C3 + C4-C5 + C6=0 

(3) -Cl+C2+C5+C6=0 

(4) -Cl-C2+C3+C4=0 

(5) Cl+C2+C3+C4+C5+C6=21 

(6) Y11 + Y12 + Y13 + Y14+ Y15 + YI6=1 

(7) Y21 + Y22 + Y23 + Y24 + Y25 + Y26 = 1 

(8) Y31 + Y32 + Y33 + Y34 + Y35 + Y36 = 1 

(9) Y41 + Y42 + Y43 + Y44 + Y45 + Y46 = 1 

(10) Y51 + Y52 + Y53 + Y54 + Y55 + Y56=1 

(11) Y61 + Y62 + Y63 + Y64 + Y65 + Y66 = 1 

(12) Yili + Y21 + Y31 + Y41 + Y51 + Y61 = 1 

(13) Y1I2 + Y22 + Y32 + Y42 + YS2 + Y62 = 1 

(14) Y13 + Y23 + Y33 + Y43 + Y53 + Y63 = 1 

(15) Y14 + Y24 + Y34 + Y44 + YS4 + Y64 = 1 

(16) Y15 + Y25 + Y35 + Y45 + Y55 + Y65 = 1 

(17) Y16 + Y26 + Y36 + Y46 + Y56 + Y66 = 1 

(18) -Y11-2Y12 - 3Y13 - 4Y14 - 5Y15 - 6Y16 + Cl 

Il 
ll 

oO
 

So 

(19) -Y21 - 2Y¥22 - 3Y23 - 4Y24 - SY25 - 6Y26 + C2 
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(20) 

(21) 

(22) 

(23) 

Appendix. The modified LINDO Program 

-Y31 - 2Y32 - 3Y33 - 4Y34 - SY35 - 6Y36 + C3 

-Y41 - 2Y42 - 3Y43 - 4Y44 - SY45 - 6Y46 + C4 

0 

0 

-Y51 - 2Y52 - 3Y53 - 4Y54 - SY55 - 6Y56 + C5 = 0 

-Y61 - 2Y62 - 3Y63 - 4Y64 - SY65 - 6Y66 + C6 = 0 

END 

INTE Y11 

INTE Y12 

INTE Y13 

INTE Y14 

INTE Y15 

INTE Y16 

INTE Y21 

INTE Y22 

INTE Y23 

INTE Y24 

INTE Y25 

INTE Y26 

INTE Y31 

INTE Y32 

INTE Y33 

INTE Y34 

INTE Y35 

INTE Y36 

INTE Y41 

INTE Y42 

INTE Y43 
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INTE Y44 

INTE Y45 

INTE Y46 

INTE YS51 

INTE Y52 

INTE Y53 

INTE Y54 

INTE Y55 

INTE Y56 

INTE Y61 

INTE Y62 

INTE Y63 

INTE Y64 

INTE Y65 

INTE Y66 

Here, line (1) is a dummy objective function, lines (2)-(4) are constrainsts in actual linear 

equations, i.e., x¢’C+ =0, x¢’C+ =0, xt’C* =0 , line (5) means that Yas 21 , lines 

(6)-(17) dictate standard assignment of 6 rows and 6 columns by using indicator vari- 

ables x, such that Dw = 1 for alli, Dy = 1 for all j , and lines (18)-(23) will assign to 

the c, actual values varying from 1 to 6 according to non-zero y, values. INTE defines 

indicator variables y, as binary (0 or 1). Then we obtain a _ solution 

Ct = (ci, C2, C3, Ca Cs, Cs)’ = (6, 3, 4, 5, 2, 1)’ . 
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