EDGEWORTH EXPANSION

Consider the central limit theorem: For $X_{1,1}, X_{n}$ sid with mean μ and
variance $\sigma^{2}<\infty$ variance $\sigma^{2}<\infty$,

$$
\frac{\sqrt{n}\left(\bar{x}_{n}-\mu\right)}{\sigma} \rightarrow N(0,1) \text { in dist. is } n \rightarrow \infty \text {. }
$$

We might wish t know

- How fast is the convergence to Normality?
- What features of the distribution of X_{1}, \ldots, X_{n} affect the rate of convergence and how?

Edgeworth expansions help us to answer these questions. Moreover, they can be used to show that the boot works - and that it can provide a better approximation to the sampling distribution of $\sqrt{n}\left(\bar{x}_{n}-\mu\right) / \sigma$ then the $N(0,1)$ distribution.

Theorem $\left(1^{\text {st }}\right.$ and $2^{\text {and }}$ order Edgeworth Expansions) :

$$
|\mathbb{E} \operatorname{eap}(2 t y,)|<1 \quad \text { for } \quad \text { ll } \quad t \neq 0 \text {. (Non-lattice) }
$$

Then

$$
\sup _{x \in \mathbb{R}}\left|P\left(\frac{\sqrt{n}\left(\bar{y}_{n}-n\right)}{\sigma} \leq x\right)-\Psi_{n, s}(x)\right|=o\left(n^{-1 / 2}\right)
$$

as $n \rightarrow \infty$ and

$$
\sup _{x \in \mathbb{R}}\left|P\left(\frac{\sqrt{n}\left(\bar{y}_{n}-\mu\right)}{\sigma} \leq x\right)-\Psi_{n, 11}(x)\right|=o\left(n^{-1}\right),
$$

where

$$
\begin{aligned}
& \Psi_{n, 3}(x)=\Phi(x)-\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(x^{2}-1\right) \phi(x) \\
& \Psi_{n, 4}(x)=\Phi(x)-\left\{\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(x^{2}-1\right)\right.+\frac{1}{24 n} \cdot\left(\frac{\mu_{4}}{\sigma^{4}}-3\right)\left(x^{3}-3 x\right) \\
&\left.+\frac{1}{72 n} \cdot \frac{\mu_{3}^{2}}{\sigma^{6}}\left(x^{5}-10 x^{3}+15 x\right)\right\} \phi(x) .
\end{aligned}
$$

We now spend some time deriving the E.E.: Here I acknowledge my indebtedness to Dr. David Hunter at Pan n state, whom notes I have essentilly followed.

We will need to introduce Hermite polynomials:
Hermite polynomids: The Hermite polynomids H_{1}, H_{2}, \ldots, are defined by the relation
$(-1)^{k} \frac{d^{k}}{d x^{k}} \phi(x)=H_{k}(x) \phi(x)$, for $k=1,2, \ldots$
bbc $\frac{\partial}{\partial x} \phi(x)$ allay brings a minus sign dom to the font.
We obtain, for $k=1,2,3$, the following:
$k=1$:

$$
\begin{array}{rlrl}
\frac{d}{d x} \phi(x) & =\frac{\partial}{d x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} & \frac{d}{d x}\left[H_{k}(x) \phi(x)\right]=(-1)^{k} \frac{d^{k+1}}{d x^{k+1}} \phi(x) \\
& =-x \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
& =(-1)^{1} \underbrace{x}_{H_{1}(x) .} \phi(x)
\end{array}
$$

so $\quad H_{1}(x)=x$ since $(-1)^{\prime} \phi^{(1)}(x)=H_{1}(x) \phi(x)$
$k=2:$

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} \phi(x) & =\frac{d}{d x}[-x \phi(x)] \\
& =-x \phi^{\prime}(x)-\phi(x)
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2} \phi(x)-\phi(x) \\
& =\left(x^{2}-1\right) \phi(x) .
\end{aligned}
$$

en $H_{2}(x)=x^{2}-1$, \sin ce $(-1)^{2} \frac{\partial^{2}}{\partial x^{2}} \phi(x)=\left(x^{2}-1\right) \phi(x)$.
$k=3:$

$$
\begin{aligned}
\frac{d^{3}}{d x^{3}} \phi(x) & =\frac{d}{d x}\left(x^{2}-1\right) \phi(x) \\
& =\left(x^{2}-1\right) \phi^{\prime}(x)+2 x \phi(x) \\
& =\left(x^{2}-1\right)(-1) x \phi(x) \\
& =(-1)\left[x^{3}-x-2 x\right] \phi(x) \\
& =(-1)[\underbrace{x^{3}-3 x}_{H_{3}(x)}] \phi(x) .
\end{aligned}
$$

s. $\quad H_{3}(x)=x^{3}-3 x$, since $(-1)^{3} \frac{\partial^{3}}{\partial x^{3}}=\left(x^{3}-3 x\right) \phi(x)$.

Doing more work, un e can obtain

$$
\begin{aligned}
& H_{4}(x)=x^{4}-6 x^{2}+3 \\
& H_{5}(x)=x^{5}-10 x^{3}+15 x .
\end{aligned}
$$

Note that the Hermite polynomial speer in the Edgeworth Expansions!

Next, we will ur the fec that if X is a ru with characteristic function ψ_{x} satisfying $\int_{-\infty}^{\infty}\left|\psi_{x}(t)\right| d t<\infty$, then the density of X is given by

$$
f_{x}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{eap}(-2 t x) \psi_{x}^{\psi}(t) d t \text {, for all } x \in \mathbb{R} \quad\binom{\text { This is cellar the }}{\text { inversion formula }}
$$

to satan th following useful identity:

Useful Identity:

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 t x} e^{-t^{2} / 2}(2 t)^{k} d t & =\frac{(-1)^{k}}{2 \pi} \int_{-\infty}^{\infty} \frac{d^{k}}{d x^{k}} e^{-2 t x} e^{-t^{2} / 2} d t \\
& =(-1)^{k} \frac{d^{k}}{d x^{k}} \underbrace{\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 t x} e^{-t^{2} / 2} d t} \\
& =(-1)^{k} \frac{d^{k}}{d x^{k}} \phi(x) \begin{array}{l}
\text { } \begin{array}{l}
\phi(x) \text { by the inversion } \\
\text { formula, since exp }\left(-t^{2} / 2\right) \\
\text { is the chencteristr function } \\
\text { of the N } N, 1) \text { dist. }
\end{array} \\
\end{array} \quad=H_{p}(x) \phi(x) .
\end{aligned}
$$

Derivation of Edgeworth expansions:

We will simplify slightly by assuming, without loss of generality, that X_{1}, \ldots, X_{n} an sid with

$$
\begin{array}{ll}
\mathbb{E} x_{1}=0 & \mathbb{E} X_{1}^{3}=\gamma \\
\mathbb{E} X_{1}^{2}=1 & \mathbb{E} x_{1}^{4}=\tau<\infty
\end{array}
$$

and that

$$
\left|E \exp \left(2 t x_{1}\right)\right|<1 \quad \text { for all } t \neq 0 \text {. }
$$

We study the distribution of the standardized som

$$
S_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}=\sqrt{n} \frac{\left(\bar{x}_{n}-0\right)^{\mu}}{\frac{5}{2}_{\sigma}} \text {. }
$$

Begin by constructing the cherecteristre function of S_{n} :

$$
\begin{aligned}
& \psi_{S_{n}}(t)=\mathbb{E} \exp \left(2 t S_{n}\right) \\
&=\mathbb{E} \exp \left(\frac{2 t}{\sqrt{n}} \sum_{i=1}^{n} x_{i}\right) \\
&=\mathbb{E} \prod_{i=1}^{n} \exp \left(\frac{2 t}{\sqrt{n}} x_{i}\right) \\
&(\text { (ind) }) \prod_{i=1}^{n} \mathbb{E} \operatorname{eop}\left(\frac{2 t}{\sqrt{n}} x_{i}\right) \\
&=\left[\mathbb{E} \operatorname{eop}\left(\frac{2 t}{\sqrt{n}} x_{1}\right)\right]^{n}
\end{aligned}
$$

The non-lattice condition comes in here. We need $\mathbb{E}_{\exp }(\operatorname{tt} \times / \sqrt{n})<1$ so that we can raise it to the power n without making it diverge.

Now make a Taylor expansion of $\mathbb{E} \operatorname{eop}\left(\frac{2 t}{\sqrt{n}} X\right)$ around $t=0$:

$$
\begin{aligned}
& \text { 芐 } \operatorname{eop}\left[\frac{2 t}{\sqrt{n}} x\right]=\mathbb{E}([1+\frac{2 x}{\sqrt{n}} \cdot t+\frac{1}{2}\left(\frac{2 x}{\sqrt{n}}\right)^{2} t^{2}+\frac{1}{6}\left(\frac{2 x}{\sqrt{n}}\right)^{3} t^{3} \\
&\left.\left.+\frac{1}{24}\left(\frac{2 x}{\sqrt{n}}\right)^{4} t^{4}\right]+0\left(n^{-2}\right)\right) \\
&=\left(1+\frac{t^{2}}{2 n}\right)+\frac{\gamma}{6} \frac{(2 t)^{3}}{n^{3 / 2}}+\frac{\tau}{24} \frac{(2 t)^{4}}{n^{2}}+0\left(n^{-2}\right) \\
& {\left[e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots\right] }
\end{aligned}
$$

No. we went to raise this to the n" pome:

$$
\begin{aligned}
& \left(\mathbb{E} \exp \left[\frac{2 t}{\sqrt{n}} x\right]\right)^{n}=\left[\left(1-\frac{t^{2}}{2 n}\right)+\frac{\gamma}{6} \frac{(2 t)^{3}}{n^{3 / 2}}+\frac{\tau}{24} \frac{(2 t)^{4}}{n^{2}}+o\left(n^{-2}\right)\right]^{n} \\
& =\left(1-\frac{t^{2}}{2 n}\right)^{n}+\frac{n!}{(n-1)!1}=n\left(1-\frac{t^{2}}{2 n}\right)^{n-1} \frac{6}{6} \frac{(2 t)^{3}}{n^{3 / 2}} \\
& +n\left(1-\frac{t^{2}}{2 n-1}\right)^{n} \frac{\tau}{24} \frac{(2 t)^{4}}{n^{2}} \\
& +\underbrace{\frac{n(n-1)}{2}}_{\sum_{(n-2)!2!}^{2 n}}\left(1-\frac{t^{2}}{2 n}\right)^{n-2}\left[\frac{6}{6} \frac{(n t)^{3}}{n^{3 / 2}}\right]^{2}+\circ\left(n^{-1}\right) \\
& =\left(1-\frac{t^{2}}{2 n}\right)^{n}+\left(1-\frac{t^{2}}{2 n}\right)^{n-1}\left[\frac{6}{6} \frac{(2 t)^{3}}{n^{1 / 2}}+\frac{\tau}{24} \frac{(2 t)^{n}}{n}\right] \\
& +\left(1-\frac{t^{2}}{2 n}\right)^{n-2} \frac{(n-1)}{n^{2}} \frac{r^{2}(2 t)^{6}}{72}+\circ\left(n^{-1}\right),
\end{aligned}
$$

when the send equality comes from the Multinomisl Theorem

$$
\left(a_{1}+\ldots+a_{m}\right)^{n}=\sum_{\substack{n_{1}, \ldots, n_{m} \in\left\{0, \ldots, n_{1} \\ n_{1}+\ldots+n_{m}=n\right.}}\left(\frac{n!}{n_{1}!\cdot \ldots \cdot n_{m}!}\right) \quad a_{1} \cdot \ldots \cdot a_{m}^{n_{m}} .
$$

Next, in use the fat that for calh nonnegtive intger k,
(A) $\left(1+\frac{a}{n}\right)^{n-k}=e^{a}\left(1-\frac{a(a+k)}{2 n}\right)+0\left(\frac{1}{n}\right) \quad \therefore n \rightarrow \infty$
to write

$$
\begin{aligned}
& \left(1-\frac{t^{2}}{2 n}\right)^{n}=e^{-t^{2} / 2}\left(1+\frac{t^{2} / 2\left(-t^{2} / 2\right)}{2 n}\right)+0\left(\frac{1}{n}\right) \\
& \left(1-\frac{t^{2}}{2 n}\right)^{n-1}=e^{-t^{2} / 2}\left(1+\frac{t^{2} / 2\left(1-t^{2} / 2\right)}{2 n}\right)+\cdot\left(\frac{1}{n}\right) \\
& \left(1-\frac{t^{2}}{2 n}\right)^{n-2}=e^{-t^{2} / 2}\left(1+\frac{t^{2} / 2\left(2-t^{2} / 2\right)}{2 n}\right)+\cdot\left(\frac{1}{n}\right) \cdot
\end{aligned}
$$

Plogring thace into our expersion for $\left(\mathbb{E} \text { exp }\left(\frac{2 t}{\sqrt{10}} x\right)\right)^{n}$ gime

$$
\begin{aligned}
& \left(\mathbb{E} \operatorname{cap}\left[\frac{2 t}{\sqrt{n}} x\right]\right)^{n}= \\
& e^{-t^{2} / 2}\left[\left(1-\frac{t^{4} / 4}{2 n}\right)+\left(1-\frac{t^{2} / 2\left(1-t^{2} / 2\right)}{2 n}\right)\left[\frac{6}{6} \frac{(2 t)^{3}}{n^{1 / 2}}+\frac{\tau}{24} \frac{(2 t)^{4}}{n}\right]\right. \\
& +\left(1-\frac{t^{2} / 2\left(2-t^{2} / 2\right)}{2 n}\right) \underbrace{}_{\text {thnn }+\frac{1}{n^{2}} \frac{(n-1)}{\theta^{3}\left(2 \left(2 t^{6}\right.\right.} \frac{r^{2}(2 t)^{6}}{7+2}}+\circ\left(n^{-1}\right) \\
& =e^{-t^{2} / 2}\left[1-\frac{t^{7}}{8 n}+\frac{\gamma}{6} \frac{(2 t)^{3}}{n^{1 / 2}}+\frac{\tau}{24} \frac{(2 t)^{4}}{n}+\frac{1}{n} \frac{\gamma^{2}(2 t)^{6}}{72}\right]+0\left(n^{-1}\right)
\end{aligned}
$$

$$
=e^{-t^{2} / 2}\left[1+\frac{\gamma}{6} \frac{(2 t)^{3}}{\sqrt{n}}+\frac{(\tau-3)}{24 n}(2 t)^{4}+\frac{t^{2}(2 t)^{6}}{72 n}\right]+0\left(\frac{1}{n}\right) .
$$

Remember, this ss Taylor expansion of $\psi_{S_{n}}$. Let

$$
\tilde{\psi}_{s_{n}}(t)=e^{-t^{2} / 2}\left[1+\frac{\gamma}{6} \frac{(2 t)^{3}}{\sqrt{n}}+\frac{(\tau-3)}{24 n}(2 t)^{4}+\frac{6^{2}(2 t)^{6}}{72 n}\right]
$$

Now, to get an approximation to the col of S_{n}, we
(i) invert $\tilde{\psi}_{s_{n}}$ to get the corresponding pdf $\tilde{f}_{s_{n}}$
(i) take the antiderivative of $\tilde{f}_{s_{n}}$.

Inversion of $\tilde{\psi}_{s_{n}}(t)$:

$$
\begin{align*}
\tilde{f}_{S_{n}}(x)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 t x} \tilde{\psi}_{S_{n}}(t) d t \\
= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 t x} e^{-t^{2} / 2}\left[1+\frac{-6}{6} \frac{(2 t)^{3}}{\sqrt{n}}+\frac{(\tau-3)}{24 n}(2 t)^{4}+\frac{t^{2}(2 t)^{6}}{72 n}\right] d t \\
= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 t x} e^{-t^{2} / 2} d t+\frac{x}{6 \sqrt{n}} \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 t x} e^{-t^{2} / 2}(2 t)^{3} d t \\
& +\frac{(\tau-3)}{24 n} \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 t_{x}} e^{-t^{2} / 2}(2 t)^{4} d t \\
& +\frac{t^{2}}{72 n} \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 t_{x}} e^{-t^{2} / 2}(t t)^{6} d t \\
= & \quad \phi(x) \tag{18}\\
& +\frac{\gamma}{6 \sqrt{n}} H_{3}(x) \phi(x)+\frac{\tau-3}{24 n} H_{4}(x) \phi(x)
\end{align*}
$$

$$
+\frac{\gamma^{2}}{72 n} \quad H_{6}(x) \phi(x) .
$$

So we have

$$
\tilde{f}_{s_{n}}(x)=\phi(x)\left[2+\frac{x}{6 \sqrt{n}} H_{3}(x)+\frac{(\tau-3)}{24 n} H_{4}(x)+\frac{t^{2}}{72 n} H_{6}(x)\right] .
$$

Now take the antiderivatie of $\tilde{f}_{S_{2}}(x)$, making use of the fact

$$
\begin{aligned}
& \frac{d}{d x}\left[H_{k}(x) \phi(x)\right]=-H_{k+1}(x) \phi(x) . \\
& \tilde{F}_{5_{m}}(x)= \Phi(x)-\frac{\phi}{6 \sqrt{n}} H_{2}(x) \phi(x)-\frac{(\tau-3)}{24 n} H_{3}(x) \phi(x)-\frac{\gamma^{2}}{72 n} H_{5}(x) \phi(x) \\
&= \Phi(x)-\phi(x)\left[\frac{\gamma}{6 \sqrt{n}} H_{2}(x)+\frac{(\tau-3)}{24 n} H_{3}(x)+\frac{\gamma^{2}}{72 n} H_{5}(x)\right] \\
&=\Phi(x)-\phi(x)[\frac{6}{6 \sqrt{n}}\left(x^{2}-1\right)+\frac{(\tau-3)}{24 n}\left(x^{3}-3 x\right)+\frac{\gamma^{2}}{72 n} \overbrace{}^{5}(x)-10 x^{3}+15 x)] .
\end{aligned}
$$

This completes the derivation of the Edgeworth Expansions.

Note that

$$
\gamma=\mathbb{E} X_{1}^{3}=\mathbb{E}\left(\frac{X_{1}-0}{1}\right)^{3}=\frac{\mu_{3}}{\sigma^{3}} .
$$

where $\quad \mu_{3}=\mathbb{E}\left(X_{1}-\mathbb{E} x_{1}\right)^{3}$ and $\sigma^{2}=\mathbb{E}\left(X_{1}-\mathbb{E} X_{1}\right)^{2}$, and

$$
\tau-3=\mathbb{E}\left(\frac{x_{1}-0}{1}\right)^{4}=\frac{\mu-1}{\sigma^{4}}-3
$$

when $\quad \mu_{4}=\mathbb{E}\left(X_{1}-\mathbb{E} X_{1}\right)^{4}$.

We can also find Edgewortt. expantions for the studentized piost

$$
\frac{\sqrt{n}\left(\bar{x}_{n}-\mu\right)}{\hat{\sigma}_{n}}
$$

We stite thes resolts without derivistion (ene H.11 (1992) for detals).
Theoreme $\left(1^{\text {st }}\right.$ ad $2^{\text {ald }}$ order Edgeworth Expansioass for stadentizal pivot):
Let $Y_{11}, \ldots Y_{n}$ be iid with $\mathbb{E} Y=\mu, \operatorname{Var} Y=\sigma^{2} \in(0, \infty), \mathbb{E}|Y|^{3}<\infty, \mathbb{E}|Y|^{4}<\infty$,
and
supose

$$
|\mathbb{E} \operatorname{eap}(2 t y)|<1 \quad \text { for } \quad \text { ll } \quad t \neq 0 \text {. (Non-lattice) }
$$

Then

$$
\sup _{x \in \mathbb{R}}\left|P\left(\frac{\sqrt{n}\left(\bar{y}_{n}-\mu\right)}{\hat{\sigma}_{n}} \leq x\right)-\tilde{\Psi}_{n, s}(x)\right|=o\left(n^{-1 / 2}\right)
$$

as $n \rightarrow \infty$ and

$$
\sup _{x \in \mathbb{R}}\left|P\left(\frac{\sqrt{n}\left(\bar{y}_{n}-\mu\right)}{\hat{\sigma}_{n}} \leq x\right)-\tilde{\Psi}_{n, 11}(x)\right|=o\left(n^{-1}\right),
$$

where

$$
\begin{aligned}
\tilde{\Psi}_{n, 3}(x)=\Phi(x)+ & \frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(2 x^{2}+1\right) \phi(x) \\
\tilde{\Psi}_{n, 4}(x)= & \Phi(x)+\left\{\begin{array}{l}
\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(2 x^{2}+1\right)+\frac{1}{12 n} \cdot\left(\frac{\mu_{1}}{\sigma^{4}}-3\right)\left(x^{3}-3 x\right) \\
\\
\left.-\frac{1}{18 n} \cdot \frac{\mu_{3}^{2}}{\sigma^{6}}\left(x^{5}+2 x^{3}-3 x\right)-\frac{1}{4 n}\left(x^{3}+3 x\right)\right\} \phi(x) .
\end{array}\right.
\end{aligned}
$$

EDGEWORTH EXPANSION FOR THE BOOTSTRAP

Consider again the three pivots form the previous lecture

$$
\sqrt{n}\left(\bar{x}_{n}-\mu\right), \quad \frac{\sqrt{n}\left(\bar{x}_{n}-\mu\right)}{\sigma}, \quad \text { and } \quad \sqrt{n} \quad \frac{\left(\bar{x}_{n}-\mu\right)}{\sigma_{n}},
$$

where X_{1}, \ldots, x_{n} are ind with $\mathbb{E} X_{i}=\mu, V_{0} X_{1}=\sigma^{2}, \quad \bar{x}_{n}=n^{-1} \sum_{i=1}^{n} x_{i}, \quad \hat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}$ and the corresponding oafs

$$
\begin{aligned}
& G_{n, v}(x)=P\left(\sqrt{n}\left(\bar{x}_{n}-\mu\right) \leq x\right) \\
& G_{n}(x)=P\left(\frac{\sqrt{n}\left(\bar{x}_{n}-\mu\right)}{\sigma} \leq x\right) \\
& G_{n, s} s(x)=P\left(\sqrt{n} \frac{\left(\bar{x}_{n}-\mu\right)}{\sigma_{n}} \leq x\right) \quad \text { for .ll } x \in \mathbb{R} .
\end{aligned}
$$

The Edgeworth expansion results, applical to these pivots, give

$$
\begin{aligned}
& \sup _{x \in \mathbb{R}}\left|G_{n, 0}(x)-\Phi(x / \sigma)\right|=O\left(n^{-1 / 2}\right) \\
& \sup _{x \in \mathbb{R}}\left|G_{n}(x)-\Phi(x)\right|=O\left(n^{-1 / 2}\right) \\
& \sup _{x \in \mathbb{R}}\left|G_{n, s}(x)-\Phi(x)\right|=O\left(n^{-1 / 2}\right)
\end{aligned}
$$

as $n \rightarrow \infty$.

We interpret these results by saying that the "accuracy" of the Normal approximation to ${ }^{G_{n, U}}$, $G_{G_{n}}$, and $G_{n, s}$ is of the order $O\left(n^{-1 / 2}\right)$.

Now we oprseat a result for the accuracy of the bootstrap estimators of the caff $G_{n, v}, G_{n}$, and G_{n}, s.

Revolt: For $X_{1, \ldots} X_{n}$ id with mean μ, variance $\sigma^{2} \in(0, \infty)$, $\mathbb{E} X_{1}^{3}=\mu_{3}$ and $\mathbb{E} X_{1}^{4}=\mu_{4}<\infty$, provided

$$
\left|\mathbb{E} \exp \left(-2 t x_{1}\right)\right|<1 \text { for .ll } t \neq 0 \text {, }
$$

we have
(i) $\sup _{x \in \mathbb{R}}\left|\hat{G}_{m, v}(x)-G_{n, v}(x)\right|=O_{p}\left(n^{-1 / 2}\right)$
(ii) $\sup _{x \in \mathbb{R}}\left|\hat{G}_{n}(x)-G_{n}(x)\right|=o_{p}\left(n^{-1 / 2}\right)$
(iii) $\operatorname{sip}_{x \in \mathbb{R}}\left|\hat{G}_{n, s}(x)-G_{m, s}(x)\right|=o_{p}\left(n^{-1 / 2}\right)$
as $\quad n \rightarrow \infty$.
Note, the accuracy $o_{p}\left(n^{-1 / 2}\right)$ is better then $O_{p}\left(n^{-1 / 2}\right)$ ad $O\left(n^{-1 / 2}\right)$. We refer to the property of this improved accuracy as second-order correctives.

The stadentized bootstrop will, by the above result, perform butter than
the unstandardized bootstrap.

Sketch of Proof for Result:
For (i), we haves by the Edgeworth expansion result

$$
\operatorname{spf}_{x \in \mathbb{R}} \left\lvert\, G_{n, v}(x)-\left\{\left.\Phi(x / \sigma)-\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(\left(\frac{x}{\sigma}\right)^{2}-1\right) \phi\left(\frac{x}{\sigma}\right) \right\rvert\,=O\left(n^{-1}\right)\right.\right.
$$

and it can be shown that

$$
\sup _{x \in \mathbb{R}}\left|\hat{G}_{n, v}(x)-\left\{\Phi\left(x / \hat{\sigma}_{n}\right)-\frac{1}{6 \sqrt{n}} \frac{\hat{\mu}_{2, n}}{\hat{\sigma}_{n}^{3}}\left(\left(\frac{x}{\hat{\sigma}_{n}}\right)^{2}-1\right) \phi\left(\frac{x}{\hat{\sigma}_{n}}\right)\right\}\right|=O_{p}\left(n^{-1}\right)
$$

as $n \rightarrow \infty$, where $\hat{\mu}_{3, n}=n^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{3}$.

From the above we have

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|\hat{G}_{n, v}(x)-G_{n, v}(x)\right| \leq & O_{p}\left(n^{-1}\right)+\sup _{x \in \mathbb{R}}\left|\Phi\left(\frac{x}{\sigma}\right)-\Phi\left(\frac{x}{\hat{\sigma}_{n}}\right)\right| \\
& +\frac{1}{6 \sqrt{n}} \frac{\hat{\mu}_{3, n}}{\hat{\sigma}_{n}^{3}} \sup _{x \in \mathbb{R}}\left|\left[\left(\frac{x}{\hat{\sigma}_{n}}\right)^{2}-1\right] \phi\left(\frac{x}{\sigma_{n}}\right)\right| \\
& +\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma} \sup _{x \in \mathbb{R}}\left|\left[\left(\frac{x}{\sigma}\right)^{2}-1\right] \phi\left(\frac{x}{\sigma}\right)\right| \\
= & O_{p}\left(n^{-1 / 2}\right),
\end{aligned}
$$

as $n \rightarrow \infty$, when e the last equality requires a little more work.
For (ii), we have

$$
\sup _{x \in \mathbb{R}}\left|G_{n}(x)-\left\{\Phi(x)-\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(x^{2}-1\right) \phi(x)\right\}\right|=O\left(n^{-1}\right)
$$

and it can be shown that

$$
\sup _{x \in \mathbb{R}}\left|\hat{G}_{n}(x)-\left\{\bar{\Phi}(x)-\frac{1}{6 \sqrt{n}} \frac{\hat{\mu}_{3, n}}{\hat{\sigma}_{n}^{3}}\left(x^{2}-1\right) \phi(x)\right\}\right|=O_{p}\left(n^{-1}\right)
$$

as $\quad n \rightarrow \infty$.
Then we may write

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|\hat{G}_{n}(x)-G_{n}(x)\right| & \leq O_{p}\left(n^{-1}\right)+\frac{1}{6 \sqrt{n}}\left|\frac{\hat{\mu}_{3, n}}{\hat{\sigma}_{n}^{3}}-\frac{\mu_{3}}{\sigma^{3}}\right| \sup _{x \in \mathbb{R}}\left|\left(x^{2}-1\right) \phi(x)\right| \\
& =o_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

since $\quad \hat{\mu}_{3, n} \rightarrow \mu_{3}$ w.p. 1 and $\quad \hat{\sigma}_{n}^{3} \rightarrow \sigma^{3}$ w.p. 1.

For (iii), me how

$$
\operatorname{sep}_{x \in \mathbb{R}}\left|G_{n, 5}(x)-\left\{\bar{\Phi}(x)+\frac{1}{6 \sqrt{n}} \frac{\mu_{3}}{\sigma^{3}}\left(2 x^{2}+1\right) \phi(x)\right\}\right|=O\left(n^{-1}\right)
$$

and it cen be shewn thet

$$
\sup _{x \in \mathbb{R}}\left|\hat{G}_{n, j s}(x)-\left\{\bar{\Phi}(x)-\frac{1}{6 \sqrt{n}} \frac{\hat{\mu}_{\underline{g}, n}}{\hat{\sigma}_{1}^{3}}\left(2 x^{2}+1\right) \phi(x)\right\}\right|=O_{p}\left(n^{-1}\right)
$$

as $n \rightarrow \infty$.
Ther ine how

$$
\begin{aligned}
\operatorname{sip}_{x \in \mathbb{R}}\left|\hat{G}_{n, 5}(x)-G_{n, 5}(x)\right| & \leq O_{p}\left(n^{-1}\right)+\frac{1}{6 \sqrt{n}}\left|\frac{\hat{\mu}_{3, n}}{\hat{\sigma}_{n}^{3}}-\frac{\mu_{3}}{\sigma^{3}}\right| \operatorname{spp}_{x \in \mathbb{R}}\left|\left[2 x^{2}+1\right] \phi(x)\right| \\
& =o_{p}\left(n^{-1 / 2}\right) .
\end{aligned}
$$

vsing ag.in $\quad \hat{\mu}_{\text {in }} \rightarrow \mu_{3}$ w.p. 1 and $\quad \hat{\sigma}_{m}^{3} \rightarrow \sigma^{3}$ u.p.1.

