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Abstract. The third phase of the Borexino experiment that's referred to as SOX is devoted
to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline
(∼ 5−10m). The experimental measurement will be made with arti�cial sources namely with a
144Ce−144Pr antineutrino source at the �rst stage (CeSOX) and possibly with a 51Cr neutrino
source at the second one. The �xed 144Ce−144Pr sample will be placed beneath the detector
in a special pit and the initial activity will be about 100− 150 kCi. The start of data taking is
scheduled for April 2018. The article gives a short description of the preparation for the �rst
stage and shows the expected sensitivity.

1. Introduction

A number of extensions of the Standard model in elementary particle physics assume an
existence of one or more singlet neutrino �avours called sterile. Depending on their masses these
particles might play an important role in cosmological processes and astrophysical phenomena.
However the in�uence is minimal when the masses lie in the interval from 1 eV to 1 keV [1].
Additional attention to such kind of light sterile neutrinos is due to the opportunity to explain a
few unexpected experimental results at short baseline (L/Eν ∼ 1 m/MeV) using extra neutrino
types. The unexpected results are well known as the accelerator, gallium and reactor antineutrino
anomalies.

For the �rst time the accelerator anomaly had been observed in the LSND experiment. An
excess of νe events was registered in a νµ at ≈ 3.8σ beam [2, 3, 4, 5]. Two similar experiment,
KARMEN and MiniBooNE, reported contradictory results. The former didn't �nd the excess in
the transition νµ −→ νe [6] whereas the latter demostrated the excess signals at 2.8σ and 3.4σ
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for oscillations νµ −→ νe and νµ −→ νe respectively [7, 8].
The gallium anomaly or νe disappearance had been revealed in two radiochemical solar

neutrino experiments SAGE and GALLEX during processing of calibration data that were
acquired with 51Cr and 36Ar arti�cial radioactive sources [9, 10, 11, 12, 13, 14]. It is reported in
[15] that the signi�cance of the anomaly is ≈ 2.9σ.

After revaluation of reactor antineutrino spectra [16, 17] a de�cit of counting rate was noticed
in almost all reactor neutrino experiments [18] and a recent calculation [15] indicates the e�ect
at ≈ 2.8σ. However the reactor anomaly is strongly weakened by the results of Daya Bay [19].

2. CeSOX overview

The third phase of the Borexino experiment or CeSOX (Short-distance Oscillations with
BoreXino and a Cerium source) [20] is dedicated to the search for sterile neutrinos by means of a
compact arti�cial antineutrino source 144Ce−144Pr [21] with characteristic dimensions of 15 cm.
The Borexino detector is a large ultra low background liquid scintillator detector. The Borexino
target mass for CeSOX equals ∼ 240 t and the �ducial volume has a radius of 4 m. Along with
that the spatial resolution is about 10 cm/

√
E(MeV). It's planned to place the source right

beneath the detector center in a special pit. Such con�guration of the experiment will allow
to make a measurement at distances 4.5 � 12.5 m from the source. Thus one will be observed
not only a de�cit of counting rate as it occurs in a standard neutrino disappearance experiment
but a spectrum distortion with distance (so-called oscillation waves) as well. This complex
approach will provide a clear experimental 2D1 or 3D2 pattern [21] in case of the existence of
sterile neutrinos with ∆m2

14 ∈ (0.5, 5.0) eV2 (3+1 model, NH). A few characteristic 2D patterns
obtained from the Monte Carlo simulation are shown in Figure 1.

The inverse β-decay reaction, νe + p −→ e+ + n, is applied for antineutrino detection.
The process has a clear signature consisting of two consecutive events with a delay of
258.7 ± 0.8(stat) ± 2.0(sys) µs [23] between them. The former is a prompt event and it's
a electron-positron annihilation. The released energy is directly related to the νe energy as
Eprompt = Eνe − 0.789MeV. The latter is a delayed event and this is a 2.22 MeV de-excitation
γ-ray that appears as a result of a neutron capture on a proton (on a 1H nucleus).

The inverse β-decay has one signi�cant disadvantage consisting in the presence of an energy
threshold Ethr = 1.806 MeV. For selection a radioactive source it means one need to �nd a source
with the β-decay energy of a few MeV and the life-time of more than a year simultaneously. To
satisfy the requirements a two-component antineutrino source was chosen. It consists of a long-
lived nuclide with a low β-decay energy (144Ce, Q = 318 keV, T1/2 = 285 days) and a daughter

nuclide with a high β-decay energy (144Pr, Q1 = 2996 keV, Q2 = 2301 keV, T1/2 = 17.3min).

Thus only 144Pr component will be observed in the CeSOX experiment. Herewith two 144Pr decay
branches will be measured namely a non-unique �rst-forbidden transition 0− −→ 0+ (97.9%)
with endpoint energy 2996 keV and a unique �rst-forbidden transition 0− −→ 2+ (1.0%) with
endpoint energy 2301 keV.

The 144Ce−144Pr source has an activity of (3.7 − 5.5) · 1015 Bq (100 − 150 kCi). Taking into
account the half-life of the source the CeSOX will take data about 1.5 yr. During this period 104

events will be acquired. All measurements will be mostly background free. Based on the data
of the geo-neutrino study with Borexino [24] it can be argued the background equils ∼ 15 ev/yr
and it is negligible for CeSOX.

1 The dependence of the counting rate on the L/Eν , where L is a distance from the source to an antineutrino
event and Eν is an energy of the corresponding event.
2 The dependence of the counting rate on the energy of the antineutrino event and the distance to the source.
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Figure 1. Top plot: the expected counting rate
of antineutrino events in the Borexino detector
as a function of the ratio L/Eν for three
characteristic sets of the oscillation parameters
and for the non-oscillation case. Bottom plot:
The ratio of the counting rates that may be
observed with and without neutrino oscillations
to the sterile component as a function of L/Eν .
There are two clear 2D oscillometric patterns in
case of the speci�c values of the parameters on
the plot.

Figure 2. The expected sensitivity of
the SOX experiment to the sterile neutrino
oscillation parameters for the 3+1 scenario.
The possible results are shown taking into
account the following systematic uncertainties:
a total uncertainty of the normalization rate
of 1.5% and an absolute error of 0.03 on the
144Pr electron spectrum shape factor b. The
anomalies are taken from [22].

3. Source production and transportation

The 144Ce−144Pr antineutrino source is made by extracting cerium from exhausted nuclear
fuel. 144Ce is produced in the form of a chemical compound CeO2 (powder). Due to the cerium
β-decay the compound transforms into Pr2O3 with the release of oxygen O2. A special stainless
steel capsule was made to withstand high temperature (500 ◦C) and pressure (up to 6 bar). All
additional radioactive backgrounds of the source are almost completely suppressed with a thick
tungsten container (minimum thickness 19 cm).

The source will be manufactured by the PA ¾Mayak¿ company in Russia and delivered to
Gran Sasso in April 2018. During transportation the source capsule and shielding will be inside
an extra container (TN MTR). The root to Gran Sasso includes a way to St. Petersbourg
(Russia) by train, then to Le Harve (France) by ship, to Saclay (France) by truck and �nally to
Gran Sasso (Italy) by truck as well. It's expected that the transportation will take three weeks
and the source will lose ∼ 5% of its initial activity.

4. Sensitivity and features of the CeSOX experiment

As it is mentioned above the main idea of the experiment is an observation of the 2D or
3D oscillation pattern. The sensitivity of CeSOX is shown in Figure 2. It's clearly seen that
the experiment may exclude a large part of the region of the allowed parameters and actually
demonstrate the failure of the hypothesis of the sterile neutrino existence at ∼ 3σ. But the
results of the investigation largely depend on the precise characterization of the 144Ce−144Pr
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source. This dependence is expressed in the counting rate N(Eν , L, t)

N(Eν , L, t) ∼ A(t)× Sν(Eν , b) ∼
P (t)

< E(b) >
× Sν(Eν , b), (1)

where A(t) is an activity of the 144Ce-144Pr source, Sν(Eν , b) is a shape of the 144Pr spectrum,
P (t) is a thermal power of the source, < E(b) > is a mean energy per decay. The b factor is a
parameter of the weak �nite-size correction C(Z,W ) in case of the widespread parameterization:
C(Z,W ) ≡ 1+a ·W+b/W+c ·W 2, where a, b and c are parameters, Z is a charge of the nucleus,
W = Ee/me + 1 is a total energy of the β− particle in units of the electron rest mass. There
are two physical quantities, b and P (t), whose in�uence on the sensitivity of the measurements
is crucial. Figures 3 and 4 illustrate that fact.

Figure 3. The impact of the calorimetric
measurement uncertainty on the sensitivity of
the SOX experiment.

Figure 4. The impact of the uncertainty
related to the spectral shape of the main 144Pr
β−-decay branch on the sensitivity of the SOX
experiment. All curves correspond to 95% CL,
unless otherwise explicitly stated.

The thermal power will be measured with two independent calorimeters immediately after
delivery of the source to Gran Sasso and also instantly after the end of data-taking. For the
precision knowledge of the 144Pr shape factor �ve spectroscopic experiments are ongoing within
the Borexino collaboration. The previous shape factor measurements di�er by 10%.

Among other factors a�ecting the sensitivity it can be mentioned the following: spatial and
energy uncertainties, the precise knowledge of the Inner Vessel shape, the Monte Carlo simulation
quality and the e�ciency of the selection cuts. To minimize the uncertainties introduced by these
factors the new comprehensive calibration campaign is scheduled for January and February 2018.
A lot of di�erent radioactive sources will be applied: 241Am-9Be+Ni (neutrons), 68Ga-68Ge
(positrons), 40K (γ), 54Mn (γ), 65Zn (γ), 85Sr (γ) and 222Rn+14C (α, β and γ) as well.

5. Conclusion

In two years CeSOX may exclude the most part of the region of the allowed parameters. If
the oscillation pattern is observed additional measurements with a neutrino source 51Cr might
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be performed.
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