
NASA-TM-108654

and the states

SSTAC/ARTS REVIEW OF THE DRAFT INTEGRATED TECHNOLOGY PLAN (ITP)

Volume VI: June 26-27

Controls and Guidance

Briefings from the June 24-28, 1991 Conference McLean, Virginia

(NASA-TM-108654)SSTAC/ARTS REVIEWN93-20774OF THE DRAFT INTEGRATED TECHNOLOGYPLAN (ITP).VOLUME 6: CONTROLS ANDGUIDANCE (NASA)215 pUnclas

G3/81 0150611

National Aeronautics and Space Administration Office of Aeronautics, Exploration and Technology Washington, D.C. 20546

OAEI----

SSTAC/ARTS REVIEW OF THE DRAFT ITP Mclean, Virginia June 24-28, 1991

Volume VI: June 26-27

Controls and Guidance

TABLE OF CONTENTS

- CG1. Overview of Guidance and Controls Programs -- John Di Battista
- CG2. Strategic Avionics Technology Planning and Bridging Programs -- Aldo J. Bordano
- CG3. Avionics Technology Plan -- A.J. Bordano
- CG4. Avionics Technology Plan -- Aldo J. Bordano
- CG5. Vehicle Health Management -- Robert L. McKemie
- CG6. Spacecraft Guidance Research -- Douglas B. Price
- CG7. Autonomous Rendezvous & Docking -- Stephen Lamkin
- CG8. Autonomous Landing -- Ken Baker
- CG9. Code RC Controls Program -- Claude R. Keckler
- CG10. Overview of JPL Activities in GN&C -- Lincoln J. Wood
- CG11. Computational Control -- G.K. Man
- CG12. Fiberoptic Rotation Sensors (FORS) -- Randy Bartman
- CG13. Precision Instrument & Telescope Pointing -- F. Hadaegh and F. Tolivar
- CG14. Microsensors and Microinstruments -- W.J. Kaiser and T.W. Kenny
- CG15. Mico Guidance & Control Initiative -- Fred Y. Hadaegh
- CG16. Earth-Orbiting Platforms Controls-Structures Interaction -- Jerry R. Newsom

Overview of Guidance and Controls Programs

NASA Headquarters OAET/Code RC

June 26, 1991

John Di Battista

GUIDANCE AND CONTROL PROGRAM

OBJECTIVE:

Advance critical areas of enabling and enhancing transportation and spacecraft guidance and control technologies that support civil, commercial, science, and exploration missions for the 1990's and beyond. The technology program consists of research and technology development in:

• Guidance Technology

- Controls Technology
- Computational Controls Technology

GUIDANCE AND CONTROLS RESEARCH AND TECHNOLOGY PROGRAM BASIS

NATIONAL AERONAUTICS AND SPACE ACT OF 1958

...Space activities...shall be conducted so as to contribute materially to ...

(4) The establishment of long-range studies of the potential benefits to be gained from, the opportunities for, and the problems involved in the utilization of aeronautical and space activities for peaceful and scientific purposes;

(5) The preservation of the role of the United States as a leader in aeronautical and space science and technology and in the application thereof to the conduct of peaceful activities within and outside the atmosphere;...

Space Technology to Meet Future Needs...Joe Shea Committee 1987

SPACECRAFT

....concepts such as adapatively controlled structures should be developedpg 104

TRANSPORTATION VEHICLES

There is a need for modern technology in future vehicles of all classes to enable new capabilities such as heavier lift capacity, to improve reliability, and to lower cost.....pg 15

GUIDANCE AND CONTROLS PROGRAM <u>HISTORY</u>

1958 - 1980...... RESEARCH AND TECHNOLOGY PROGRAM TO SUPPORT RIGID BODY SPACECRAFT CONTROL WITH FLEXIBLE APPENDAGES AND PROVIDE CONTROL SUBSYSTEM COMPONENT TECHNOLOGY

1984.....SDIO SUPPORT TO CONTROLS INITIATED

1978 -1984......DARPA ACTIVE CONTROL OF FLEXIBLE STRUCTURES (ACOSS) PROGRAM

. ..

- 1980.....PROGRAM INITIATED TO SUPPORT LARGE COMPLEX AND FLEXIBLE SPACECRAFT
- 1982.....CODE R CONTROLS STRUCTURES INTERACTION PROGRAM INITIATED
- 1988......PROGRAM PLANNING INITIATED TO PROVIDE ADVANCED GUIDANCE TECHNOLOGY (ADVANCED LAUNCH SYSTEM TECHNOLOGY PROGRAM)--1989
- 1989.....COMPUTATIONAL CONTROLS PROGRAM
 IDENTIFIED

GUIDANCE AND CONTROLS PROGRAM

HISTORY

CONTINUED)

1989 -1991.....EXPLORATION TECHNOLOGY PROGRAMS IN AUTONOMOUS RENDEZVOUS AND DOCKING AND AUTONOMOUS LANDER

1990.....LAUNCH VEHICLE AVIONICS PLANNING INITIATED BY STRATEGIC AVIONICS WORKING GROUP

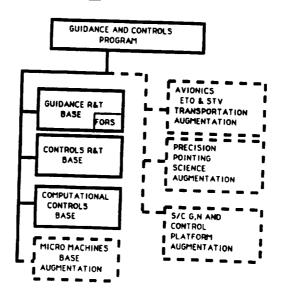
GUIDANCE AND CONTROL PROGRAM

APPROACH:

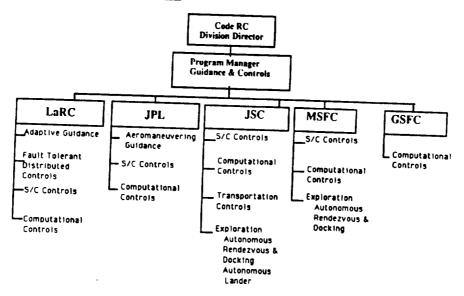
- IDENTIFY TECHNOLOGY NEEDS THROUGH STUDIES, FUTURE MISSION REQUIREMENTS AND GUIDANCE FROM CODE M.S. OTHER GOVERNMENT AGENCIES AND COMMERCIAL PROVIDERS, THE SSTAC AND THE STRATEGIC AVIONICS WOKING GROUP, AND OTHERS.
- IDENTIFY THE CENTERS WITH THE BEST CAPABILITIES AND FACILITES FOR THE IDENTIFIED TECHNOLOGY AREAS
- DEVELOP A COORDINATED PROGRAM USING INPUTS FROM CENTERS AND NASA HEADQUARTERS
- ESTABLISH PARTNERSHIPS BETWEEN THE CENTERS, INDUSTRY, UNIVERSITIES, AND OTHER GOVERNMENT LABORATORIES
- BASE PROGRAM ELEMENTS CARRY OUT GENERIC RESEARCH AND TECHNOLOGY
- FOCUSED PROGRAM ELEMENTS HAVE ADVANCED BRASSBOARD DEMONSTRATION WHICH CONTRIBUTING TO TECHNOLOGY TRANSFER, AND WHEN APPROPRIATE, PARTICIPATE IN FLIGHT EXPERIMENTS
- TRANSFER TECHNOLOGY TO THE USER FOR USE IN DEVELOPMENT OF OPERATIONAL FLIGHT SYSTEMS

BENEFITS:

• CRITICAL ENABLING GUIDANCE AND CONTROLS TECHNOLOGIES ARE PROVIDED IN ACCORDANCE WITH THE NATION'S LONG RANGE GOALS TO MAINTAIN THE PREMANCE OF OUR SPACECRAFT AND TRANSPORTATION VEHICLES


AND ENABLE THE DEVELOPMENT OF THE FOLLOWING TECHNOLOGIES:

- PROVIDE NEW AND EFFICIENT ADAPTIVE GUIDANCE ALGORITHMS
- PROVIDE HIGHLY RELIABLE DISTRIBUTED FAULT TOLERANT CONTROL SYSTEMS TECHNOLOGY
- PROVIDE ROBUST CONTROLS TECHNOLOGY FOR LARGE COMPLEX SPACE SYSTEMS INCLUDING SYSTEM IDENTIFICATION, ADAPTIVE CONTROL, PRECISION METROLOGY, SENSORS AND ACTUATORS
- PROVIDE COMPUTATIONAL CONTROLS TECHNOLOGY ENABLING ORDERS OF MAGNITUDE INCREASES IN THE ABILITY TO DESIGN, SYNTHESIZE, ANALYSE AND SIMULATE LARGE COMPLEX SPACE SYSTEMS


WORK BREAKDOWN STRUCTURE

1 11

CG1-4

ORGANIZATIONAL CHART

GUIDANCE & CONTROLS PROGRAM

STATE OF THE ART:	Teday	
Guidance Technology Shuttle Planetary 5/C and Probes	 Precalculated I loads / weather ballons Spinning Gyros/image Dissectors Star Trackers Ballistic Planetary Entry with Aerodynamic Deceleration 	 Day of Launch ki Loads/ Lidar Wind Sounders Fiber Optics Rotation Sensi Aeromaneuvering
Fault Tolerant Distributed Control Shuttle/Titan/ Atlas-Centaur/Delta	 Shuttle Triple Redundancy with Actuator Force Fight Titan/Delta Single String S- Level Parts Centaur Dual String Redundancy AIPS Fault Tolerant Architecture Technology 	AIPS Architecture Implementation with B-Level Parts Launch on Schedual with Fault Vehicle Health Management
SDacecraft Control Rigid Body Control Theory Gains Adjusted On Orbit toAccomodate Deployed Configuration Control	Galelo Spun/Despun Control Hubble,Ulysses, & Mariner Flexible Appendage Thermal System /Control System Interaction Grond Based Large Space System Controls Testbeds	 Robust S/C Control with On Orbit System I.D and Adapt. Controls for Complex S/C including Growth SS,Multi-Instrument Platforms and Large
Computational Controls Efficient Computational Algorithms Real Time H/W in the Loop Simulations Parrallel Processing User Friendly Interface	 Order N Algorithms/Symbolic Logic Discos, Treetops, Matrix X, etc Space Station Dynacs Simulation Craft Cassini Control Simulator interface 	Segmented Telescopes Paralized Order N Algorithms Paraliel Processing on Super computers with real time H/W in the loop simulations Meintosh like interface

GUIDANCE AND CONTROLS PROGRAM FACILITIES

- PLS SIMULATOR
- AIRLABS
- ACES/CASES
- SCOLE
- CARL

GUIDANCE & CONTROLS PROGRAM

ACCOMPLISHMENTS:

- Developed Generic 100 Faster Space Station Controls Simulator with Order N Algorithms, Symbolic Equation Manipulator and Parallel Processing
- Demonstrated Navigational Grade Fiber Optics Rotation (FORS) Gyro

...

- Developed Treetop, Contops and Order N Discos Controls/Simulation Codes
- Developed SHAPES Sensor for Large 100 M Antenna Control
- Provided Controls Algorithms Technology to Hubble Space Telescope for Solar Array Thermal Pumping Problem Fix
- Provided Real Time PLS Controls Simulator
- Provided Adaptive Guidance LIDAR Winds Aloft Technogy
- Demonstrated distributed fault tolerant Advanced Information Processing System
 Breadboard
- Developed for demonstration Astro Solid State CCD Star Tracker Saving Mission
- Developed robust efficient adaptive control system identification and control algorithms technology for large complex systems

GUIDANCE & CONTROLS PROGRAM

PICTURES OF SS Workstation FORS HUBBLE PLS LIDAR ASTRO AIPS ETC

GUIDANCE & CONTROLS PROGRAM

.

PROGRAM MILESTONES:

-

GUIDANCE PROGRAM

. ...

PERFORM LIDAR WINDS PROFILE TESTS AT KSC -1991

DEVELOP STOCASTIC ETO GUIDANCE ALGORITHMS AND TRAJECTORY DESIGN TOOLS--- 1992

COMPLETE BEADBOARD OF A. I. BASED STAR TRACKER-1993

COMPLETE FORS SINGLE AXIS ENGINEERING MODEL--1993

CONTROLS PROGRAM

COMPLETE SPACECRAFT MCONTROL SYSTEM DESIGN GUIDELIE DOCUMENT -- 1992

COMPLETE RMS CONTROL SYSTEM UPGRADE DESIGN PLAN--1992

DEMONSTRATE PRECISION STRUCTURE (INTERFEROMETER) SIIAPE MEASUREMENT--1992

COMPLETE PRELIMINARY MICRO GYRO DESIGN--1993

COMPUTATIONAL CONTROLS

UPGRADE DISCO WITH FLEXIBLE ORDER N DISCO -- 1992

MBODY MODEL REDUCTION COMPONENT REP. S/W-1994

GUIDANCE & CONTROLS PROGRAM

RELATED NASA PROGRAMS:

- CODE R CONTROLS STRUCTURES INTERACTION PROGRAM
- CODE M BRIDGING TASK IN ADAPTIVE GUIDANCE
- CODE R AERONAUTICS CONTROLS PROGRAM
- CODE R NASP GUIDANCE AND CONTROLS PROGRAM

RELATED GOVERNMENT PROGRAMS

- SDIO CONTROLS PROGRAMS IN COMPLEX SYSTEMS AND ADVANCED AVIONICS PROGRAM
- DOD ADVANCED LAUNCH SYSTEM (ALS) PROGRAMS IN ADAPTIVE GUIDANCE AND FAULT TOLERANT AVIONICS

GUIDANCE AND CONTROLS PROGRAM

RESOURCES (\$,M)

	FY91	FY92	FY93	FY94	FY95	FY96	FY97
Existing Program GUIDANCE AND CONTROLS GENERIC HYPERSONICS	4650 328	5205 340	5700 370	6450 420	7000 490	7900 560	8900 650
RESOURCES BREAKD	OWN F	Y 92 ON	LY FY	92	<u>/</u>	<u>i</u>	

GUIDANCE TECHNOLOGY	1355	
CONTROLS TECHNOLOGY	2990	
COMPUTATIONAL CONTROLS	1200	

NEW AREAS FOR AUGMENTATION REQUESTED:

- TRANSPORTATION VEHICLE AVIONICS 1993
 - AUTONOMOUS RENDEZVOUS & DOCKING- 1994
 - AUTONOMOUS LANDER- 1994
 - PLATFORM G,N&C 1994
 - PRECISION POINTING 1994
- MICROMACHINES 1995

Transportation Technology Earth-To-Orbit Transportation

Earth-to-Orbit Vehicle Avionics

OBJECTIVES Programmatic Develop vehicle avionics which support minimization of life cycle costs; multi-program implementation; integrated flight and ground infrastructure; continuous customer driven requirements; effective technology utilization and evolution; minimization of life cycle costs; ability to recover and fly with failures; mulular, scalable, maintainable and robust; increased performance and long term safe operations; rapid prototyping, demonstration, and multi-test bed supportability • Technical The specific areas of technology development are avionics architectures technologies and required advanced software; vehicle health management (VHM) advanced technology development; advanced power management and control systems; landing and recovery systems technology development	 Define GN&C design tools for rapid prototyping (1994) Define GN&C advance algorithms (1993-1998) Define electrical actuation (ELA) power systems (1993) Advance recovery system Phase IIIA at MSFC (1993-1995) Define requirements for modeling and large scale test of advance recovery system (1995-1997) 	
RESOURCES* • 1993 \$ 7.0 M • 1994 \$11.0 M • 1995 \$23.0 M • 1996 \$35.0 M • 1997 \$36.5 M	PARTICIPANTS Avionics Architecture ARC, JSC, & LaRC Avionics Software ARC, JSC, & LaRC Vehicle Health Management LeRC & MSFC Guidance, Navigation, & Control LaRC, JSC, & JPL Electrical Actuation LeRC & SSC Landing/Recovery Systems JSC & MSFC Power Management & Control LeRC	

Transfer Vehicle Avionics

OBJECTIVES Programmatic

Develop vehicle vehicle avionics which support minimization of life cycle costs: multi-program implementation; integrated flight and ground infrastructure; continuous customer driven requirements; effective technology utilization and evolution; minimization of life cycle costs; ability to recover and fly with failures; modular, scalable, maintainable and robust; increased performance and long term sale operations; rapid prototyping, demonstration, and multi-test bed supportability

Technical

The specific areas of technology development are avionics architectures technologies and required advanced software; vehicle health management (VHM) advanced technology concepts; guidance, navigation, and control advanced algorithms and development environments; electrical actuators technology development; advanced power management and control systems landing and recovery systems technology development

RESOURCES

•	1993	\$ 5.0	м
٠	1994	\$ 9.0	M
٠	1995	\$15.0	M
•	1996	\$ 32.0	м
•	1997	\$ 44.3	м

SCHEDULE

- identify critical technology areas for architecture development (1994-1996)
- Develop test bed concepts for architecture and software requirement definitions (1997-1999)
- Define operational and environmental requirements for VHM
- support to transfer vehicle (1993-1995) Deline and develop VHM methods and concepts (1994-1998) Develop GN&C rapid prototyping requirements and test bed
- approach (1993-1995) Develop GN&C sensor requirements and algorithms for transfer vehicle (1994-1997)
- Identify key design concepts for tether control in support of micro-g management, power generation, etc. (1993-1995)
- Develop new control strategies for tethers and verify thru detail dynamic simulations (1995-1999) Support technology development and system design using
- magnetostrictive actuator servo value
- Complete requirements for ultra reliable, universal, modular smart power backbone system (1995)

PARTICIPANTS

Avionics Architecture	
Avionics Software	
Vehicle Health Management	
Guidance, Navigation, & Control	
Electrical Actuation	
Landing/Recovery Systems	
Power Management & Control	

ARC, JSC, & LaRC ARC, JSC, & LaRC LeRC & MSFC LaRC, JSC, & JPL LeRC & SSC JSC & MSFC LeRC

> April 25, 1991 DRS-QUAD12

Tra rtation Techn Low-Cost Commercial Transport

Commercial Vehicle Avionics

OBJECTIVES

IASK SCHEDULE/MILESTONES

 PROGRAMMATIC Develop vehicle avonics which support minimization of life projectic costs, commercial implementation, integrated fight and ground infrastructure; continuous customer driven requirements, effective technology utilization and evolution; minimization of life cycle costs, subity to recover and fly with flatures, increased performance and long-term sate coerations; rapid prototyping, demonstration, and mutatest bied supportabley TECHNECAL The specific areas of technology development are avonics achiectures technologies and required advanced technology concepts; guidance, newspation, and central advanced power management (I-MM) advanced advanced power management and control systems 		Identify critical avonics technology requirements (1993-96) Demonstrate avonics architecture concepts (SW and HW) components (1995-2002) Define advanced VHM concepts (1993-96) Demonstrate advanced VHM applications (1995-2002) Complete power management architecture definition (1994) Power management architecture definition (1996) Define GN&C advanced algorithms (1994-98)		
adva	icau power management and control systems			
adva RESOU	new power management and control systems.	PARTICIPANTS		
	new power management and control systems.	PARTICIPANTS Avionics Architecture		

÷

Transportation Technology Space Transportation

Autonomous Landing

 OBJECTIVES Programmatic Develop autonomous landing technology which supports technology that enables planetary exploration spacecraft to land safety in the face of surface hazards and close to areas of mission interest; autonomous GN&C technology; advanced sensor development Technical The specific areas of technology to tacilitate -navigation for precision landing; hazard detection and avoidance during terminal descent; sensor development modelling and algorithm development for Mars terrain navigation; Mars terrain definition 	 SCHEDULE Requirements definition (1993) Alternate sensor models and algorithms development at syster and sensor levels (1994) Prototype of sensors, algorithms and computer simulations selected for implementation (1994); designed/development (1995); landing test bed simulation (1997)
RESOURCES 1991 \$ 0.5 M 1992 \$ M 1993 \$ 2.0 M 1993 \$ 2.0 M 1993 \$ 2.0 M 1994 \$ 4.5 M 1995 \$ 6.0 M 1996 \$ 7.0 M 1997 \$ 7.3 M	PARTICIPANTS System Engineering - Precision Landing - Hazard Detection and Avoidance - Sensor Development -
	April 25, 1991 DRS-QUAD1

Transportation Technology Space Transportation

Autonomous Rendezvous & Docking

OBJECTIVES

 Programmatic Develop autonomous rendezvous and docking (AR&D) system technology for spacecraft in low geosynchronous Earth orbits and in planetary orbits in the discipline areas of; sensors, GN&C technology, and mechanisms

Technical

The specific areas of technology development are define user requirements; conduct mission studies and analyses to define performance requirements; identify and evaluate AR&D system conceptual designs against users requirements; define requirements for prototype hardware and software

SCHEDULE

- Define user requirements for AR&D technology (1992-1993)
- Conduct mission studies and analysis for performance requirements (1993-1994)
- + Identify conceptual designs (1994-1996)
- · Definition of requirements for prototype hardware and software (1996-1998)

RESOURCES		PARTICIPANTS	ec.
• 1991	\$ 0.5 M	GN&C Radar Sensors & Mechanisms - JS	50
• 1992 • 1993	\$ M \$ 2.0 M	Vision Processing - M	ISFC
• 1994 • 1995	\$ 5.0 M \$ 7.0 M	Neural Networks and Al - A	RC
• 1996 • 1997	\$ 7.3 M \$ 7.7 M	Interplanetary AR&D Algorithm JI Requirements	PL

April 25 1001

SPACE PLATFORMS TECHNOLOGY EARTH ORBITING PLATFORMS

	CONTROLS
DIRECTIVES PROGRAMMATIC DEVELOP TOOLS AND METHODOLOGY FOR THE DEBIGN AND ANAL YOU OF MULTI-INTEGRATED CONTROLS SYSTEMS TECHNICAL POINTING ACCURACY (PLATFORM) POINTING ACCURACY (PAYLOAD) UFETIME ARCSECOND 10- YEARS	BCHEDULE 1994 SYSTEM MODELING 1995 DEBIGN METHODOLOGY 1997 ON-ORBIT CHARACTERIZATION 1999 FEATURE ASSISTED POINTING 2003 TESTBED EVALUATIONS
RESOURCES:	PARTICIPANTS
1994 \$3 1 M 1995 \$6.2 M 1996 \$8.5 M 1997 \$11.3 M "THIS ELEMENT IS CLOBELY COORDINATED WITH DEVELOPMENT IS CLOBELY COORDINATED WITH DEVELOPMENT FROOTAMS, RESOURCES SHOWN ARE HASA GAET ONLY	LARC TOOL AND METHODOLOGY DEVELOPMENT AND EVALUATION CONTROL ELEMENT DEVELOPMENT AND TEST JPL SENSOR DEVELOPMENT; SYSTEM IDENTIFICATION; CONTROL GOINC MODELINGUMMELATION TOOL DEVELOPMENT AND VALIDATION CONTROL ELEMENT DEVELOPMENT MSPC TESTBED DEVELOPMENT, CONTROL CONCEPT EVALUATIONS

SPACE PLATFORMS TECHNOLOGY DEEP SPACE PLATFORMS

1 11

-

	GUIDANCE, NAVI	GATION AND CONTROL
OBJECTIVES		SCHEDURE
NOGRAMMATIC EVELOP AND VALIDATE KEY TI VEEP SPACE PLATFORMS ECHNICAL LIFETIME 16- YEARS AUTONOMOUS OPERATIONS ADAPTIVE QUIDANCE AL GORITHM VERIFICATION	ICHNOLOGIES FOR THE GNAC OF	1984 ASSESS GNAC RECURRENENTS 1985 ASSESS SCA IN GUIDANCE METHODOLOGY 1987 DEVELOP ADVANCED TRAJECTORY DONTROL AL GORITHM 1988 COMPLETE DEVELOPMENT OF GNAC COMPONENTS 2000 DEVELOP SOFTWARE AND CONDUCT SYSTEM EVALUATIONS
RESOURCES		PARTICPANTS
1994 1995 1996 1997	\$3.1 M \$4.6 M \$5.0 M \$5.2 M	LARC TECHNOLOGY ASBESSMENTS, GNAC TOOLS AND METHODOLOGY DEVELOPMENTS/EVALUATIONS, HARDWARE DEVELOPMENTS SPL ATTITUDE AND METROLOGY SENSORS, CONTROL METHODOLOGY
	LY COORDINATED WITH IN NASAYOSSA AND RELATED DORAMS, RESOURCES SHOWN	

PRECISION POINTING

OBJECTIVES

DEVELOP PRECISION POINTING TECHNOLOGY FOR INSTRUMENTS AND TELESCOPES

CRITICAL DRIVER MISISONS:

FOR MULTIPLE INSTRUMENT POINTING: NEXT EOS, GEOPLAT

FOR TELESCOPE POINTING: ST-NG, MOI

TECHNOLOGY CHALLENGE

INCREASE SPACE BASED TELESCOPE POINTING CAPABILITY BY TWO ORDERS OF MAGNITUDE BEYOND HST

INCREASE REMOTE SENSING INSTRUMENT POINTING CAPABILITY BY 2-ORDERS OF MAGNITUDE

HCREASE RELIABILITY, LIFETIME AND EFFICIENCY OF POINTING COMPONENTS

DELIVERABLES

1996	FINE GUIDANCE SENSOR FOR SMMM	JPL
1999	AUTONOMOUS FEATURE TRACKING SYSTEM DEMO FOR EOS-A2	
2000	LINE OF SIGHT TRANSFER	
2002	TARGET REFERENCE POINTING DEMO FOR GEOPLAT	
2005	AUTONOMOUS POINTING SYSTEM EXECUTIVE FOR EOS-A3	
2006	HIGH RELIABILITY/PERFORMANCE GYROS FOR ST-NG	

1 11

PARTICIPANTS/RESOURCES

L, LARC, GSFC

0	0	0	0	0
0	2.0	4.0	7.0	12.5

.

INFORMATION SCIENCE & CONTROLS

THRUST(S) SUPPORTED

SCIENCE EXPLORATION

OBJECTIVE:

· Custom design.

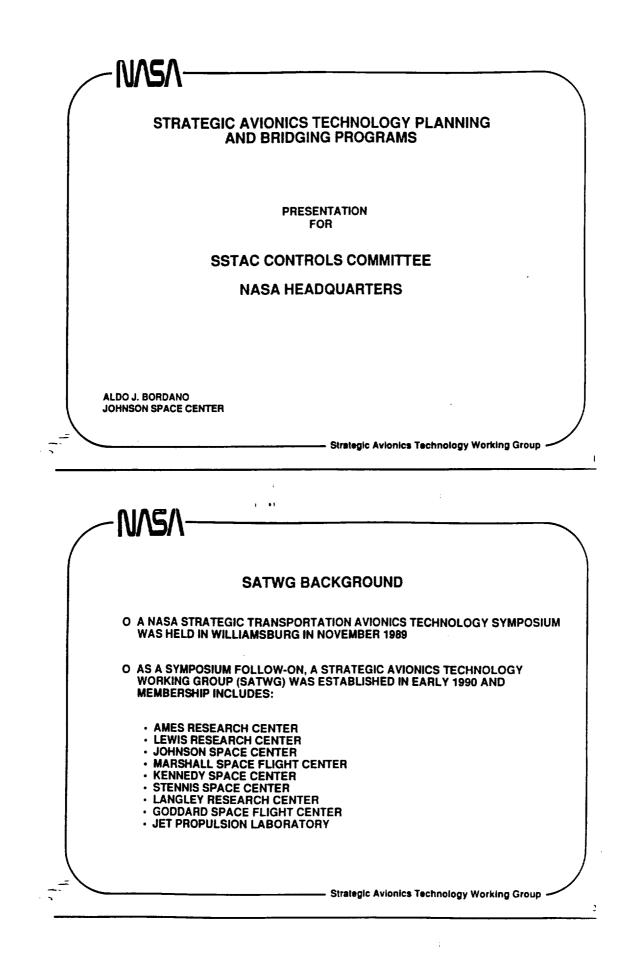
Markey ITEG Develop and demonstrate a new class of sensors/nstruments using state-of-the-art micro machining technologies for in-situ measurements such as: surface characterization, sub surface characterization, planetsiny atmospheric analysis and far IR-atmospheric actience.

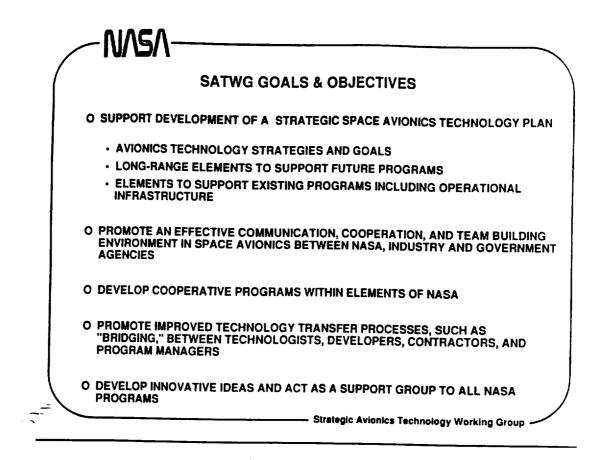
PRODUCTS (FY 1993 - FY 1996)

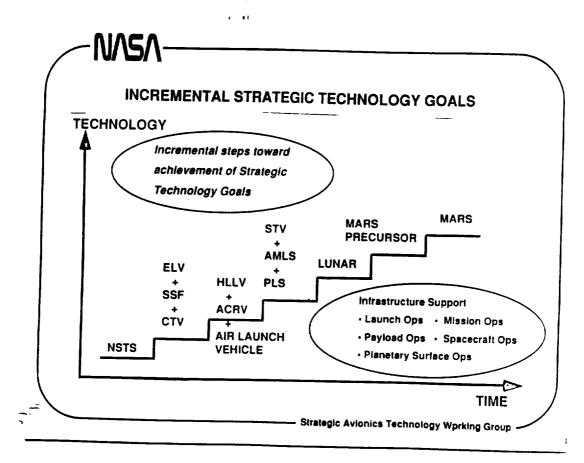
- Micro gyros FY '95 .
- Micro seismometers. FY '98
- Micro gas analyzer. FY 97
- Vacuum micro electronica: FY '97
- .
- Micro acience instrument systems. FY '98

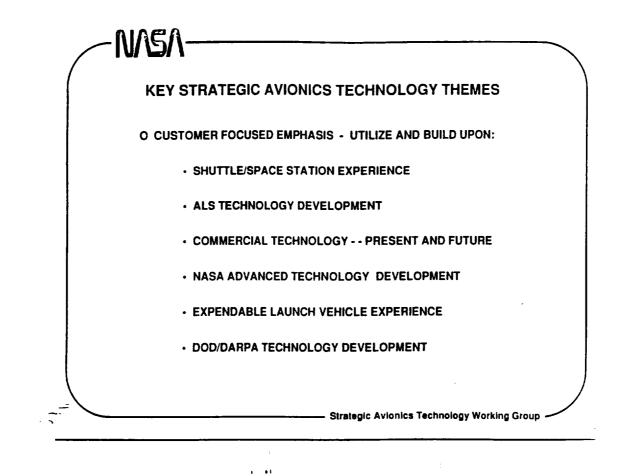
TOTAL

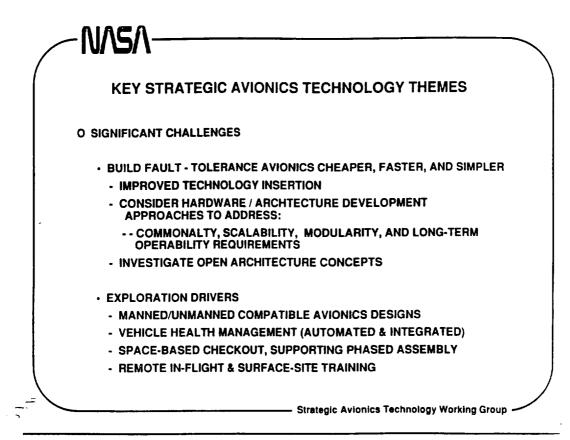
100

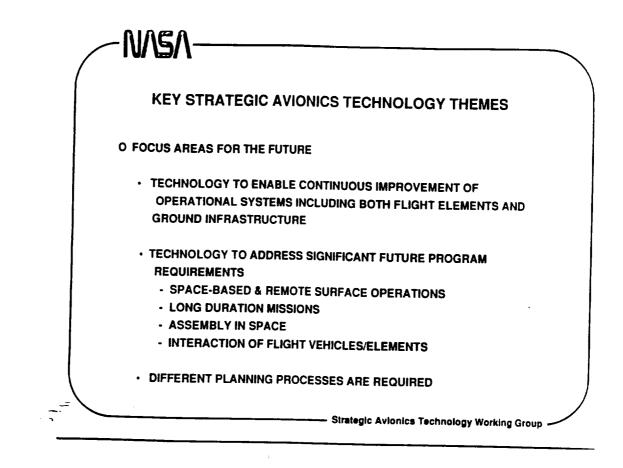

MICROMACHINES AND SENSORS PAYOFE CENTERS: JPL, LARC Liphweight, small, economical instruments

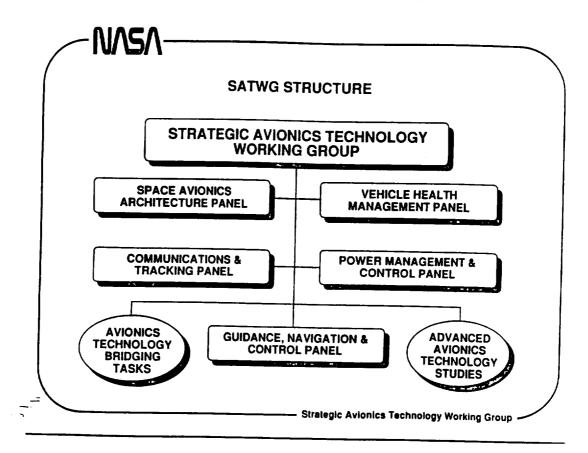

•	Custom design.	E EUN	ESOURC IDING		XN.
•	Ease & economy of duplication with VLSI fab. tech.		URRENT	NET (AUGMENTATION	
•	Form critical in-house expertise.	FY 1993	100		TOT
•	Science & exploration mission options are enabled with smaller instruments,	FY 1994	100		10 10
		FY 1995	100	3000	310
		FY 1996	100	4000	410
		FY 1997	100	5000	510

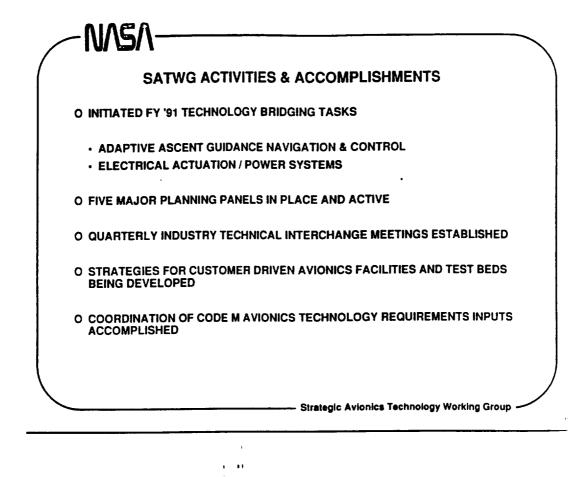

MAJOR FACILITIES: NONE

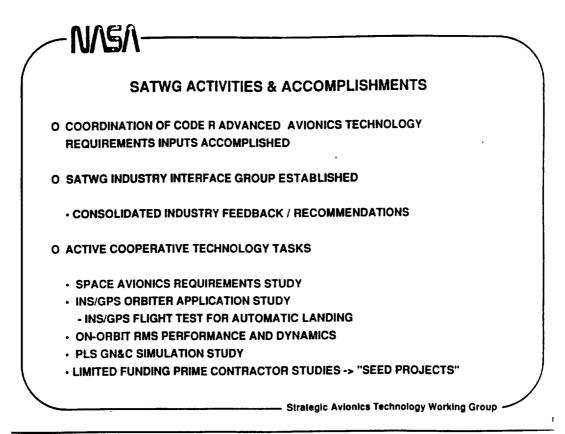

SUMMARY

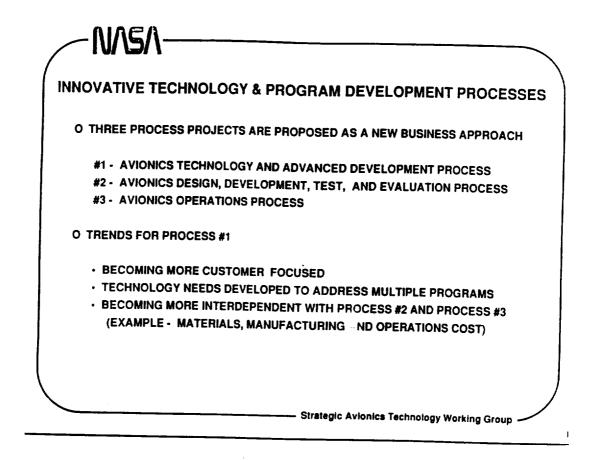

- TRANSPORTATION AVIONICS TECHNOLOGY HAS HIGHEST PRIORITY TO RESPOND TO CODE M REQUEST
- CODE S RECOGNITION OF NEED FOR S/C CONTROLS RESEARCH AND TECHNOLOGY NOT STRONG IMPACTING AUGMENTATIONS PRIORITY
- BASE PROGRAM HAS BEEN SUCCESSFULL SEED BED FOR AUGMENTATION TECHNOLOGY PROGRAMS
- INCREASED MANAGEMENT ATTENTION & FUNDING REQUIRED FOR TECHNOLOGY TRANSFER

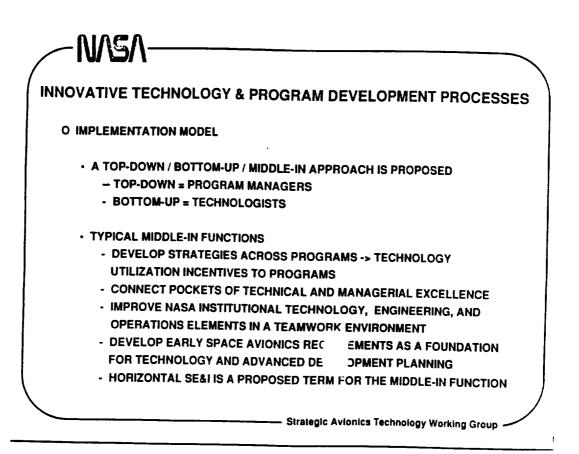


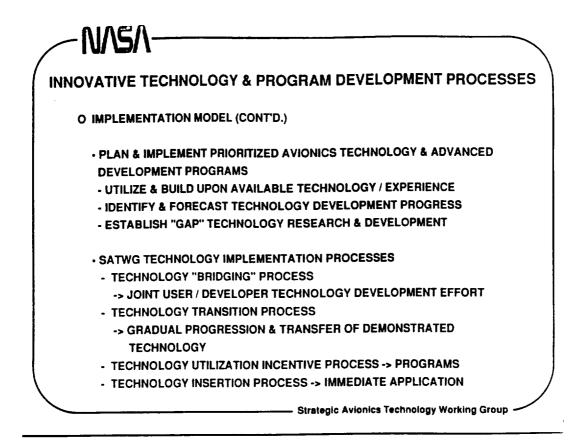


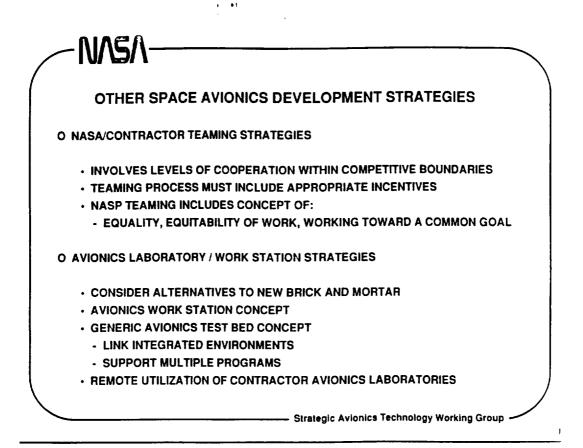


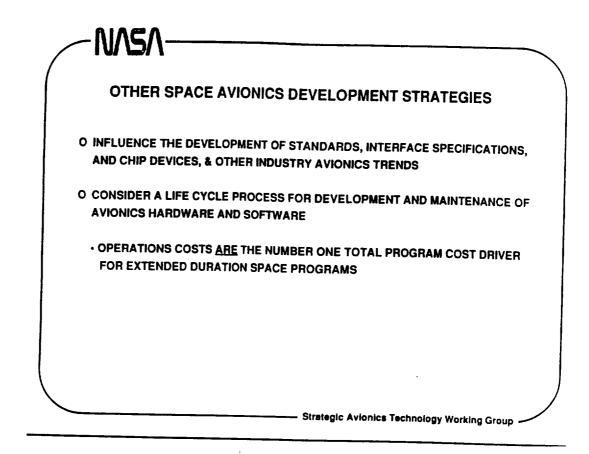


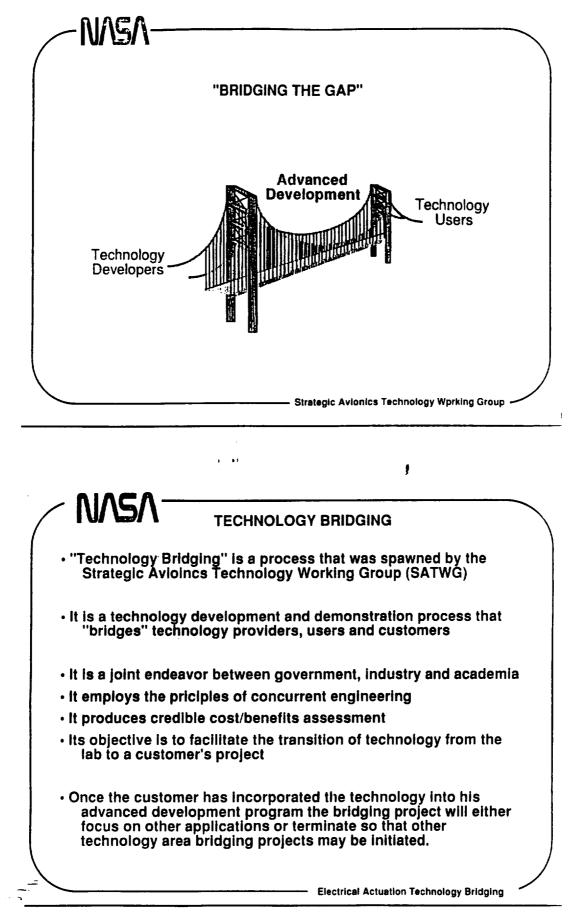

1 11

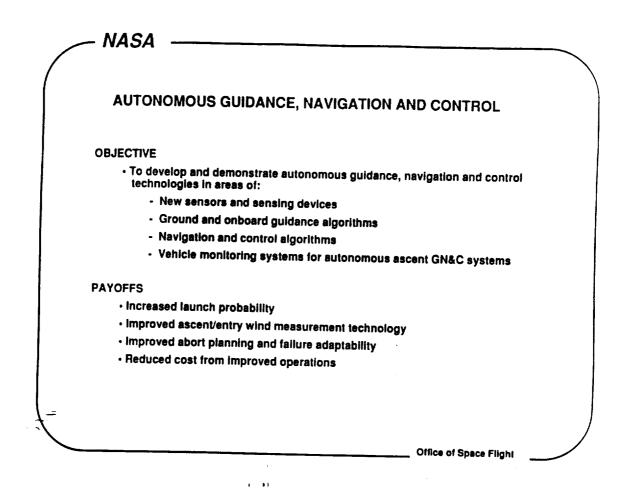







ু শ∿ই ⇒্যন্ত





N/S/\			
S	ATWG CA	LENDER	
EVENT ORGANIZATIONAL MEETING FAULT TOLERANCE & RM VEHICLE HEALTH MANAGEMENT SATWG MEETING HEALTH MANAGEMENT CONF. SATWG MEETING VEHICLE HEALTH MANAGEMENT SATWG MEETING VEHICLE HEALTH MANAGEMENT SATWG MEETING VEHICLE HEALTH MANAGEMENT SATWG MEETING	11/14-16/90 11/90 2/26-28/91 6/10-13/91 7/9-11/91 9/91 11/5-7/91 11/91 2/92	HOST NASA/HQ MMC/DENVER HARRIS/MELBORNE GDSS/SAN DIEGO U. of CINCINNATI BOEING/SEATTLE NASA-MSFC ROCKWELL/DOWNEY NASA-KSC (JOINT JSC) LOCKHEED/NASHUA NASA-SSC MDAC-HUNTINGTON BCH NASA-AMES MMC/DENVER	C & T SENSORS

1 11

------ Strategic Avionics Technology Working Group

ELECTRICAL ACTUATION Bridging Activities

OBJECTIVES

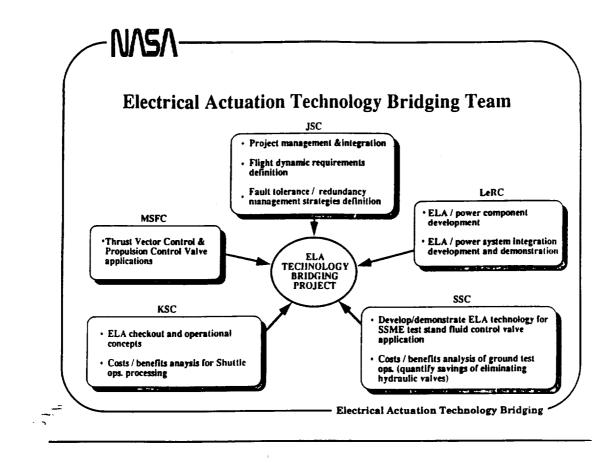
N**/\S/**\

• Develop and demonstrate a representative high power, cost effective electrical actuation system suited for secondary objectives, including flight / ground fluid control valves and surface systems applications.

PAYOFFS

· Elimination of maintenance intensive high pressure hydraulic systems

·Elimination of central hydraulic APU's, hazardous / toxic fluids


·Reduction of labor intensive tests, preparation time, and operations costs

· Improved dispatch reliability, operability, and abort recovery

·Improved launch window (late hold capability)

·Reduced stand-down time, rapid change-out / retest

– Electrical Actuation Technology Bridging ~

SATWG & PANEL CHARTERS

ļ

1 11

.

APPENDIX

STRATEGIC AVIONICS TECHNOLOGY WORKING GROUP AND SUB - PANEL CHARTERS

	NASA	SATWG CHARTER		
ECHNOLOGY PEXNICLUDING • AVIONICS TECHNOLOGY STRATEGIES AND GOALS • LONG-RANGE ELEMENTS TO SUPPORT FUTURE AND DEVELOPING PROGRAMS • SUPPORT ELEMENTS FOR EXISTING PROGRAMS INCLUDING OPERATIONIAL • SUPPORT ELEMENTS FOR EXISTING PROGRAMS INCLUDING OPERATIONIAL • GUIDELINES FOR FUNCTIONAL COMMONALTY OF AVIONICS ARCHITECTURES • DEVELOP COOPERATIVE PROGRAMS BETWEEN CODE F AND CODE MS • DEVELOP COOPERATIVE PROGRAMS BETWEEN CODE F AND CODE MS • PROVIDE FOR AVIONICS TECHNICAL INTERCHANGE BETWEEN NASA TECHNOLOGISTS. • ADVANCED DEVELOPERS, PROGRAMS, OPERATORS, AND MAJOR AVIONICS CONTRACTORS • PROWIDE FOR AVIONICS TECHNICAL INTERCHANGE BETWEEN NASA TECHNOLOGISTS. • DEVELOP ENDOYATIVE IDEAS AND ACT AS A CONSULTING GROUP TO SUPPORT NASA NEW PROGRAMS • DEVELOP INNOVATIVE IDEAS AND ACT AS A CONSULTING GROUP TO SUPPORT NASA NEW PROGRAMS • DEVELOP INNOVATIVE IDEAS AND ACT AS A CONSULTING GROUP TO SUPPORT NASA NEW PROGRAMS • DEVELOP AN ADVANCED AVIONICS ARCHITECTURE PANEL • DEVELOP AN ADVANCED AVIONICS ARCHITECTURE PANEL • DEVELOP AN ADVANCED AVIONICS ARCHITECTURE PANEL • DEVELOP AN ADVANCED AVIONICS ARCHITECTURE SOFTWARE, AND HARDWARE STANDARDS FOR DEVELOPENTS AND VERIFICATION OF AVIONICS ARCHITECTURE SOFTWARE, AND HARDWARE STANDARDS FOR DEVELOPENT AND VERIFICATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE DEVELOPENT AND VERIFICATION • DEVELOP AN ADVENCENCECUTE SINVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND INTERFACE STANDARDS • DEVELOPENT AND VERIFICATION EAPPROACH • INCORPORATE TOP-DOWN CONCEPTS INVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND INTERFACE STANDARDS • ORBITAL VERICLES • ORBITAL PROCESSION CONCEPTS INVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND INTERFACE SYSTEMS			KENNETH J. COX	
PROVIDE FOR AVIONICS TECHNICAL INTERCHANGE BETWEEN NASA TECHNOLOGISTS. ADVANCED DEVELOPERS, PROGRAMS, OPERATORS, AND MAJOR AVIONICS CONTRACTORS PROMOTE IMPROVED TECHNOLOGY TRANSFER PROCESSES, SUCH AS "BRIDGING." BETWEEN TECHNOLOGISTS, DEVELOPERS, CONTRACTORS, AND PROGRAM MANAGERS DEVELOP INNOVATIVE IDEAS AND ACT AS A CONSULTING GROUP TO SUPPORT NASA NEW PROGRAMS SPACE AVIONICS SPACE AVIONICS ACCHITECTURE PANEL CHARTER VINCENTIAL CENTRE OEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PL OR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE OEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PL OR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE OEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PL OR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE OEVELOP AN EARLY TOPLEVEL IDENTIFICATION OF AVIONICS ARCHITECTURE EQUIREMENTS AND DESIGN DRIVERS OEVELOP AN EARLY TOPLEVEL IDENTIFICATION OF AVIONICS ARCHITECTURE DEVELOP AND VERIFICATION DEVELOP AND EARCHITECTURE, SOFTWARE, AND HARDWARE STANDARDS FOR DEVELOPMENT AND VERIFICATION DEVELOP AND ARCHITECTURE TOPLEVEL IDENTIFICATION STRATEGIES BETWEEN ORACTINT TO ORBIT ALAUCH VEHICLES ORBILE AND FIXED SOURDALITY UNICATION STRATEGIES BETWEEN ORANSFER AND EXCURSION VEHICLES ORBILE AND FIXED SUFFACE SYSTEMS ORBILE AND FIXED SUFFACE SYSTEMS ORDILE AND FIXED SUFFACE SYSTEMS ORDILE AND FIXED SUFFACE SYSTEMS ORDILE AND FIXED SUFFACE SYSTEMS ORDILE AND FIXED SUFFACE SYSTEMS ORDINICAL PACE	O AVIONICS O LONG-RAN O SUPPORT INFRASTRI	PLAN INCLUDING TECHNOLOGY STRATEGIES AND GOALS IGE ELEMENTS TO SUPPORT FUTURE AN ELEMENTS FOR EXISTING PROGRAMS IN UCTURE	D DEVELOPING PROG CLUDING OPERATION	TAMS
OPROMOTE IMPROVED TECHNOLOGY TITANSFER PROCESSES, SUCH AS "BRIDGING," BETWEEN TECHNOLOGISTS, DEVELOPERS, CONTRACTORS, AND PROGRAM MANAGERS O DEVELOP INNOVATIVE IDEAS AND ACT AS A CONSULTING GROUP TO SUPPORT NASA NEW PROGRAMS SPACE AVIONICS ARCHITECTURE PANEL CHARTER KENNETHIJ. K O DEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PL OR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE O DEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PL OR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE O DEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PL OR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE O DEVELOP AN EARLY TOP-LEVEL IDENTIFICATION OF AVIONICS ARCHITECTURE REQUIREMENTS AND DESIGN DRIVERS O DEFINE SYSTEM ARCHITECTURE, SOFTWARE, AND HARDWARE STANDARDS FOR DEVELOPMENT AND VERIFICATION O STABLISH AN OPEN ARCHITECTURE APPROACH INCORPORATE TOP-DOWN CONCEPTS INVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND DESIGN VEHICLES O INVESTIGATE AVIONICS COMMONALITY UTILIZATION STRATEGIES BETWEEN CARTH TO ORBIT LAUNCH VEHICLES O MOBILE AND FIXED SURFACE SYSTEMS ORGINAL PAGE	O DEVELOP COO	PERATIVE PROGRAMS BETWEEN CODE	R AND CODE M/S	
O DEVELOP INNOVATIVE IDEAS AND ACT AS A CONSULTING GROUP TO SUPPORT NASA NEW PROGRAMS O DEVELOP INNOVATIVE IDEAS AND ACT AS A CONSULTING GROUP TO SUPPORT NASA NEW PROGRAMS SPACE AVIONICS SPACE AVIONICS ARCHITECTURE PANEL KENNETHIJ.* X O DEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PL OR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE O DEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PL OR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE O DEVELOP AN EARLY TOP-LEVEL IDENTIFICATION OF AVIONICS ARCHITECTURE REQUIREMENTS AND DESIGN DRIVERS O DEVELOP AN EARLY TOP-LEVEL OFTWARE, AND HARDWARE STANDARDS FOR DEVELOPMENT AND VERIFICATION O ESTABLISH AN OPEN ARCHITECTURE SOFTWARE, AND HARDWARE STANDARDS FOR DEVELOPMENT AND VERIFICATION SCALABILITY, AND INTERFACE STANDARDS INVESTIGATE AVIONICS COMMONALITY UTILIZATION STRATEGIES BETWEEN C ARTH TO ORBIT LAUNCH VEHICLES O MOBILE AND FIXED SURFACE SYSTEMS O RECINAL PAGE	O PROVIDE FOR ADVANCED DE	AVIONICS TECHNICAL INTERCHANGE BE VELOPERS, PROGRAMS, OPERATORS, A	TWEEN NASA TECHINO ND MAJOR AVIONICS	LOGISTS, CONTRACTORS
PROGRAMS PROGRAMS	O PROMOTE IMPI BETWEEN TEC	ROVED TECHNOLOGY TRANSFER PROCE HNOLOGISTS, DEVELOPERS, CONTRACT	SSES, SUCH AS "BRID ORS, AND PROGRAM I	GING," MANAGERS
Anne Andre Seine Ander Seine Seine Ander Seine Se	O DEVELOP INNO PROGRAMS	VATIVE IDEAS AND ACT AS A CONSULTI	NG GROUP TO SUPPOI	RT NASA NEW
ANON SPACE AVIONICS ACHITECTURE PANEL MENETITIT SACE CENTER - NOUSCES ACHITECTURE PANEL MENETITIT SACE CENTER - NOUSCES AND ANDVANCED AVIONICS ARCHITECTURE TECHNOLOGY PLANO OR SPACE CHARNAPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE OPERLOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PLANO OR SPACE CHARNAPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE OPERLOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PLANO OR SPACE CHARNAPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE OPERLOP AN EARLY TOP-LEVEL IDENTIFICATION OF AVIONICS ARCHITECTURE OPERLOPMENT AND DESIGN ORIVERS OPERLOPMENT AND DESIGN ORIVERS OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT AND VERIFICATION OPERLOPMENT OPERLOPMENT AND VERIFICATION VERIFICATION STRATEGIES BETWEEN OPERLOPMENT AND LOCUMENT VERIFICATION OPERLOPMENT OPERLOPMENT AND LOCUMENT OPERLOPMENT OPERLOPMENT OPERLOPMENT OPERLOPM				
NMASS Space avionics architecture panel CHARTER Kennethillex • Develop an advanced avionics architecture technology plan. OR space transportation and exploration programs with emphasis on lower life cycle • Develop an advanced avionics architecture technology plan. OR space transportation and exploration programs with emphasis on lower life cycle • Develop an early top-level identification of avionics architecture requirements and design drivers • Develop an early top-level identification of avionics architecture requirements and design drivers • Development and verification • Development and verification • Stablish an open architecture approach • Incorporate top-down concepts involving modularity, commonality, scalability, and interface standards • Investigate avionics commonality utilization strategies between 0 orbital vehicles • Transfer and excursion vehicles • Mobile and fixed surface systems • Accutate supportability and logistics support		, •,	: }	
ARCHITECTURE PANEL KENNETHIJEX ARCHITECTURE PANEL KENNETHIJEX ARCHITECTURE PANEL KENNETHIJEX ARCHITECTURE PANEL KENNETHIJEX ARCHITECTURE AVIONICS ARCHITECTURE TECHNOLOGY PLANOR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS WITH EMPHASIS ON LOWER LIFE CYCLE OEVELOP AN ADVANCED AVIONICS ARCHITECTURE TECHNOLOGY PLANOR ELIFE CYCLE OEVELOP AN EARLY TOP-LEVEL IDENTIFICATION OF AVIONICS ARCHITECTURE REQUIREMENTS AND DESIGN DRIVERS OEFINE SYSTEM ARCHITECTURE, SOFTWARE, AND HARDWARE STANDARDS FOR DEFINE SYSTEM ARCHITECTURE, SOFTWARE, AND HARDWARE STANDARDS FOR DEVELOPMENT AND VERIFICATION ESTABLISH AN OPEN ARCHITECTURE APPROACH SCALABILITY, AND INTERFACE STANDARDS INVESTIGATE AVIONICS COMMONALITY UTILIZATION STRATEGIES BETWEEN ORBITAL VEHICLES ORBITAL VEHICLES	ł		Johnson Space Cer	ter - Houston, 1995
COST AND MORE EFFICIENT DDT&E COST O DEVELOP AN EARLY TOP-LEVEL IDENTIFICATION OF AVIONICS ARCHITECTURE REQUIREMENTS AND DESIGN DRIVERS O DEFINE SYSTEM ARCHITECTURE, SOFTWARE, AND HARDWARE STANDARDS FOR DEVELOPMENT AND VERIFICATION O ESTABLISH AN OPEN ARCHITECTURE APPROACH O INCORPORATE TOP-DOWN CONCEPTS INVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND INTERFACE STANDARDS O INVESTIGATE AVIONICS COMMONALITY UTILIZATION STRATEGIES BETWEEN O EARTH TO ORBIT LAUNCH VEHICLES O ORBITAL VEHICLES O MOBILE AND FIXED SURFACE SYSTEMS O FACILITATE SUPPORTABILITY AND LOGISTICS SUPPORT O FACILITATE SUPPORTABILITY AND LOGISTICS SUPPORT O FACILITATE SUPPORTABILITY AND LOGISTICS SUPPORT	NASA	ARCHITECTURE PANEL	KENNETH J. (= X	
 DEVELOP AN EARLY TOP-LEVEL IDENTIFICATION OF AVIONICS ARCHITECTURE REQUIREMENTS AND DESIGN DRIVERS DEFINE SYSTEM ARCHITECTURE, SOFTWARE, AND HARDWARE STANDARDS FOR DEVELOPMENT AND VERIFICATION ESTABLISH AN OPEN ARCHITECTURE APPROACH INCORPORATE TOP-DOWN CONCEPTS INVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND INTERFACE STANDARDS INVESTIGATE AVIONICS COMMONALITY UTILIZATION STRATEGIES BETWEEN O EARTH TO ORBIT LAUNCH VEHICLES ORBITAL VEHICLES MOBILE AND FIXED SURFACE SYSTEMS FACILITATE SUPPORTABILITY AND LOGISTICS SUPPORT 	O DEVELOP AN AL TRANSPORTATI COST AND MOR	DVANCED AVIONICS ARCHITECTURE TECH ON AND EXPLORATION PROGRAMS WITH E EFFICIENT DDT&E COST	HNOLOGY PLANE OR S EMPHASIS ON LOWER	SPACE
O ESTABLISH AN OPEN ARCHITECTURE APPROACH O INCORPORATE TOP-DOWN CONCEPTS INVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND INTERFACE STANDARDS O INVESTIGATE AVIONICS COMMONALITY UTILIZATION STRATEGIES BETWEEN O EARTH TO ORBIT LAUNCH VEHICLES O ORBITAL VEHICLES O TRANSFER AND EXCURSION VEHICLES O MOBILE AND FIXED SURFACE SYSTEMS O FACILITATE SUPPORTABILITY AND LOGISTICS SUPPORT ORIGINAL PAGE	O DEVELO	OP AN EARLY TOP-LEVEL IDENTIFICATION	OF AVIONICS ARCHIT	ECTURE
O INCORPORATE TOP-DOWN CONCEPTS INVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND INTERFACE STANDARDS O INVESTIGATE AVIONICS COMMONALITY UTILIZATION STRATEGIES BETWEEN O EARTH TO ORBIT LAUNCH VEHICLES O ORBITAL VEHICLES O TRANSFER AND EXCURSION VEHICLES O MOBILE AND FIXED SURFACE SYSTEMS O FACILITATE SUPPORTABILITY AND LOGISTICS SUPPORT ORIGINAL PAGE	O DEFINE DEVELO	SYSTEM ARCHITECTURE, SOFTWARE, AND PERIFICATION	ND HARDWARE STAND	ARDS FOR
O INCORPORATE TOP-DOWN CONCEPTS INVOLVING MODULARITY, COMMONALITY, SCALABILITY, AND INTERFACE STANDARDS O INVESTIGATE AVIONICS COMMONALITY UTILIZATION STRATEGIES BETWEEN O EARTH TO ORBIT LAUNCH VEHICLES O ORBITAL VEHICLES O TRANSFER AND EXCURSION VEHICLES O MOBILE AND FIXED SURFACE SYSTEMS O FACILITATE SUPPORTABILITY AND LOGISTICS SUPPORT ORIGINAL PAGE	O ESTABL	ISH AN OPEN ARCHITECTURE APPROACI	1 ,	
O ORBITAL VEHICLES O TRANSFER AND EXCURSION VEHICLES O MOBILE AND FIXED SURFACE SYSTEMS O FACILITATE SUPPORTABILITY AND LOGISTICS SUPPORT ORIGINAL PAGE	O INCORP SCALAB	ORATE TOP-DOWN CONCEPTS INVOLVING	G MODULARITY, COMM	IONALITY,
ORIGINAL PAGE	O ORBI O TRAN	TAL VEHICLES	ION STRATEGIES BET	WEEN
	O FACILITATE SUPI	PORTABILITY AND LOGISTICS SUPPORT	•••••	
N	~			

SPACE AVIONICS
ARCHITECTURE PANEL
CHARTER (CONT'D)

- O PROVIDE A FORUM FOR AVIONICS ARCHITECTURE TECHNOLOGY INTERCHANGE BETWEEN NASA, AEROSPACE INDUSTRY PARTNERS, DOD, AND THE COMMERCIAL SECTOR
 - O SUPPORT IDENTIFICATION OF AVAILABLE AND FUTURE TECHNOLOGY
 - O IDENTIFY CRITICAL TECHNOLOGY AREAS FOR NASA
 - O ESTABLISH INITIAL TEST BED STANDARDS FOR PARTICIPATING CENTERS
- O DEVELOP AN IMPROVED TECHNOLOGY INSERTION PROCESS WITH A GOAL OF LOWER LIFE-CYCLE COST, FASTER PROJECT UTILIZATION, AND EVER-DECREASING OPERATIONAL COSTS
 - O FOCUS ATTENTION ON THE PROCESSES FOR THE DEVELOPMENT AND MAINTENANCE OF AVIONICS SOFTWARE OVER THE LIFE-CYCLE OF MAJOR SYSTEMS
 - O DEFINE CRITICALITY CATEGORIES BASED ON CREW SAFETY, MISSION SUCCESS, MISSION SUPPORT, AND ENGINEERING ANALYSIS THAT MAY PERMIT EARLY TECHNOLOGY ENHANCEMENT UPGRADES IN SELECTED AREAS
 - O EVALUATE METHODS FOR DEFINING EVOLVABLE REQUIREMENTS, DETERMINING REGRESSION TESTING POLICY AND ESTABLISHING REVERIFICATION CRITERIA
- O DEVELOP INNOVATIVE IDEAS AND CREATE A CORPS OF EXPERTISE TO ACT AS A CONSULTING GROUP TO SUPPORT PROGRAMS

		Johnson Space Center - Houston,
NIACA	VEHICLE HEALTH MANAGEMENT PANEL	
NASA	CHARTER	KENNETII J. COX
ACTIVITIES P	E FOCUS FOR AUTOMATED VEHICLE HE PROVIDE TECHNICAL INTERCHANGE AM ORTS AND ADVOCACY FOR FURTHERING	ONG NASA, DOD, AND PHIVATE
O DEVELOP SYS CHECKOUT A	TEM REQUIREMENTS AND ARCHITECTU ND MONITORING OF LAUNCH AND SPAC	IRAL CONCEPTS FOR AUTOMATED E VEHICLES
CHECKOUT A	EGRATION STRATEGIES FOR THE INCOP ND MONITORING SYSTEMS INTO FUTURI RANSFER VEHICLES	RPORATION OF AUTOMATED E EARTH-TO-QRBIT, CREW RETURN
O IDENTIFY ARE	AS FOR FUTURE RESEARCH AND TECH	
	AS FOR FUTURE RESEARCH AND TECH	
O SERVE AS A C	CONSULTANT GROUP IN SUPPORT OF NA	ASA PROGRAMS

NINSA COMMUNICATIONS AND TRACKING PANEL			
	CHARTER	KENNETH J. COX	
DDT&E COSTS,	DVANCED COMMUNICATIONS AND TRACI INSPORTATION AND EXPLORATION PRO AND LOWER LIFE-CYCLE COSTS	GHAMS WITH EMPHASIS	ON LOWER
O DEVELOP AN SYSTEM REQ	NEARLY DEFINITION OF TOP LEVEL COM DUIREMENTS AND DESIGN DRIVERS		CKING
HANDWANE	TEMS ARCHITECTURE REQUIREMENTS A SOFTWARE DEVELOPMENT AND VERIFI	CATION	
O ESTABLISH A COMMONALI	AN OPEN ARCHITECTURE APPROACH, W TY, AND INTERFACE STANDARDIZATION	HICH INCORPORATES M	
O INVESTIGATE NEAR-COMM	E STRATEGIES FOR MULTIPROGRAM DEV ON ELEMENTS, COMMUNICATIONS SERV SENSOR STANDARDS	ELOPMENT OF COMMO ICES STANDARDS, TRAC	N AND CKING AND
O PROVIDE A FORL INTERCHANGE 3 COMMERCIAL SE	JM FOR COMMUNICATIONS AND TRACKI ETWEEN NASA, AEROSPACE INDUSTRY	NG SYSTEMS TECHNOLO PARTNERS, DOD, AND T	DGÝ HE
O SUPPORT IDE	INTIFICATION OF AVAILABLE TECHNOLO	GY	
O DEVELOP PRO	OJECTIONS OF FUTURE TECHNOLOGY C	APABILITIES	
O IDENTIFY CRI	TICAL TECHNOLOGY AREAS FOR NASA I	PROGRAMS	
O IDENTIFY CUP AND ESTABL	RRENT AND PLANNED TEST BED CAPABI ISH STANDARDS AND PROCEDURES FO	LITIES AT PARTICIPATIN R UTILIZATION	G CENTERS,
	1 11		

ا المت 20

COMMUNICATIONS AND TRACKING PANEL CHARTER (CONT'D)

Johnson	Space	Center	-	Houston,	Te≠	25
						-

KENNETH J. COX

:

- O DEVELOP AND FOSTER INNOVATIVE IDEAS AND CREATE A CORPS OF EXPERTISE TO ACT AS A COMMUNICATIONS AND TRACKING SYSTEMS CONSULTING GROUP TO SUPPORT NASA PROGRAMS. PURSUE TECHNOLOGICAL ADVANCES WHICH WILL PROVIDE:
 - **O GREATER SPECTRUM EFFICIENCY**
 - O AUTOMATED SYSTEM MANAGEMENT AND CONTROL
 - O GRACEFUL SYSTEM DEGRADATION AS THE RESULT OF FAILURES
 - O GREATER RFI/EMI IMMUNITY
 - O VERY LOW POWER CONSUMPTION
 - O NEW AREAS OF SPECTRUM UTILIZATION
 - O HIGHER IMAGE PROCESSING RATES
 - O INCREASED MATURITY LEVELS OF SEIISOR FUSION
 - O HIGHER LEVELS OF CAPABILITY FOR AUTONOMOUS OPERATIONS

1 1 2 3 3

U S Jov 1

- O DEVELOP AN ADVANCED POWER MANAGEMENT AND CONTROL SYSTEM TECHNOLOGY PLAN FOR SPACE TRANSPORTATION AND EXPLORATION PROGRAMS INCLUDING:
 - O ADVANCED INTEGRATED ELECTRICAL POWER SYSTEM TECHNOLOGIES TO SUPPORT FUTURE AND DEVELOPING PROGRAMS
 - O LONG RANGE STRATEGIES AND GOALS TO ENSURE FAULT TOLERANT POWER FOR ALL MISSION SCENARIOS
 - O DEVELOP OPERATIONAL INFRASTRUCTURES TO SUPPORT FUTURE TRANSPORTATION AND EXPLORATION PROGRAMS
 - O PROVIDE GUIDELINES FOR FUNCTIONAL COMMONALTY OF ELECTRICAL POWER MANAGEMENT AND CONTROL ARCHITECTURES ACROSS PROGRAMS
- O PROVIDE A FORUM FOR ELECTRICAL POWER MAILAGEMENT AND CONTROL TECHNOLOGY INTERCHANGE AMONG NASA, DOD, INDUSTRY AND THE COMMERCIAL SECTOR
 - O IDENTIFY AREAS FOR FUTURE RESEARCH AND TECHNOLOGY DEVELOPMENT ACTIVITIES
 - **O DEFINE REQUIREMENTS FOR TECHNOLOGY DEVELOPMENT EFFORTS**

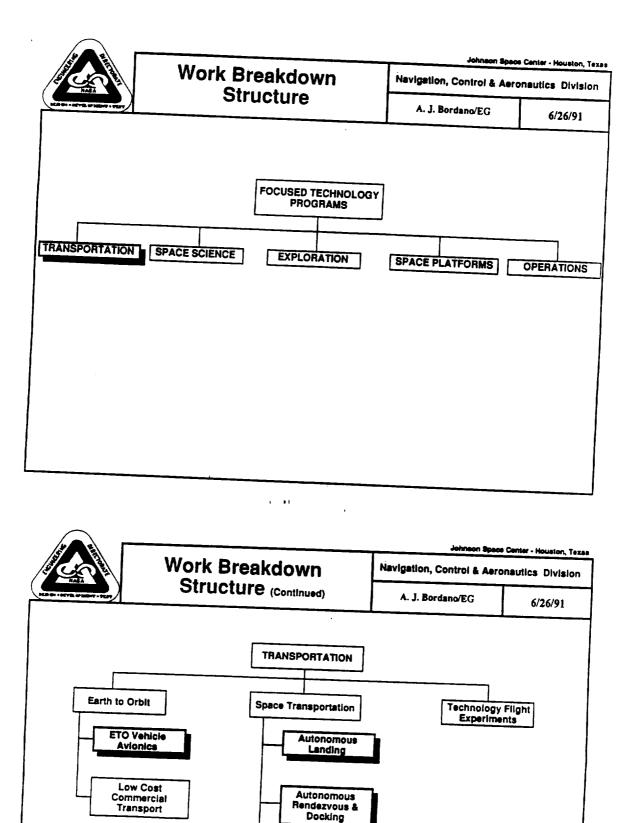
- **O DEVELOP TEST FACILITIES AND EQUIPMENT**
- O DEVELOP AND PROVIDE FOR APPROPRIATE TESTS AND DEMONSTRATIONS OF TECHNOLOGY APPLICATIONS AND SYSTEMS CONCEPTS
- O DEVELOP AN IMPROVED TECHNOLOGY INSERTION PROCESS TO REDUCE PERCEIVED RISK, LOWER OPERATIONAL AND LIFE-CYCLE COSTS, AND MAXIMIZE SYSTEM OPERABILITY AND POWER AVAILABILITY

ò	
13	
ŝ	
2	

- ^		Jonison Space Cente	
5/\	GN & C PANEL CHARTER	KENNETH J. COX	6/21/91

- O THE GN & C PANELIS ESTABLISHED TO PROVIDE A FORUM TO FACILITATE THE EXCHANGE OF INFORMATION AMONG TECHNOLOGY DEVELOPERS, USERS, AND THE SPACE AVIONICS COMMUNITY, AS A WHOLE
- O THE PANEL WILL GATHER & DISSEMINATE USER NEEDS / REQUIREMENTS, AND IDENTIFY & CATALOG TECHNOLOGY STATUS VIA LIVING DOCUMENTS
- O FUTURE GN & C TECHNOLOGY PROJECTIONS & CAPABILITIES WILL BE RESEARCHED & MADE AVAILABLE
- O THE PANEL WILL BE RESPONSIBLE FOR FOSTERING TECHNOLOGY INTERCHANGE BETWEEN NASA, DoD, AND THE COMMERCIAL SECTOR
- O THE PANEL CHARTER DOES NOT INCLUDE THE DIRECTION OR MANAGEMENT OF TECHNOLOGY DEVELOPMENT

.


. .

Avionics Technology Plan

1 - 41

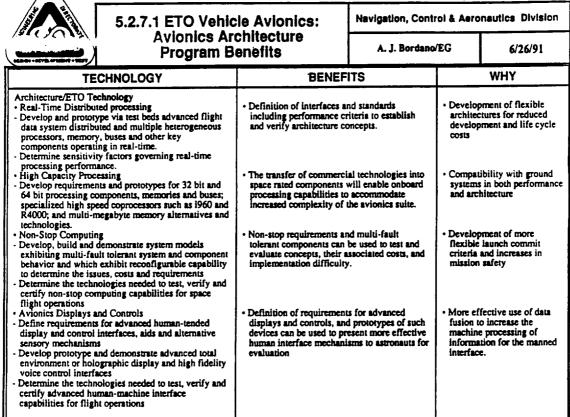
	Integrated Tech	Integrated Technology		autics Division
RAGA	Plan Overv	iew	A. J. Bordano/EG	6/26/91
	Integrated Tec	hnology Pl	an Elements	
5.2.7 ET() Vehicle Avionics	5.3.8	Transfer Vehicle Avionics	
5.2.7.1 Avia	onics Architecture	5.3.8.1	Avionics Architecture	
5.2.7.2 Avid	onics Software	5.3.8.2	Avionics Software	
5.2.7.3 Veh	icle Health Management	5.3.8.3	Vehicle Health Management	
5.2.7.4 GN	SC	5.3.8.4	GN&C	
5.2.7.5 Elec	ctrical Actuators	5.3.8.5	Tether Control	
5.2.7.6 Lan	ding/Recovery Systems	5.3.8.6	Electrical Actuators	
5.2.7.7 Pov	ver Management & Control	5.3.8.7	Power Management & Control	
		5.3.9	Autonomous Landing	
		5.3.10	Autonomous Rendezvous &	Docking

Transfer Vehicle Avionics

	Generic Outline	Navigation, Control & Aero	onautics Divis
RASA BRASA		A. J. Bordano/EG	6/26/91
Presen Plan	tation will cover each identified Element and Subelement as follo	Integrated Technology	y
🗅 Over	view (at the element level 5.X.X)		
	ent & Related Programs (at the su	ubelement level 5.X.X.X	0
	osed Technology Program (at the		
	ram Benefits (at the subelement le		,
and s	he Integrated Technology Plan Re ubelements is over 100 pages. Th evel summary of that report.	port for these elements is presentation will be a	1

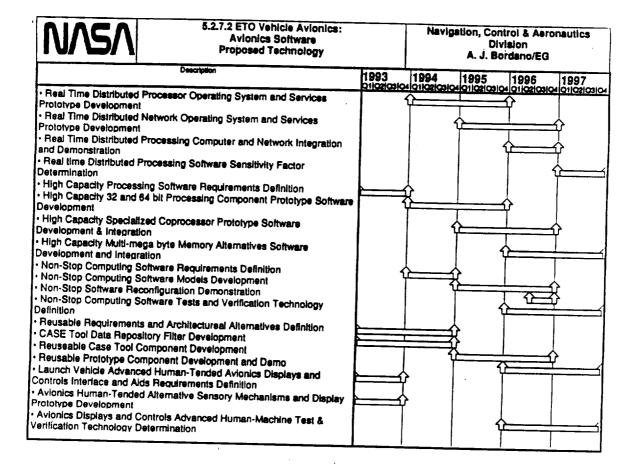
• • • •

.


		Johnson Spac	e Center - Houston, Tex
	5.2.7 ETO Vehicle Avionics	Navigation, Control & Aero	onautics Division
NAGA	Overview	A. J. Bordano/EG	6/26/91
The next gen autonomy fo	eration of space transports will need to have r reduced crew workload, and reduced opera	a increased mission safety ational costs.	, more
Avionics A	chitecture - for increased avionics performa	ince	
Avionics Second	oftware - addresses mission and safety featu	res in software operating	systems kernel
	ith Management - for self diagnosing and se		-
	agement and Control - for reliable, universal,		•
 Guidance, I software t probability 	Navigation, and Control - offers efficient com ools to analyze complex body dynamics, and /	putational algorithms and d enhanced launch and lan	sensors, id on demand
 Electrical A operation 	ctuation Systems - replaces hydraulic system al cost	ms to enhance system reli	ability, reduced
 Advanced I 	anding & Recovery Systems - for enhanced	booster recovery and land	ling technology
The following technologies	advanced vehicles will all require some con :	nbination of these advance	bd
• HLLV, NLS,	PLS, CTV, ACRV, ALS, and ELV's		
ETO and Tran and in fact, for	nsfer Vehicle Avionics technology developme or cost effectiveness, dictates collaboration a	ent share common goals w and interfacing between th	which invites

Avionics Archi	6.2.7.1 ETO Vehicle Avionics: Avionics Architecture Current & Related Programs			Navigation, Control & Aeronautics Division A. J. Bordano/EG				
Description	1990	1991	1992	1993	1994	1995		
Flight Data System Open Architecture Requirements Definition & Methodology Development	1			<u>o lo lo lo</u>	<u>al la la la</u>	<u> </u>		
 Flight Data System Open Architecture Document Flight Data System System Profiles Flight Data System Open Architecture Performance Analysis and Trades 				• 1	}			
Flight Data System Open Architecture Prototype Development				ſ				
Network Performance Model Bare 386 Real-time Kernel Investigation Station Flight-to-Ground Interoperability Evaluation Applications-to-RODB Data Type Analysis								

, ...


NASA	Avionics Architecture Proposed Technology	Proposed Technology			Navigation, Control & Aeronautics Division A. J. Bordano/EG			
	Description	1993	1994	1995	1996	1997		
 Heal time distributed i memory installation & c Real time distributed i in test bed Real time distributed i determination High capacity process High capacity process High capacity specialit integration High capacity specialit integration High capacity multi-me and integration Non-Stop computing r Non-Stop computing to Launch vehicle advance ontrols interface and ai splay prototype developed 	processing network installation & operation processing hardware sensitivity factor sing requirements definition 64 bit processing component prototype zed coprocessor prototype development & ega byte memory alternatives development equirements definition system models development infiguration demonstration est and verification technology definition ced human-tended avionics displays and ids requirements definition d alternative sensory mechanisms and opment Controls Advanced Human-Mechine Test							

Johnson Space Center - Houston, Texas

. ..

Avionics Avionics	5.2.7.2 ETO Vehicie Avionics: Avionics Software Current & Related Programs			Navigation, Control & Aeronautics Division A. J. Bordano/EG				
Description	1990	1991	1992	1993	1994	1995	1996	
Space Applications GN&C Characteristics and Methods Defined			<u>^</u>	₽ 				
Space Applications GN&C Family Generated and other Applications Identified				¢	`			
Space Applications Characteristics and Methods Defined for additional Applications				1	`	<u>کُ</u>		
Space Applications Combined Demonstration with Target Avionics Platform					4	`		
Applications-to-RODB Data Type Analysis Matrix-X Simulation Development								
· Matrix-X Sindiation Development								
· · · · · · · · · · · · · · · · · · ·				<u> </u>				

.

				Johnson Space	Center - Houston, Texa		
	5.2.7.2 ETO Vehicle Avionics Sof		Navigation, Control & Aeronautics Di				
MAGA	Program Ben		A. J. Bordano/EG		6/26/91		
T	ECHNOLOGY	BENEF	ITS		WHY		
distributed and multi - Determine sensitivity	d Processing and demonstrate distributed operating that operate in real-time over	Establishes capability performance of oper distributed across manetworks and vehicle	ating systems ultiple buses.	 Assessment operating sy requirement 	stem and services		
 High Capacity Proces Develop and prototyj specialized coproces multi-megabyte men storage disk for space 	se software for 32/64 bit processors, sors such as 1960, R4000 and sory alternatives associated with mass a qualified components	 Additional processin, performance for the system. 	g capability and on-board data	Compatibilit systems in b and architect	oth performance		
 Non-Stop Computing Develop and demonsi multi-fault tolerant sy reconfigurable capab 	rate software models exhibiting ystem and component behavior and lity with and without human controls logies needed to test verify and	 Determination of required components for fault computing for evaluation concepts, costs and in difficulty. 	resistant tion of	 More flexible criteria and i safety 	e launch commit ncreases in mission		
 Software Reusability Develop and build Co (CASE) tool data republic data r	mputer Aided Systems Engineering ostory filters for exchanging data SE tools for flight software	• Establishes generic fl system elements for r program	ight software cuse across any	• Lower develo cycle costs fo element	opment and life or the software		
 applications. Avionics Displays and Develop and prototype voice and other sensor human operation of ec 	e knowledge based visual, touch,	• Determination of effer interface mechanisms complexity and amou information increase	as the	 Aids human d and response 	ata comprehension		

	5.2.7.3 ETO Vehicie Avionics: Vehicle Health Management Current & Related Programs			Navigation, Control & Aeronautics Division A. J. Bordano/EG				
Description	1988 19 01 02 03 04 0	989 1 Q2 Q3 Q4	1990 01 02 03 04	1991 01 02 03 0	1992 401 02 03 0			
 Optical Plume Anomaly and Gaseous Leak Detection Application of Al/Expert Systems to VHM Knowledge Based Autonomous Test Engineer (KATE) STS OMS/RCS Upgrade Open Architecture & Integrated VHM Study Anomaly Propagation Tracker Integrated Health Management Lab Acoustic/Ultrasonic Fault Prediction & Detection Failure Environment Analysis Tool RAMTIP Fault Isolation Expert System 								

1 **8**1

•

NVSV	Vehicle Health Mana	5.2.7.3 ETO Vehicle Avionics: Vehicle Health Management Proposed Technology				ronautics
	Description	1993 01 02 03 04	1994 Q1 Q2 Q3	1995 04 01 02 03 04	1996 01 02 03 04	1997 01 02 03 04
Sensor technology de sensors, smart skin) Open Architecture St Promulgation KSC NSTS Orbiter P insertion/demonstratio Development/demon Demonstrate acousti Compare cost/benefit In VHM Test Bed Demonstrate Robust Develop system leve	cation and Partitioning Trade Study evelopment (smart/autonomous andard Development and rocessing flow VHM technology					

Johnson Space Center - Houston, Texas

	5.2.7.3 Veh	ETO Vehicle Avionics: icle Health Management		Navigation, Control & Aero	nautics Division
NASA A		Program Benefits		A. J. Bordano/EG	6/26/91
TECHNO		BENEFITS	Τ	WHY	
Automated vehicle		Expedite pre-launch operations; minimize personnel costs Launch commit and Go/No Go decision process is expedited	ŀ	Delays, launch aborts and recycle in direct & Indirect costs; more e	es are too expensive fficient operations
 Autonomous vehicle health management 		 Maximize mission capabilities, performance; enhanced mission success probability 	.	Alleviates and circumvents effect and degradations VHM techniques allow weight an substituting software intelligence redundancy	d power savings by
VHM system archite software	cture and	 Enables incremental adoption of VHM concepts and new hardware; minimizes technical risks; improves efficiency and robustness 	•	Different systems, technologies at develop at different times	nd sensors will
• VHM sensors		 Increased knowledge of complex equipment's health condition 	1 1	Prognosis and timely fault detection required for complex equipment of environments	on capabilities are operating in extreme
 Residual lifetime esti dynamic health & sti 	imation, Alus assessment	Enhanced mission success	•	Component health is continuously incipient failures are detected perf acute	monitored and form they become
		• Impro:rformance margins		Performance redlines can be calcu and need not rely on statistical est "beginning of life" (optimistic) or (pessimistic) projections of system	imates of "end of life"
		 Improved cost effectiveness of processing and maintenance operations 		ystem elements may be repaired to pposed to following a periodic (o chedule	when needed as iverly conservative)

, •1

,

GN&C A			
Description	1988 1989	1990 1991 1992	
Autonomous Launch Vehicle Reconfiguration Baseline requirements for current vehicles Advanced GPS Navigation Techniques		3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 1992	
Initial tests in aircraft			
Autonomous Rendezvous/Docking GN&C • Baseline requirements under development			

5.2.7.4.1 ETO Vehicle Avionics: GN&C Algorithms Proposed Technology			Navigation, Control & Aeronautics Division A. J. Bordano/EG				
Description	1993 11 01 02 03 04 0	994 1 Q2 Q3 Q4	1995	1996 01 02 03 04	1997		
Autonomous Launch Vehicle Reconfiguration Baseline requirements for advanced vehicles GN&C Simulation Algorithm development Level C requirements development Environmental model development and simulation Algorithm development and simulation Numeric/Al Guidance Techniques Al concept development Numeric Guidance/Al Integration Detailed algorithm development and testing Parallel Processing concept development GN&C processing concept development Advanced GPS Navigation Techniques Advanced requirements baseline Advanced requirements baseline Advanced requirements development Advanced GPS Navigation Techniques Advanced requirements development Advanced nodel develop							

a a 1 • • 1

Johnson Space Center - Houston, Texas

				Johnson Space	Center - Houston, Texas		
	5.2.7.4.1 ETO Veh		Navigation, C	Control & Aeronautics Divisi			
	GN&C Alg Program E	enefits	A. J. Boro	6/26/91			
TE	CHNOLOGY	BENEFIT	S		WHY		
 Identify new approa algorithms and proc 	Vehicle GN&C Reconfiguration toches to current launch vehicle cesses that reduce or eliminate ng analysis, computer simulation	 Recurring launch operation reduced through automati improvements to current algorithms and operation 	ion and GN&C		of manpower ivities is needed for eration of launch		
Atmospheric Adaptiv • Develop a GN&C s heat rate, heat load an accurate landing	ystem that can actively control or temperature while maintaining	 Improved thermal protect reduced sensitivity to atm system uncertainties 		and thermal requirement ability of the	e landing accuracy protection system s are driven by the e GN&C system to persed atmospheric		
	e Techniques elligence techniques to provide ce of numeric guidance algorithms	Accurate, reliable guidan using exact environment	ce solutions models	Current num schemes are always conv	not assured of		
Parallel Processing G • Develop new appro effectively used on	N&C Methods aches and algorithms that can be parallel processing computers	• Perform complex GN&C onboard using parallel pr			omputation limits &C processing		
Advanced GPS Navig • Develop new algori improve GPS navig	gation Techniques thms and environment models to gation accuracy for ETO vehicles	Accurate, autonomous sp navigation	ace vehicle	Changing en conditions c measurement	an degrade doppler		
	vous/Docking GN&C concepts and approaches to s rendezvous	• Recurring costs reduced automation and improve GN&C algorithms and o approaches	ments to current		D operations rely round based manual		

NASA	5.2.7.4.2 ETO Vehicle GN&C Senso Current & Related Pi		on, Control & Aeronautics Division A. J. Bordano/EG			
C	Description	1988	1989	1990	1991	1992
 Hesolution Attitude Rate S Inertial Components and S Evaluate inertial components Evaluate inertial components Evaluate state-of-the-and vehicles, orbital vehicles, and Develop inertial sensor pressurements 	&C Applications roof of concept testing for the High Sensor Systems for GN&C Applications nents for vendor specification oplications t inertial sensors for launch nd payload packages packages for payload inertial ate-of-the-art and proposed	01102103104				

NASA	5.2.7.4.2 ETO Vehicle GN&C Senso Proposed Techno	ology			n, Control & . Division . J. Bordano/	
	Description	1993	1994	1995	1996	1997 Q4 Q1 Q2 Q3 Q
Specify requirements for Specify requirements for Reasearch the current te software Investigate and develop Design, build, and labora	or GN&C Sensor Investigation sensor and system hardware software algorithms and databases inchnology for required hardware and various algorithms itory test of prototype system stem in laboratories, and/or remote	Autonomo Optical Ra Hortzon/Te Magnetore Fiber-Optic Vibrating B Coriolis Ac Capacitive, Multiple Re Gravity Wa Electrostati (EMA)	GN&C 1 us Attitude Do train Mappin stive Sensor De brrain Mappin stive Sensor Colro Resea learn Acceler colevor GPS II we/Lense Thi Icc/licromach	Bensor Investig Intermination Sys velopment p/Feature Recog meter nertial Measurem pension IMU (O)	ation tem Development inition Sensor D ment ment Unit (CAIMUBIK) tor (GWLTED) ter with Hybrid	ent Development 4U) Electronics

		Johnson Space	Center - Houston, Tex
5.3	2.7.4.2 ETO Vehicle Avionics: GN&C Sensors	Navigation, Control & Aero	nautics Division
MARA - OCVEL OF MENT - VELT	Program Benefits	A. J. Bordano/EG	6/26/91
TECHNOLOGY	BENEFITS	WHY	
Optical Rate Sensor	Precision vehicle attitude rates using optical techniques	Provides reliable imaging real support for Earth orbit mission	time navigation
Autonomous Attitude Determination System	Precision vehicle attitude using optical imaging techniques	Provides reliable real time attin system for Earth orbit mission	ude determination
Horizon Sensor	Precision navigation capabilities using optical imaging techniques	Provides reliable real time nav Earth orbit missions	igation support for
Terrain Mapping/Feature Recognition System	Precision navigation capabilities using optical imaging and storage techniques	Provides reliable real time sup missions	port for Earth orbit
Magnetoresistive Sensor	• Azimuth determination in a smaller, lighter, less costly, less power package	 Provide light weight, low pow azimuth sensor for low earth of 	er consumption orbit satellites
Interferometric Fiber-Optic Gyro (IFOG). Most mature	High Mean Time Before Failure (MTBF) low power, angular rate sensor	 Provide highly reliable autono angular rate sensing 	mous navigation an
Resonator Fiber-Optic Gyro (RFOG). Least mature	High MTBF, low power, RLG compatible angular rate sensor	 Provide highly reliable autono angular rate sensing 	mous navigation an
Fiber Optic Gyro Closed Loop	High angular rate inertial sensor with improved rate linearity	 Provide highly reliable autonor angular rate sensing 	nous navigation an
Vibrating Beam Accelerometer	Precision, low power, small, reliable acceleration measurement	 Provide highly reliable autonous linear acceleration measurement 	nous navigation an nt support
Coriolis Acceleration Inertial Measurement Unit	Small, low power/part count IMU. Only accelerometer required for complete system	 Provide highly reliable comparent in avigation support 	ct autonomous
Capacitive, magnetic suspension IMU (QUBIK)	• Single sensor provides all inertial sensing requirements.	 Provide highly reliable compare navigation support 	ct autonomous
Multiple Receiver GPS IMU	Calculate attitude from relative positions of GPS receivers on common vehicle	Provide navigation for launch : vehicles	and low Earth orbit
Stavity Wave/Lense Thirring	Calculate relativistic effects of massive bodies on trajectory and GPS time-keeping	 Provide more accurate navigat launch trajectories and for GP 	on support for S navigation
Electrostatic/Micromachine	High sensitivity, small size, low power	 Provide compact autonomous acceleration measurement support 	avigation and
ntegrated Fiber-Optic	• High MTBF, self calibrating Inertial Navigation System	 Provide highly reliable navigat earth orbit missions 	ion support for low

. ..

5.2.7.5 ETO Vehicle Avionics: Navigation, Control & Aeronautics N/S/ **Electrical Actuation** Division **Current & Related Programs** A. J. Bordano/EG Description • General Dynamics 25-40 Horsepower EMA DDT&E Program (SATWG ELA Technology Bridging Program) · JSC Actuator Test Set and Facility Development and $\hat{\mathbf{n}}$ Operation · Honeywell TVC EMA Development Project · Assessment of ETO actuation task requirements and ELA suitability System Engineering to identify design parameters and sensitivities; key trade criteria ብ Evaluate Parker-Hannifin Nosewheel Steering EHA at JSC
 ATS ብ

NASA	5.2.7.5 ETO Vehicle / Electrical Actua Proposed Techni	tion	Control & As Division Bordano/EC			
Des	cription	1993 Q1 Q2 Q3 Q4	1994 Q1 Q2 Q3 Q4	1995 Q1 Q2 Q3 Q4	1996 Q1 Q2 Q3 Q4	1997 01 02 03 04
Demonstrate & Evaluate a Design and Qualify a Fami Applications	10 Horsepower ELA device 75 Horsepower ELA device Ny of ELAs for Flight Critical on Control Valve in SSC SSME			<u>}</u>		<u>}</u>
Test Stand • Develop and Validate ELA Strategies				}		
Demonstrate ELA Fault Ma VHM Test Bed Flight Demonstration of a F	anagement/VHM Strategies in					
				1	ſ	

Johnson Space Center - Houston, Texas 5.2.7.5 ETO Vehicle Avionics: Navigation, Control & Aeronautics Division **Electrical Actuation Program Benefits** A. J. Bordano/EG 6/26/91 TECHNOLOGY BENEFITS WHY Expedite pre-launch operations; minimize personnel costs
 Operational safety increased Electromechanical Hydraulic system eliminated; preflight control system checkout is expedited, does not entail hazardous operations Hazardous fluids, stored energy systems, fluid replenishment Actuation (EMA) operations eliminated · Distributed system is more fault/damage · Distributed system elements; no central single point failures, tolemnt no fluid couplings to burst or leak Greatly reduced risk of system failures
 Expedite pre-launch operations; minimize
 personnel costs Very low system part count
 Centralized hydraulic system eliminated; preflight control
 system checkout is expedited, does not entail periodic Electrohydrostatic Actuation (EHA) hazardous operations · Operational safety increased · Hazardous fluids, stored energy systems, fluid replenishment operations eliminated · Distributed system elements; no central single point failures, · Distributed system is more fault/damage tolerant no external fluid couplings Greatly reduced risk of system failures Directly applicable to flight-critical Very low system part count EHAs provide inherent load-sharing ability
Overload capacity is similar to conventional hydraulics applications · Actuator can be backdriven with adjustable impedance (variable damping capability) • Simple electrical and command interface with host vehicle • ELA (all Inherently supports basic constructs of VHM technologies) initiative Expedites launch system processing and · Obviates need for external hydraulic support carts checkout operations Allows system level functionality test at low . Long "shelf life" without need for constant servicing cost in terms of manpower, time, and special configurations/test support equipment requirements
 Increased reliability Magnetostrictive and · Extremely low parts count (for magnetostrictive, 1 moving part!) • Devices are mechanically relatively simple other direct acting Unit cost is reduced

1.11

NASA	5.2.7.5 ETO Vehicle Avionic Landing/Recovery System Current & Related Program	18	Navigation, Control & Asronau Division A. J. Bordano/EG					onautics .	
Descrip	lon	1988 0 0 0 0	198		1990 0 10 10	10	1991 0 IO		1992 Q Q Q Q
Parachute Aero Sciences		1			1				
 Multi-Body Simulation 		Ľ							
··· Baseline set of requirements for						- 1			<u> </u>
 Computational Fluid Dyanmics (C 	FD)								
•• Baseline set of requirements to • Wind Tunnel Testing	r CFD code development					۲			I
··· Baseline set of requirements to	r wind tunnel testing		i i			- {			1
 Flight Demonstration 									
··· Baseline set of requirements to						໌ (I
Advanced Recovery System (ARS)	Demonstration								
 Flight Demonstration 									
 Augmented ARS Phase IIIA Pr 	ogram					_ ໌			
•• Baseline set of reqments for ial Parachute Guidance, Navigation & (1	Ì		
Simulation Development					[
··· Baseline set of requirements for	r simulation development					۲ (
Sensor/Avionics Configuration									
··· Baseline set of requirements to	r sensor/avionics configuration					4	Ì		I I
GN&C Software Development									
··· Baseline set of requirements to	r GN&C software development					٢			ſ <u></u>
mpact Systems Test Bed									
Test Planning & Testbed Design/F	abrication								
•• Baseline set of requirements to Advanced Instrumentation	r impact systems test			i		5	Ì		
System Development							1		
Baseline set of requirements to development	r instrumentation definition and					Ś			

5.2.7.6 ETO Vehicle Avionics: Navigation, Control & Aeronautics NNS Landing/Recovery Systems Proposed Technology Division A. J. Bordano/EG 1993 1994 01|02|03|04|01|02|03|04 **1995 1996 1997** Description 1993 Parachute Aero Sciences · Multi-body simulation development · CFD code development/application Wind tunnel testing î Flight demonstration ᢙ Advanced Recovery System (ARS) Demonstration Augmented ARS Phase IIIA Program · Landing flare wind tunnel program Parachute Guidance, Nevigation, & Control Definition of simulation requirements Inertial simulation capability using primary aero data base Definition of representative sensor/avionics configuration · Testing of representative sensors/actuators Definition of GN&C software requirements & code development Procurement/integration of sensor/effector hardware û Impact Systems Test Bed Test Planning 1 Testbed design Testbed fabrication & preparation Landing system test Advanced Instrumentation Definition of Instrumentation requirements ሰ · System development

....

 $\hat{\mathbf{u}}$

· Experimental validation of measurement techniques

Navigation, Control & Aeronautics Division

•

5.2.7.6 ETO Vehicle Avionics: Landing/Recovery Systems

TECHNOLOGYBENEFITSWHYParachute Aero Sciences• Multi-body simulation development for realistic modeling of parachute system dynamics of multiple parachutes inflation. dynamics of multiple parachutes inflation. development to model the unsteady flow physics• Realistic modeling of parachute inflation. dynamics of multiple parachutes inflation. dynamics of multiple parachutes inflation. development to model the unsteady flow physics• Allows for systems trade studies to yield more optimum design and reduced flight testing requirements structural design structural design • Provides improved understanding of structural design • Provides integrated system simulation trade studies• Allows for systems trade studies to yield more optimum design and reduced flight testing requirements saccuracies• Wind tunnel testing to acquire database for conducting rade studies and assessment scaling effects • Landing flare wind tunnel program for demonstration of flared landing capability • Further advance knowledge of large scale giding parameters• Provides integrated system scaling parameters• Provides integrated system scaling parameters• Vind tunnel testing for procedures development and assessment and seasessment of scaling efficits • Intrial simulation capability for realistic modeling of integrated system seases sensor and effector requirements, guidance and flight control algorithms and definition of avionics configuration for assessing environmental effects• Allows for system trade studies to improve system trade studies to improve system seases and effector requirements, guidance and flight control algorithms and definition of avionics configuration of system seasing for environmental effects• Allows for sys		Pro	ogram Benefits	A. J. Bordano/EG	6/26/91
 Multi-body simulation development for realistic modeling of parachute system dynamics of multiple parachutes in a dynamics of multiple parachutes in a dynamics of multiple parachutes in a cluster and landing flare simulation of development to model the unsteady flow physics Wind tunnel testing to acquire database for conducting trade studies and assessing scaling effects Flight demonstration to test integrated system efformance Advanced Recovery System (ARS) Phase IIIA program for demonstration of flared landing grapability for realistic modeling of integrated system assessment of scaling effects Further advance knowledge of large scale gliding parachute systems Further advance knowledge of large scale gliding parachute systems Further advance knowledge of large scale gliding parachute systems Further advance knowledge of large scale gliding parachute systems Further advance knowledge of large scale gliding parachute systems Further advance knowledge of large scale gliding parachute systems Further advance knowledge of large scale gliding parachute systems Further advance knowledge of large scale gliding parachute systems Further advance knowledge of large scale gliding parachutes systems Further advance knowledge of large scale gliding parachutes systems Further advance knowledge of large scale gliding parachutes systems Further advance knowledge of large scale gliding parachutes systems Realistic modeling of integrated system to scaling parameters Realistic modeling of integrated system to scaling parameters Realistic modeling of integrated system to scaling parameters Realistic modeling of integrated system to support parachutes integrated of system to support parachute inflation support parachute landing system Reduces landing and targetin	TECHNO	LOGY	BENEFITS	WHY	,
 Advanced Recovery System (ARS) Phase IIIA Augmented ARS Phase IIIA program for demonstration of flared landing capability Landing flare wind tunnel program to acquire database for procedures development and assessment of scaling effects. Provides database for use in improving definition of flare and development of scaling parameters Provides database for use in improving definition of flare and development of scaling parameters Provides validation of design tools and assessment of scaling effects. Provides realistic modeling of integrated system performance Demonstrates deployment, precision flared landing capabilities Provides validation of design tools and assessment of scaling parameters Realistic modeling of integrated system to assess sensor and effector requirements, guidance and flight control algorithms and definition of avionics configuration for assessing environmental effects Orivides realitions to improve landing accuracies Provides integrated GN&C system to support parachute landing systems Provides integrated GN&C system to support parachute landing systems 	Multi-body simulation realistic modeling of ps dynamics Computational fluid d development to model 1 physics Wind tunnel testing to for conducting trade stu scaling effects Flight demonstration t system performance	n development for vrachute system synamics code the unsteady flow acquire database dies and assessing so test integrated	dynamics of multiple parachutes in a cluster and landing flare simulation • Provides improved understanding of parachute flowfields to assist in canopy structural design • Provides database for use in system simulation trade studies	more optimum design ar testing requirements • Provides improved desig reduced testing requirem • Provides validation of de assessment of scaling par • Provides integrated syste demonstration of proced	nd reduced flight n process and ents sign tools and rameters m assessment and
 Inertial simulation capability for realistic modeling of integrated system to modeling of integrated system performance Definition/testing of representative sensor/avionics configuration for assessing environmental effects Roalistic modeling of integrated system to assessing environmental effects such as winds and density variation to improve landing accuracies Roalistic modeling of integrated system to assessing environmental effects such as winds and density variation to improve landing accuracies Roalistic modeling of integrated system to assessing environmental effects such as winds and density variation to improve landing accuracies Provides integrated GN&C system to support parachute landing systems 	IIIA • Augmented ARS Phase demonstration of flared • Landing flare wind tur acquire database for pro- development and assess effects	e IIIA program for landing capability and program to codures	 gliding parachute systems Provides database for use in improving definition of flare and development of 	 Demonstrates deployment landing capabilities Provides validation of detection 	tign tools and
	Inertial simulation cap modeling of integrated s performance Definition/testing of re sensor/avionics configur environmental effects GN&C software requir development for assessm	presentative ation for assessing	assess sensor and effector requirements guidance and flight control algorithms a definition of avionics configuration Provides realtime feedback of environmental effects such as winds and density variation to improve landing accuracies Provides integrated GN&C system to support parachute landing systems	system design and impro- accuracies • Reduces landing zone req compensating for environ • Provides integrated system demonstration of flare lan	uirements by mental effects

ŀ

			Johnson Space	Center - Houston, Texas			
		TO Vehicle Avionics: g/Recovery Systems	Navigation, Control & Aeronautica Divis				
RAGA COM-OFTE STRENT - THE	Progra	m Benefits (Continued)	A. J. Bordano/EG	6/26/91			
TECHNO	DLOGY	BENEFITS	WHY	1			
Impact Systems Test E • Test bed design/fabri candidate impact atten • Landing system test impact attenuation system Advanced Instrumenta	ication to evaluate uation systems to assess candidate tem performance	Provide capability to evaluate candida impact attenuation system concepts Provides physical testing of candidate systems and concepts	dispersed flight condition	ons and allows for			
Advanced instrumenta • Measurement system enhancing system desi design tools • Experimental validari techniques to assess in accuracies and capabili flow properties	i development for gn and validation of ion of measurement strumentation	 Provides system to measure local pressures on parachute canopy and loa in suspension lines Provides assessment of instrumentation intrusion on local flow field 	nerformance	in system			

NASA	5.2.7.7 ETO Vehicle A Power Management & Current & Related Pr	& Control		Navigation, Control & Aeronautics Division A. J. Bordano/EG			
· · · · · · · · · · · · · · · · · · ·	Description	1988 01 02 03 04	1989 01 02 03 04	1990 01 02 03 04	1991 01 02 03	1992 40401/02	
JSC Integrated Actuation Development and Operation Flywheet Energy Stora Power System Manage and Demonstration Shuttle Power Distribut and Operations	city) Fuel Cell Development or/Power System Test Set Facility ation age Technology Investigation ement Expert Systems Development tion Brassboard Lab Development roller Technology Development						

NASA Proposed Techr	& Control			Control & Asi Division . Bordano/EG	
Description	1993 Q1 Q2 Q3 Q4	1994 01 02 03 04	1995 01 02 03 04	1996 01 02 03 04	1997 01 02 03 04
Develop and Demonstrate Fault Tolerant Power System Architectures Identify Requirements for, Establish Specification of Integrated Utilities" Interface Demonstrate PMAC concepts in VHM Test Bed Demonstrate PMAC Concepts in Flight Test Vehicle Demonstrate Flywheel Energy Storage Technology Develop and Demonstrate High Energy Density Battery Systems					

				Johnson Space	Center - Houston, Texi		
		Y ETO Vehicle Avionics: Management & Control		Navigation, Control & Aeronautics Division			
		Program Benefits		A. J. Bordano/EG	6/26/91		
TECHNOLOGY		BENEFITS		WHY			
 Autonomous reconfig series/parallel circuit p 	uration among aths	Expedite pre-launch operations; minimize personnel costs		PMAC implementation s vehicle checkout	upports automated		
		• Increased mission success probability		System is more robust an	d fault tolerant		
·Integrated modular service backbone		Vehicle integration task is simplified		• All required services are	provided across a		
		 Power, thermal, data capabilities are provided in a balanced fashion 		unified interface • Integrated "utilities bus" characterized by			
		Vehicle performance is improved		high level of integration a saves weight	ind multiplexing.		
•High frequency power and control	distribution	Vehicle performance is improved		System components are ligare higher	shter, efficiencies		
•High energy density be	ittery systems	Enhanced mission success probability		 Eliminates requirements for and technically risky dyna generation systems for lau 	unic nower		
 Enhanced fuel cells 		Enhanced mission success		· Fuel cell system reliability			
		Vehicle performance is increased		 Advanced fuel cells have a density; power system is is capacity 	higher net energy ighter for the same		
 Advanced Energy stora conditioning devices (i.e advanced motor controll 	flywheels)	 Enhanced compatibility with electrical actuation (ELA) technology; improved system efficiencies 		 Power supply, regulation, a technology is matched to to requirements of ELAs 	und conditioning he unique		

Johnson Space Center - Houston, Texas 5.3.8 Transfer Vehicle Avionics Navigation, Control & Aeronautics Division Overview A. J. Bordano/EG 6/26/91 The next generation of transfer vehicles will need to have increased mission safety, more autonomy for unmanned operation or reduced crew workload, and reduced operational costs. Transfer Vehicle and ETO Avionics technology development share common goals which invites and in fact, for cost effectiveness, dictates collaboration and interfacing between the two areas of development. The goals of the NASA Transfer Vehicle Avionics Technology Development Program are: Build on a foundation provided by similar work for the ETO Vehicle Avionics Technology Development Program. Provide the capability to develop self contained transportation systems for long duration missions where ground support are not readily available. Advance technologies in vehicle avionics architecture, software, health management, GN&C, electrical actuators, and power management and control for short and long duration missions. □ These technology goals are intended to improve efficiency and safety (reliability, robustness, failure tolerance), decrease crew workload, and reduce cost of production/operation in the next generation of Space Transportation Systems. □ A major technology challenge arises in the development of self contained space transportation systems necessary to operate without logistic supply lines, for protracted periods of dormancy, for long term exposures to charged particle/radiation and changing environment expected of the interplanetary space and planet surfaces.

. ...

NASA	5.3.8.1 Transfer Ver Avionics Arch Current & Related	itecture		Navig	Divi	rol & Aeron sion rdano/EG	nautics
	Description	1990 01/02/03/04	1991	1992	1993 01/02/03/04	1994	1995
analysis and trades • Flight Data System Ope development • Network Performance M • Bare 386 Real Time Ker	em profiles n Architecture performance n Architecture prototype odel net Inestigation Interoperability Evaluation				1		

,

Avionics Archite	5.3.8.1 Transfer Vehicle Avionics: Avionics Architecture Proposed Technology			Navigation, Control & Aeronautics Division A. J. Bordano/EG			
Description	1993 Q1 Q2 Q3 Q4	1994	1995	1996 40102030	1997 401020304		
Long Duration Flight (LDF) Architecture and Simulation Requirements Definition LDF Architecture Predictive/Alternatives Simulation Development LDF Processing Embedded Simulation Architecture and Component Prototype Development for Inflight Health Monitoring and Training LDF Processing Inflight Mass Data Collection, Trend Analysis, and System Performance Prototype Development Multi-Systems and Multi-Vehicle (MS&MV) Processing Requirements Definition (including Robotics) MS&MV Operations Architecture Development (including integrated Robotics Architecture) MS&MV Off-Earth Processing Prototype Development MS&MV Earth-Based and MCC Concept/Prototype Development MS&MV Network LAN Prototype Development MS&MV Network WAN Prototype Development MS&MV Network Advanced Intelligent Knowledge Based Prototype Development Resynchronization Processing Software Requirements for Stopping, Recovery, and Resync Control Resynchronization Processing Software Requirements for Thread Avionics Displays and Controls Alternative Sensory Mechanism Prototype Development Avionics Displays and Controls Advanced Total Environment and High Fidelity Voice Control Prototype Development							

5.3.8.1 Transfer Vehicle Avionics: Avionics Architecture		Navigation, Contro	nson Space Cente Ol & Aeronaut	
Program E		A. J. Bordano/	EG	6/26/91
TECHNOLOGY	BI	ENEFITS	W	'HY
Transfer Vehicle Architecture - Long Duration Flight Architecture - Develop predictive models which account for cumulati effects and alternative response mechanisms - Prototype and demonstrate candidate architectures incli- embedded simulations for inflight health status monito training - Prototype and demonstrate inflicht mean data of the status	ve space standards to systems before uding commitment ring and		• Establish cri duration flig such as dorn	teria for long
 Prototype and demonstrate inflight mass data collection analysis, and system performance forecasting Multi-Systems and Multi-Vehicle Processing Define architectures to use in multi-system and multi-w operations, including advanced robotic architectures Develop and prototype flight data systems of off-Earth Earth-based data systems and alternative mission control concepts 	• Evaluation of with heterog	f the data systems eneous components combinations of robotics	• Development for operating levels of auto multiple vehi	t at different
Multi-Systems and Multi-Vehicle Networks Develop and prototype advanced inter-processor commi- (local area networks) hardware and inter-vehicle comm (wide area networks) hardware	unication both local and unication environment	communication in d wide area	Effective data communication	
Investigate new test, certification, and verification techn for advanced network hardware Resynchronization Processing Define requirements for stopping and recovering from si multiple processing failures for operating under fault co and for re-synchronizing processing threads in both sing multiple vehicles Avionics Displays and Controls Define requirements for advanced human-tended display control interfaces, aids and alternative sensory mechanis Develop, build, prototype and demonstrate advanced tota environment or holographic display and high fidelity voi control interfaces	and maximum and and times the and and times the and times the and times the and times the and times ti times ti ti times times ti times times times ti times times ti ti	Dichension overload	 Satisfy missio performance a criteria Acceptability of human-maching 	and success of advanced

,

5.3.8.2 Transfer Vehicle Avionics: Avionics Software Current & Related Programs N/Navigation, Control & Aeronautics Division A. J. Bordano/EG 1990 1991 1992 1993 1994 1995 ວາເວເຜາວະເວເຜາວະເວເຜາວະເວເຜາວະເວເຜາວະເວເຜາວະເວເຜາວະເວເຜາວະເວເຜາວະ 1996 Space Applications GN&C Characteristics 企 <u>-</u> and Methods Defines Space Applications GN&C Family Generated 企 and other Applications Identified Space Applications Characteristics and Methods Defined for Additional Applications ና íì Space Applications Combined Demonstration
 with Target Avionics Platform ብ Applications-to-RODB Data Type Analysis Matrix-X Simulation Development Т **********************

. ..

NASA	5.3.8.2 Transfer Vehicle Avionics: Avionics Software Proposed Technology		Navigation, Control & Aeronautics Division A. J. Bordano/EG				
	Description	1993	1994	1995	1996	1997	
Requirements Definition Atternative Long During Development Case Tool Developm Mant, Reuseability and Multi-Systems/Vehick Definition (Incl altern M MS&MV Flight Data S MS&MV Flight Data S MS&MV Flight Data S MS&MV Networks M MS&MV Networks M MS&MV Networks Ac Development Resynchronization Pr Recovery, and Resynce Resynchronization Pr Requirements Definitio Resynchronization Pr Requirements Definitio Resynchronization Pr Requirements Definitio Off-Earth Advanced H Software Requirements Avionics Displays and Human Operations Soft	ation Algorithm and Remote Control Prototype ent for Auto Code Prodn, Data Exchange, Confg Traceability of Flight Software (MS&MV) Interface and SW Requirements (CCs and Plentary surface vehicles) System Interface Development system Software Prototype Development a Prototype Development AN Software Prototype Development vanced Intelligent Knowledge Based Prototype occessing Software Requirements for Stopping, Control occessing Software Requirements for Thread occessing Concurrency and Consistency n in one Vehicles uman-Tended Avionics Displays and Controls						

. ..

Johnson Space Center - Houston, Texas 5.3.8.2 Transfer Vehicle Avionics: Navigation, Control & Aeronautics Division **Avionics Software Program Benefits** A. J. Bordano/EG 6/26/91 TECHNOLOGY **BENEFITS** WHY Transfer Vehicle Software Long Duration Flight Software Better understanding of the Software to support time - Develop degradation algorithms and simulations of time delay software requirements operating degradation effects models for remote control of flight data system elements Develop and build Computer Aided Systems Engineering (CASE) under degrading or aging system components tools which support code development, data exchange, configuration management, requirements traceability and reuseability for flight software elements. • Multi-Systems and Multi-Vehicle Processing Assessment of software features · Operations across a remote off-Earth systems, Earth-based data systems, planetary surface for operation across heterogeneous and diverse fleet systems and vehicles vehicles, and alternate mission control center concepts Multi-Systems and Multi-Vehicle Networks Efficient data Development of data Develop and prototype inter-processor communication (local area communication for interacting communication both inter networks) software and inter-vehicle communication (wide area non-Earth based mission and intra vehicle networks) software for data communications Develop and prototype advanced intelligent knowledge based control over networks Resynchronization Processing
Define software requirements for stopping and recovering from single and multiple software failures in single and multiple Establish and demonstrate software recoverability for both inter and intra vehicles Support to long duration
 and remote missions vehicles and for re-synchronizing processing threads Define requirements for data consistency and concurrent operation across multiple systems in one vehicle and in multiple vehicles Avionics Displays and Controls Develop and prototype knowledge based display and control aids · Provides effective approaches for • Human-machine interface increasing software support to evaluation and acceptance to support human operation of complex systems human data comprehension Develop and prototype software controls for advanced visual, touch, voice and other sensory display and control interfaces

Vehicle Health M Current & Relate	5.3.8.3 Transfer Vehicle Avionics: Vehicle Health Management Current & Related Programs		Navigation, A. J		
Description	1988 Q1 Q2 Q3 Q4	1989 01 02 03 04	1990	1991	1992
 Earth to Orbit VHM development Application of Al/Expert Systems to VHM Knowledge Based Autonomous Test Engineer (KATE) STS OMS/RCS Upgrade Open Architecture & Integrated VHM Study Anomaly Propagation Tracker Integrated Health Management Lab Failure Environment Analysis Tool RAMTIP Fault Isolation Expert System 					

1 1)

NVZV	Vehicle Health Mana Proposed Techno	5.3.8.3 Transfer Vehicle Avionics: Vehicle Health Management Proposed Technology			Navigation, Control & Aeronautics Division A. J. Bordano/EG		
	Description	1993 Q1 Q2 Q3 Q4	1994	1995 Q1 Q2 Q3 Q4	1996	1997 40110210310	
• Development/Operatio emphasis	n of VHM test bed - Transfer system		f				
 VHM Functional Alloca Sensor technology dev sensors, smart skin) 	tion and Partioning Trade Study elopment (smart/autonomous	ť	2		} }		
Open Architecture Star Promulgation	idard Development and	4	<u> </u>			丨 夺	
Development/demonst	ation of embedded closed loop	{	<u> </u>				
Compare cost/benefits n VHM Test Bed	of physical and analytic redundancy.		û	î			
Develop system level fa Flight demonstration of mplementation	ult tolerance design tools VHM/Fault Management			î	<u>}</u>		

	ansfer Vehicle Avionics: cle Health Management	Navigation, Control & Aero	nautics Division
Program Benefits		A. J. Bordano/EG	6/26/91
TECHNOLOGY	BENEFITS	WHY	
Automated vehicle checkout performed continuously and without human intervention	 Increased prospects of system survival and mission success in harsh environments 	 VHM allows superior insight into supports both human and maching 	e-based decisions
Autonomous vehicle health management	 Maximize mission capabilities, performance; enhanced mission success probability 	 Alleviates and circumvents effect and degradations VHM techniques allow weight an substituting software intelligence redundancy 	d power savings by for some physical
VHM system architecture and software	 Enables incremental adoption of VHM concepts and new hardware; minimizes technical risks; improves efficiency and robustness 	 Different systems, technologies a develop at different times 	
VHM sensors (physical sensing devices, analytic and other synthetic redundancy techniques) - use of "smart skin" for structures and propellant system elements • Distributed sensor architecture	Increased knowledge of complex equipment's health condition System is physically and functionally redundant and can withstand large scale physical insult without total loss of functionality	 Prognosis and timely fault detecting required for complex equipment of environments 	
 Residual lifetime estimation, dynamic health & status assessment mission operations will not be compromised by being forced to rely on devices and systems of questionable reliability 	Enhanced mission success Improved performance margins Improved cost effectiveness of processing and maintenance operations	 Component health is continuously incipient failures are detected bef acute Performance redlines can be calcu and need not rely on statistical es "beginning of life" (optimistic) or (pessimistic) projections of syster System elements may be repaired opposed to following a periodic (or schedule 	ore they become ulated dynamically timates of "end of life" n capabilities when needed as

NASA GN&C Algo Current & Relation	orithms	Navigation, Control & Aeronautic Division A. J. Bordano/EG
Description	1988 198 01 02 03 04 01 0	39 1990 1991 1992 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q
Autonomous Navigation in Interplanetary Space • Preliminary concept development Autonomous Rendezvous/Docking GN&C • Baseline requirements under development		

Proposed Te	ehicle Avionics: prithms chnology	Navigation, Control Division A. J. Bordan	1
Description	1993 1994	4 1995 1996	1997
Precision Orbit GN&C • GN&C concept development • Environment model development and simulation • Algorithm development and simulation Precision Orbit GN&C • Optimal trajectory development • Environmental model development and simulation • Detailed algorithm development and testing dvanced Analytical Propagators • Analytic Technique Development • Detailed requirements development • Detailed algorithm development and testing IN&C for Artificial Gravity Vehicles • Artificial gravity approach assessment • GN&C architecture definition • Algorithm development and simulation utonomous Navigation in Interplanetary Space • Autonomous approach development • Detailed algorithm development and testing Utonomous approach development • Concept trade studies Detailed algorithm development and testing umerical/AI Guidance Techniques AI conept development Numeric Guidance/AI Integration Detailed Bigorithm development and testing trailel Processing concept development Parallel GN&C architecture definition Algorithm development and simulation tonomous Rendezvous/Docking GN&C AR&D requirements development Algorithm concept development Algorithm concept development Algorithm testing and simulation			

.

.

5.3.8.4.1 Transfer	Vahiola Aviantas	4.		Center - Houston, Texas
GN&C A	lgorithms	Navigation,	Control & Aero	nautics Division
Program	Program Benefite		rdano/EG	6/26/91
TECHNOLOGY	BENEFIT	s		WHY
Precision Orbit GN&C • Develop new approaches and algorithms for maintaining extremely precise orbits Low Thrust Vehicle GN&C	 Allows efficient use of ge orbits and Earth/Moon, E Sun/Mars libration points 	efficient use of geosynchronous • Utilizing these unusu		ise maintenance of
Develop new GN&C algorithms for use on extremely low thrust to weight transfer vehicles Advanced Analytic Propagators	r use on extremely es propulsion systems such as electric		of advanced • Current GN&C h as nuclear developed for v	
 Develop new analytic orbit propagator techniques for onboard use 	Analytic approaches are computationally more efficient than numeric approaches and have more assurance of convergence		net provide the accuracy nee necessary for the next gene	
GN&C for Vehicles Utilizing Artificial Gravity • Develop GN&C algorithms for vehicles which use spinning structures to provide artificial gravity for crew members Autonomous Navigation in Interplanetary Space	 Allow efficient operation of vehicles while simultaneo a healthy crew environment 	usly providing	of launch vehicles • Rotational dynamics neces for artificial gravity has ad effects on GN&C	
algorithms for use on deep space missions	Reduce or eliminate requir Earth based navigation tra-	rement for		
 Utilize artificial intelligence techniques to provide assured convergence of numeric guidance algorithms 	 Accurate, reliable guidance using exact environment m 	models schemes are no		ot assured of
Parallel Processing GN&C Methods • Develop new approaches and algorithms that can be effectively used on parallel processing computers Autonomous Peed	Complex GN&C computations can be performed with onboard parallel processing		 Sequential con today's GN&C 	Dutation limits
Autonomous Rendezvous/Docking GN&C • Develop algorithm concepts and approaches to support autonomous rendezvous	Recurring costs can be redu automation and improveme GN&C algorithms and oper approaches	Infs to current	 Current AR&D heavily on gro procedures 	operations rely and based manual

NV2V	5.3.8.4.2 Transfer Vehicle Avionics: GN&C Sensors Current & Related Programs			-	, Control & Aa Division J. Bordano/E	
A	Description	1988	1989	1990	1991	1992 0102030
Continuous Stellar Trac • Set requirements an Resolution Attitude Rat inertial Componenets a • Evaluate inertial com compilance and vehicle • Evaluate state-of-the vehicle, orbital vehicles • Develop inertial sens measurements	proof of concept testing for the king Attitude Reference (CSTAR) d proof of concept testing for the High e Sensor and Systems for GN&C Applications ipponents for vendor specification explications art inertial sensors for launch , and payload packages for packages for payload inertial state-of-the-art and proposed					

1 **▶ 1** ,

GN&C Sena Proposed Tech			Navigation, Control & Aeronau Division A. J. Bordano/EG		
Description	1993 01 02 03 04	1994	1995	1996	1997 01020304
Typical Schedule for GN&C Sensor investigation Specify requirements for sensor and system hardware Specify requirements for software algorithms and atabases Reasearch the current technology for required hardware nd software Investigate and develop various algorithms Design, build, and laboratory test of prototype system Field test of prototype system in laboratories, and/or imote observatories and sites	Autonome Oplical R Hortzon/T Hortzon/T Hortzon/T Vibrating Coriolis A Capacitive Gravity W	bus Attitude Detr ata Sensor Deve errain Mapping/ estive Sensor Ic Gyro Researc Beam Acceleror coelerometer Inn a, Magnetic Sup ave/Lense Thirri	Feature Recogni h and Developm	m Development lition Sensor Dev lient ent Unit (CAIMU BIK) x (GWLTED)	velopment)

		Johnson Space	Center - Houston, Texa
5.3.	8.4.2 Transfer Vehicle Avionics: GN&C Sensors	Navigation, Control & Aeron	neutics Division
	Program Benefits	A. J. Bordano/EG	6/26/91
TECHNOLOGY	BENEFITS	WHY	
Optical Rate Sensor	 Precision vehicle attitude rates using optical techniques 	· Provides reliable imaging real t	ime navigation
Autonomous Attitude Determination System	 Precision vehicle attitude using optical imaging techniques 	support for extended Lunar and • Provides reliable real time attitu-	de determination
Horizon Sensor	 Precision navigation capabilities using optical imaging techniques 	system for extended Lunar and • Provides reliable real time navig Lunar and Mars exploratory mi	support for
Terrain Mapping/Feature Recognition System	 Precision navigation capabilities using optical imaging and storage techniques 	 Provides reliable real time navig Lunar and Mars exploratory mi 	tation support for
Magnetoresistive Sensor Interferometric Fiber-Optic	 Provides azimuth determination in a smaller, lighter, less costly, less power package 	 Provide light weight azimuth se Mars orbit that requires little po 	nsor for Earth and
Gyro (IFOG) Most mature Resonator Fiber-Optic Gyro	High Mean Time Before Failure (MTBF) low power, angular rate sensor	 Provide highly reliable autonom angular rate sensing for Lunar a 	ous navigation and
(RFOG) Least mature Fiber Optics Gyro Closed	High MTBF, low power, RLG compatible angular rate sensor	 Provide highly reliable autonom angular rate sensing for Lunar a 	ous navigation and
Loop Vibrating Beam	High angular rate inertial sensor with improved rate linearity over Open Loop FOG's Precision, low power, small, reliable	 Provide highly reliable autonom angular rate sensing for Lunar a 	ous navigation and
Accelerometer Coriolis Acceleration Inertial	Sceleration measurement Small, low power/part count IMU. Only	 Provide highly reliable autonom linear acceleration measurement 	ous navigation and
Measurement Unit (IMU) Capacitive, Magnetic	sccelerometers required for complete system. Single sensor provides all inertial sensing	Provide highly reliable compact navigation support for Lunar and Provide highly mitches	Mars missions
Suspension IMU (QUBIK) Gravity Wave/Lense-Thirring	Calculate the general relativistic effects of	 Provide highly reliable compact navigation support for Lunar and Provide more accurate navigation 	Mart missions
Effect Detector Electrostatic/Micromachined	massive bodies on vehicle trajectories. High sensitivity, small size, low power	 Provide compact autonomous na 	
accelerometer with hybrid electronics		acceleration measurement for Lumissions.	inar and Mars

• ••

,

Tother Cont Current & Related	5.3.8.5 Transfer Vehicle Avionics: Tether Control Current & Related Programs				Navigation, Control & Aeronautics Division A. J. Bordano/EG				: S				
Description	1943	1944	1965	1000	1997	1968	1969	1990	1991	1992	1993	1994	1995
 Model and Tool Development resulted in an operational STOCS (engineering tool for Tether design and analysis). 			٠										
Tether/Space Shuttle Interference Problems/Control Interactions and Tether Dynamics Analysis.						÷							
Pursue Flight Design Assessment engineering activity/reports/presentations					Û					 ድ			
Initiate/continue effort to model the System Engineering Simulator to accomodate Tether problems						û					 }		
 Modify/Update models in STOCS as required 													
 Initiate/complete STOCS rehost to Cray computer 	1							$\hat{\mathbf{n}}$		1	ן ז		
Initiate/complete checkout/validation of the first Tether Satellite System mission and analyze flight results.									企	Ļ	}		
Prepare for Tether Flight 2 and 3 and perform post flight analyses										1			
					1								
								1					
											Í		

Tether Control	5.3.8.5 Transfer Vehicle Avionics: Tether Control Proposed Technology				onautics
Description	1993	1994 Q1 Q2 Q3 Q4		1996 01 02 03 04	1997 01 02 03 0
Remote Docking/Separation • Determine capture and release scenarios. Demonstrate performance advantages of each. • Conduct trade studies. • Identify key design parameters • Define hardware/software for accurate rendezvous and docking Passive Attitude control/manage micro-g • Establish control/micro-g concepts • Identify key design parameters, develop simulations Atternate Propulsion • Investigate tethers for electromagnetic propulsion capabilities, identify requirements • Develop math models and produce conceptual designs					

τ.

:

				Johnson Space	Center - Houston, Texas
		nsfer Vehicle Avionics: Tether Control	Navi	gation, Control & Aero	nautics Division
RASA MASA		ogram Benefits		A. J. Bordano/EG	6/26/91
TECHNO	OLOGY	BENEFITS		WH	Y
Remote Docking /Set • Determine capture a for Space Station ar Vehicle operations • Identify key design characterizing desig • Define hardware/soi for accurate rendez	nd release scenarios nd Interplanetary parameters ns ftware requirements	 Demonstration of performance advanta using tethers for docking and separatio Establish hardware/software requireme for accurate rendezvous/docking 	n.	 Potential for fuel saving contamination of solar effluent impingement 	
Passive Attitude Cont Micro-g • Establish control co management conce modes of operation and interplanetary v • Identify key design characterizing design	ncepts/micro-g pts for various of space platforms /ehicles. parameters	 Will establish tether systems versatile enough to accomplish micro-g manage and enable fuel/energy savings through passive tether attitude control 		 Micro-g management i achieve, sometimes rea mounting schemes. Te more feasible option. I savings for long durati possible if tethers can l control. 	uiring elaborate thers may offer a Fuel and energy on vehicles are
Alternate Propulsion Investigate the use of propulsion for orbit using tethers Produce conceptual integrate tether prop vehicle control avio	al maneuvering designs that pulsion into the	• Enable a means of producing orbit char for space vehicles with minimum energ expenditure		• Space platforms in orbi require frequent resupp refueling. Electrodyna using tethers could mir requirement	ly missions for mic propulsion

Electrical Actua Current & Related P	5.3.8.6 Transfer Vehicle Avionics: Electrical Actuation Current & Related Programs			Navigation, Control & Aeronautics Division A. J. Bordano/EG				
Description	1988 Q1 02 03 04	1989	1990 Q1 Q2 Q3 Q4	1991 Q1 Q2 Q3 Q4	1992 0102030			
 General Dynamics 25-40 Horsepower EMA DDT&E Program (SATWG ELA Technology Bridging Program) JSC Actuator Test Set and Facility Development and Operation Honeywelf TVC EMA Development Project Assessment of ETO actuation task requirements and ELA suitability System Engineering to identify design parameters and sensitivities; key trade criteria Evaluate Parker-Hannifin Nosewheel Steering EHA at JSC ATS 								

1

NASA	Electrical Actua Proposed Techno	6.3.8.6 Transfer Vehicle Avionics: Electrical Actuation Proposed Technology				Navigation, Control & Aeronautics Division A. J. Bordano/EG				
	Description	1993 01 02 03 04	1994	1995 401020304	1996	1997				
• Demonstrate & Evalua	ate a 10 Horsepower ELA device	· •				01020304				
Demonstrate & Evalue device	ite a Fractional Horsepower ELA	û=								
 Design and Qualify a F Flight Applications 	Family of ELAs for Transfer Vehicle			¢		}				
 Develop and Validate I Strategies 	ELA Fault Management/VHM			Ŷ		i				
• Demonstrate ELA Fau VHM Test Bed	It Management/VHM Strategies in		<u> </u>		E					
Flight Demonstration o	t a Flight Critical ELA									

			Johnson Space	Center - Houston, Texas				
	5.3.8.6 Transfer Vehicle Avionic Electrical Actuation	s:	Navigation, Control & Aero	nautics Division				
	Program Benefits		A. J. Bordano/EG	6/26/91				
TECHNOLOGY	BENEFITS		WHY					
•Electromechanical Actuation (EMA)	Expedite system checkout operations; minimize personnel costs Operational safety increased Distributed system is more fault/damage tolerant Greatly reduced risk of system failures System performance markins are expanded	• 1	Hydraulic system eliminated; syste not entail hazardous operations Hazardous fluids, stored energy sy replenishment operations eliminat Distributed system elements; no ce failures, no fluid couplings to burs Very low system part count Actuation system weight is reduced	stems, fluid ed entral single point it or leak				
•Electrohydrostatic Actuation (EHA)	Expedite test and verification operations; minimize personnel costs Operational safety increased Distributed system is more fault/damage tolerant Greatly reduced risk of system failures Directly applicable to flight-critical applications	• () • ()	Centralized Advantage of the system elimit expedited, does not entail periodic operations Hazardous fluids, stored energy sys- replenishment operations eliminate Distributed system elements; no ce failures, no external fluid coupling /ery low system part count EHAs provide inherent load-sharin Overload capacity is similar to con Actuator can be backdriven with ad vaniable damping capability)	nated; checkout is hazardous stems, fluid ed ntral single point s to burst or leak g ability ventional hydraulics				
•ELA (all technologies)	 Inherently supports basic constructs of Vehicle Health Management (VHM) initiative Expedites launch system processing and checkout operations Allows system level functionality test at low cost in terms of manpower, time, and special configurations/test support equipment requirements Increases probability of mission success Decreases reliance on logistics lifetime, requirements for repair 	• S	simple electrical and command inter- vehicle Doviates need for external hydrauli ong "shelf life" without need for c ystems can withstand rigors of ext ong duty cycles, protracted dorma	ic support carts constant servicing tended missions,				
•Magnetostrictive and other direct acting	Increased reliability Unit cost is reduced	0	xtremely low parts count (for mag noving part) levices are mechanically simple	netostrictive, l				

1 81

.

ı.

5.3.8.7 Transfer Vehicle Avionics: Power Management & Control Current & Related Programs NV2V Navigation, Control & Aeronautics Division A. J. Bordano/EG Description 1988 1989 1990 1991 1992 01|02|03|04|01|02|03|04|01|02|03|04|01|02|03|04 Advanced (High Capacity) Fuel Cell Development JSC Integrated Actuator/Power System Test Set Facility
Development and Operation Flywheel Energy Storage Technology Investigation Power System Management Expert Systems Development û. and Demonstration Shuttle Power Distribution Brassboard Lab Development and Operations Advanced Motor Controller Technology Development --------------

NASA				Navigation, Control & Aeronautics Division A. J. Bordano/EG				
	Description	1993	1994	1995 240102030	1996	1997		
Develop and Demonstr Architectures	ate Fault Tolerant Power System					<u>401102103104</u>		
 Identify Requirements f "Integrated Utilities" Inter 	or, Establish Specification of face		¢					
Demonstrate PMAC co			ļ		 }			
Demonstrate PMAC Co	ncepts in Flight Test Vehicle					 (
· Demonstrate Flywheel I	Energy Storage Technology					* [_]		
Develop and Demonstra Systems	te High Energy Density Battery			¢		~		
						1		

•

4 **31**

	5.3.8.7 T	ransfer Vehicle Avionics:	Johnson Space Navigation, Control & Aero	Center - Houston, T	
Rada Rada	Power	Management & Control Program Benefits	A. J. Bordano/EG	6/26/91	
TECHNO		BENEFITS	WHY	/	
 Autonomous reconfi series/parallel circui 	guration among t paths	• Expedite system checkout and self-test operations; minimize support personnel co	PMAC implementation s vehicle checkout	supports automated	
		Increased mission success probability; especially for long duration missions	 System is more robust an Supports gradual degradi sudden total loss of func 	ition miller than	
 Integrated modular service backbone 		 Vehicle integration task is simplified Power, thermal, data capabilities are provide in a balanced fashion Vehicle performance is improved 	ed • Integrated "utilities bus"	ervices are provided across a ice litites bus" characterized by ntegration and multiplexing.	
High frequency power and control		Vehicle performance is improved	System components are li are higher	ighter; efficiencie	
Multi-mode power gei	neration systems	 Enhanced mission success probability 	 Appropriate power general available to match operate (low earth orbit, planetary space) 	ional environmen	
-Enhanced fuel cells		ed fuel cells • Enhanced mission success • Vehicle performance is increased • Supports requirements for closed loop vehicle systems		v is increased a higher net energ lighter for the sam lows cell to n/oxygen	
dvanced Energy stora conditioning devices (advanced motor contra	i.e. flywheels)	 Enhanced compatibility with electrical actuation (ELA) technology; improved system efficiencies 	• Power supply, regulation, technology is matched to requirements of ELAs	and conditioning	

6/26/91

- □ The goal of the NASA Autonomous Landing Technology Development Project is to enable safe, accurate, autonomous spacecraft landing using precision landing at a preselected safe location or on-board detection and avoidance of surface hazards to landing.
- □ Mars and Lunar landings must be achieved safely regardless of surface hazards such as large rocks and steep slopes, be close to the area of mission interest, and occur without real time ground control.
- C Earth orbiting and return spacecraft, such as the PLS and ACRV, require landing to be achieved reliably and on short notice.
- □ There are three areas of technology thrust:
 - Systems Engineering: Systems engineering activities include the evaluation of landing accuracy and the probability of safe landing for alternate landing approaches, and the development of detailed engineering models such as Lunar/Mars terrain models.
 - Precision Landing: The principal objective of the precision landing work is the development of methods of navigation with respect to the landing site. A second objective of the precision landing work is the development of guidance and flight control algorithms that can compensate for environmental anomalies such as atmospheric density and wind variations while steering to a preselected safe landing site.
 - Hazard Detection & Avoidance Landing: The objective of the autonomous hazard detection & avoidance work is to develop the sensors, algorithms, and operating strategy that will enable exploration spacecraft to detect during terminal descent a safe landing site.

5.3.9 Autonomous L Current & Related Pr	Navigation, Control & Aeronautics Division A. J. Bordano/EG					
Description	1988 01 02 03 04	1989 01 02 0	1990 3 04 01 02 03 0	1991 4 Q1 Q	2 03 04	1992 01 02 03 04
System Engineering • System Analysis •• Baseline set of landing requirements for Mars Rover Sample Return (MRSR) class missions • Planetary Surface Models						}
An initial version of a Mars Surface Model Precision Landing Image Matching Navigation A baseline set of requirements plus an Initial approach to & test of Hybrid Optical Image Matching Navigation	1					
Hazard Detection & Avoidance • Imaging Laser Radar •• A baseline set of requirements for a detailed conceptual design of an Imaging Laser Radar	{					î

NASA	Proposed Techno	5.3.9 Autonomous Landing Proposed Technology			Control & Asi Division . Bordano/EG	
	Description	1993	1994	1995	1996	1997
range of planetary expli- 	bnomous landing requirements for a bration missions shancements on of G&C, navigation/hazard s, terrain and atmospheric models ind workstation level prototype of dels sting of a Mars surface model solution digital terrain maps for Earth in types of Sensor Field Tests if Tests g Navigation equirements definition d simulation of alternate sonatory test of prototype for selected protoch of calceted image/terrain toach					<u> 01 02 03 0</u>

;

Proposed Techno	5.3.9 Autonomous Lending Proposed Technology				Navigation, Control & Aeronautics Division Å. J. Bordano/EG				
Description Simulation testing of promising guidance algorithms with GPS navigation and Lidar derived wind profile Field test of protoype guidance algorithm Hazard Detection & Avoidance Laser Radar Develop a set of sensor and system requirements for a range of Mars and Lunar exploration landing missions Specifications for prototype imaging laser radar Alternate Hazard Detection Sensors Develop concepts for alternate hazard detection approaches and evaluate via simulation Field Test Develop build and laboratory test of protoype sensor, algorithms and processor for selected hazard detection			1005	1006	-				
 Processor for selected nazard detection approach Field test prototype of selected hazard detection approach from a helicopter over Earth analogs of Martian errain types 				{	<u> </u>				

• • •

ī

Navigation, Control & Aeronautics Division

5.3.9 Autonomous Landing Program Benefits

		A. J.	Bordano/EG	6/26/91	
TECHNOLOGY	BENEFITS		V	WHY	
System Engineering • Systems Analysis: - Simulation of landing accuracy vs. performance of navigation, guidance & control - Simulation of probability of safe landing vs. hazard detection sensor & vehicle performance	Tools to assess performance of alternate approaches to & prior information requirements for a approaches to autonomous lan	r liternate	Allow selection of an approach that meets and is affordable		
 Develop workstation prototype of man-machine interface for autonomous landing system Planetary Surface Models : Develop Mars terrain model based on Viking, Mars Observer & Earth analog data Collect high resolution terrain maps for Earth analogs of Martian terrain types Field test of prototype Navigation & Hazard Detection sensors over Earth analogs of Mars terrain types 	 Generate test cases for sensor & system simulation of image & matching navigation and hazar detection & avoidance Realistic images/terrain models 	nan-machine interface for sutonomous landing GN&C system. Generate test cases for sensor & system simulation of image & terrain matching navigation and hazard letection & avoidance tealistic images/terrain model levelopment of Mars terrain model leterorstrate sensor performance • Flight tests in Lunar/Mars envir		ars not yet available Mars environment	
Precision Landing • Hybrid Optical Image Matching Navigation • Radar Image Matching Navigation • Terrain Map Matching Navigation • GN&C for Landing from Earth Orbit: – Prototype GN&C algorithms for PLS using GPS navigation & Lidar based wind profiles	 Image/Terrain matching naviga with respect to the landing site accurate landing Increased robustness of entry & landing GN&C to atmospheric variability 	enables	Allows trade-off bety robustness & landing while preserving req landing in area of mi Enables landing from carried out on short r	t site selection uired prob. of safe ssion interest Earth orbit to be	
Hazard Detection & Avoidance • Imaging Laser Radar • Hybrid Interferometric Imager	 Provides capability for detectin landing site in an area that cont some surface hazards 	ains	Allows trade-off bety robustness and level while maintaining re- landing for the area of	of prior information quired prob. of safe	

Johnson Space Center - Houston, Texas 5.3.10 Autonomous Rendezvous Navigation, Control & Aeronautics Division & Docking Overview A. J. Bordano/EG 6/26/91 The goal of the NASA Autonomous Rendezvous & Docking Technology Development Project is to develop and integrate the technologies that provide the capabilities to perform autonomous rendezvous and docking operations in space. □ Rendezvous & docking operations in U.S. space programs to date have been in manned vehicles only, and with direct crew participation with heavy ground support. Development and demonstration of Autonomous Rendezvous & Docking Technologies will: · Permit unmanned spacecraft in Earth, Lunar and planetary orbits to operate without large ground support staffs for mission planning, training and conduct • Support manned spacecraft operations by augmenting the capabilities of the crew to perform rendezvous and docking without ground support. □ Autonomous Rendezvous & Docking capability is needed for: Cargo Transfer Vehicle (CTV) operations in support of further SSF build-up · Spacecraft retrieval / servicing Unmanned upper stage operations · In-space build-up and operations of Lunar/Mars exploration vehicles · In-space supporting facilities.

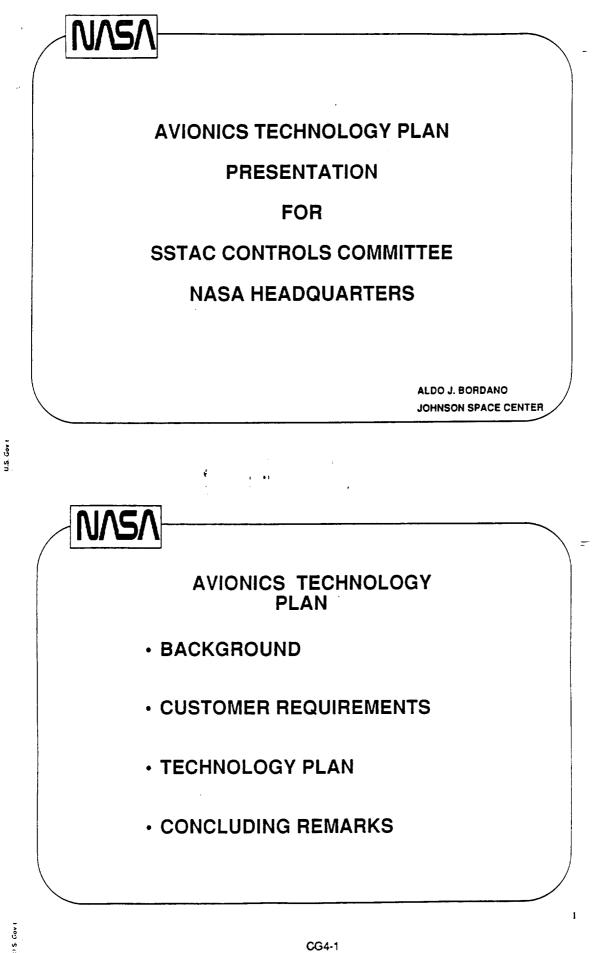
NASA	5.3.10 Autonomous Rendezvous & Docking (AR&D) Current & Related Programs			Navigation, Control & Aeronautics Division A. J. Bordano/EG		
	Description	1988 Q1 Q2 Q3 Q4	1989	1990 Q1 Q2 Q3 Q4	1991	1992
AR&D Sensors						
 Functional requirement identified and compared 	ts for AR&D sensors will be to the current state of the art.			{		<u> </u>
· Performed sensor trade	e study			L .		
Previous studies and advanced developments for a Laser Docking Sensor, Optical Correlator, and GPS Receiver Processor.			1			ራ ን
AR&D GN&C Software A	gorithms					
	trated graphical playback					
· Developed and demons	trated docking simulation					-
 Functional requirements for new GN&C algorithms will be dentified and compared to the current state of the art 		Ĭ			P	<u></u>
R&D Mechanisms						
Identified baseline AR&I	D mechanisms requirements					
					ĬĬ	

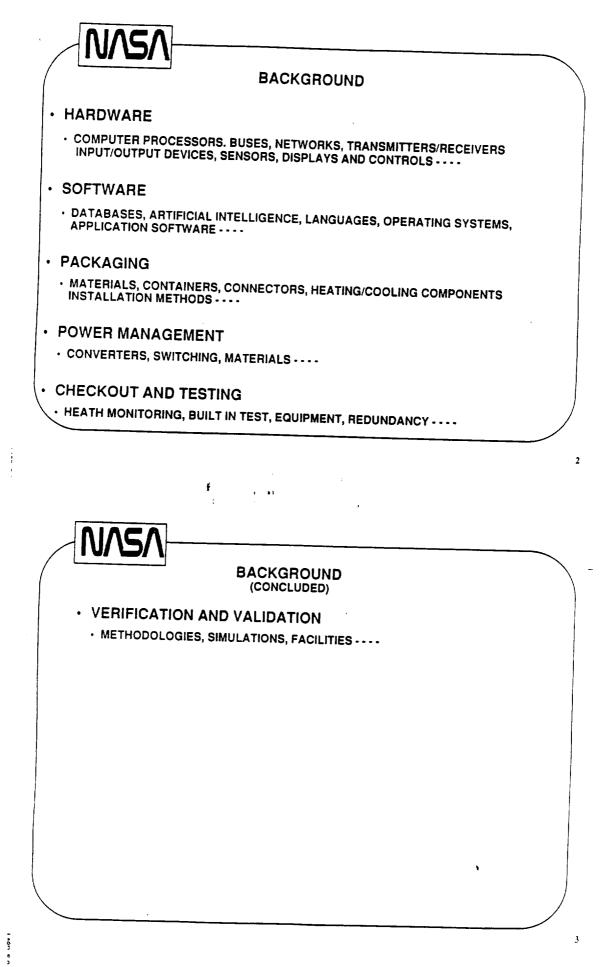
;

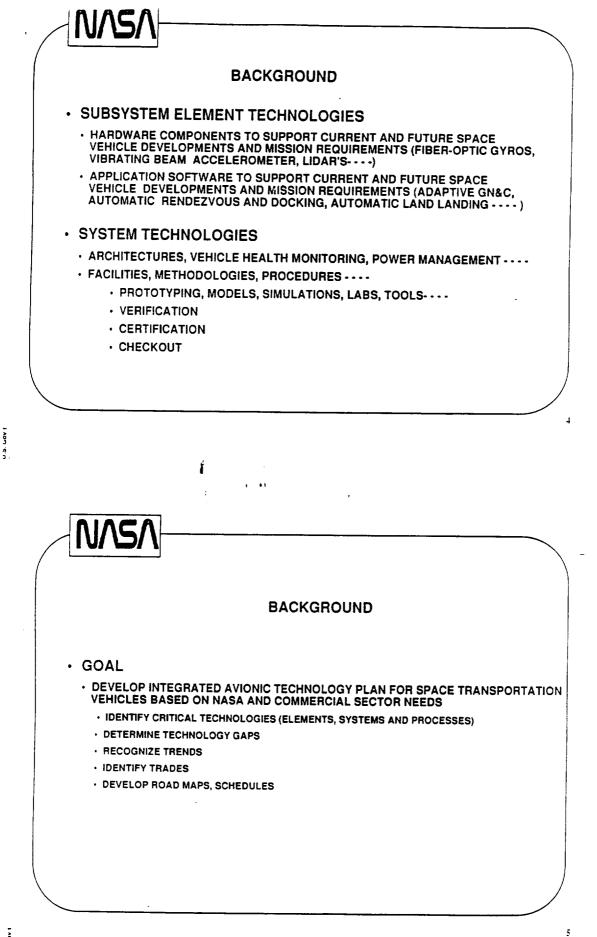
• •1

,

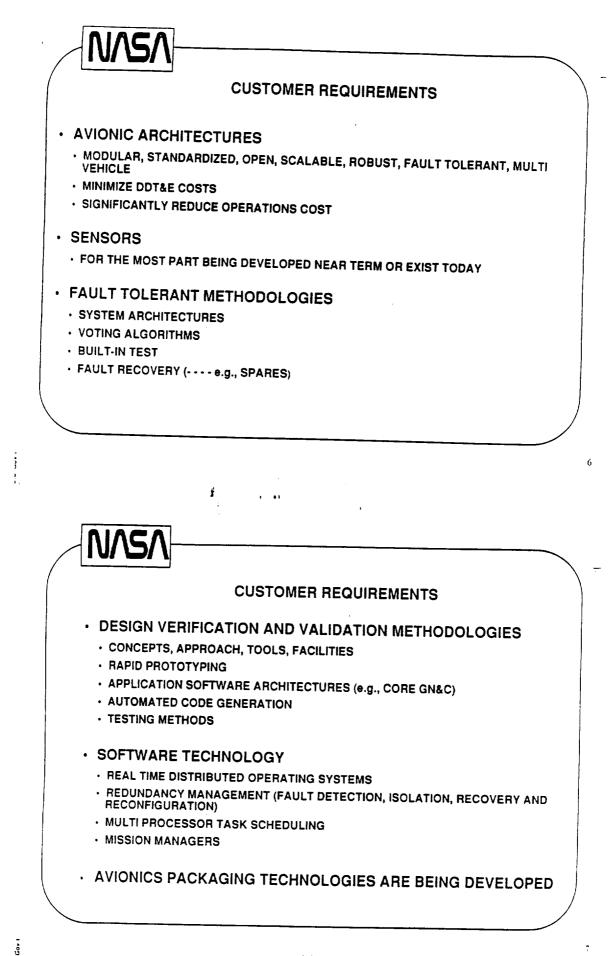
NASA	Rendezvous & Docki Proposed Techn	5.3.10 Autonomous Rendezvous & Docking (AR&D) Proposed Technology			Navigation, Control & Aeronautics Division A. J. Bordano/EG		
	Description	1993	1994	1995	1996	1997	
AR&D Sensors		0102030	40102030	40102030	40102030	4010203	
 Evaluate GN&C auton techniques 	natic rendezvous and docking		$\dot{\varphi}$				
Ground demonstration of sensor							
Flight experiments and demonstrations in a realistic operational environment against a typical mission scenario					 	₽ ∲	
AR&D GN&C Software A	Monthe						
Preferred GN&C algorithm	thm will be selected and developed	<u>î</u>					
System validation simu	lations						
 Simulation demonstrati ndividual elements 	on of GN&C algorithm and		12			}	
 Flight experiments and operational environment (demonstrations in a realistic against a typical mission scenario				û		
R&D Mechanisms							
	nisms will be selected and			<u>^</u>		6	
Ground testing of AR&D lements	mechanisms and Individual	<u> </u>					
Flight experiments and operational environment a	demonstrations in a realistic gainst a typical mission scenario				<u>^</u>		

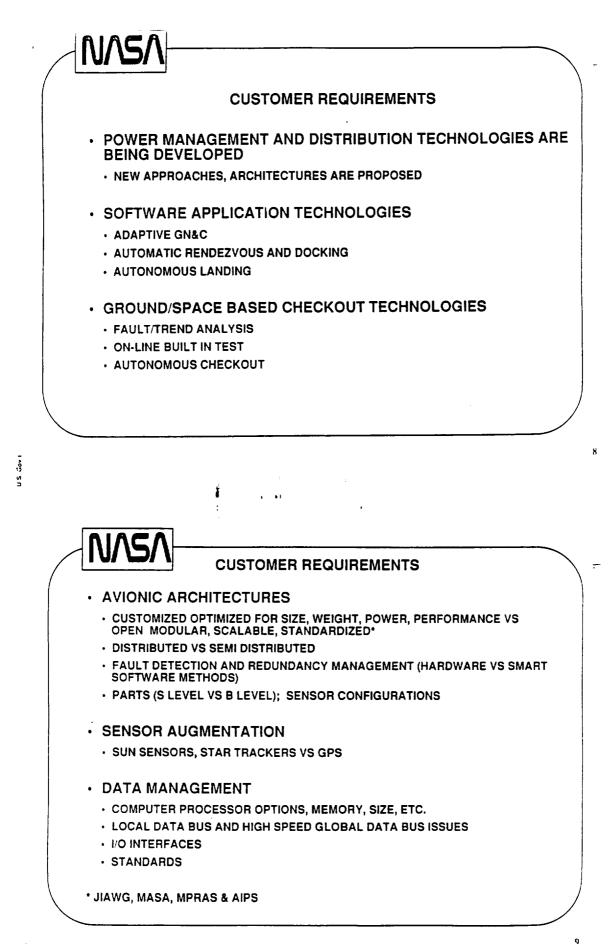

Johnson Space Center - Houston, Texas

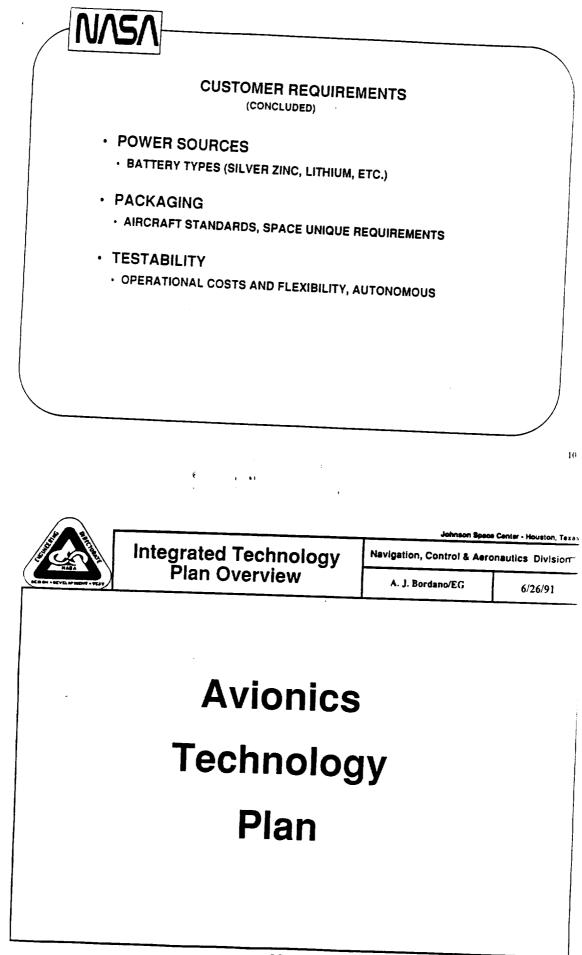

	5.3.10 Autonomous Rendezvous & Docking Program Benefits		Navigation, Control & Aeronautics Division			
			A. J. Bordano/EG		6/26/91	
TECHNOLOGY		BENEFITS		WHY		
components Ground Demonstrat Experiments - Sensor field test o point-target and is cooperative and n optical and radio components	ctive and passive, mage-based, ion-cooperative, frequency navigation ions / Flight of active and passive, mage-based, on-cooperative, frequency navigation	 New light weight, low power, and resensors Physical testing of active and passive point-target and image-based, cooperand non-cooperative, optical and rad frequency navigation sensor componition 	rative lo	Required to required t autonomous rendezvo proximity operations Final testing phase for navigation sensor con	required AR&D	
 GN&C Algorithms and Systems Simulation Development Develop algorithm concepts and approaches to support autonomous rendezvous Develop concepts & workstation level prototype of man-machine interface for autonomous navigation Ground Demonstrations / Flight Experiments: AR&D Mechanisms 		 Recurring costs can be reduced through automation and improvements to current GN&C algorithms and operations approaches Assessment of man-machine interfaces for autonomous rendezvous/docking. Construction of support materials for future missions. Integrated AR&D system suite 		 Current AR&D operations rely heavily or ground based manual procedures Better understanding of man- machine advanced navigation systems interfaces for future missions Assessment of new sensor interfacing with other AR&D system components 		
Mechanism Selection and Prototyping: Development of AR&D support mechanisms Ground Demonstrations / Flight Experiments:		 Highly reliable, lightweight latches and low power latches, attenuators, etc. Integrated AR&D system suite 		Support of AR&D Acsessment of individual mechanisms and integrated AR&D system.		

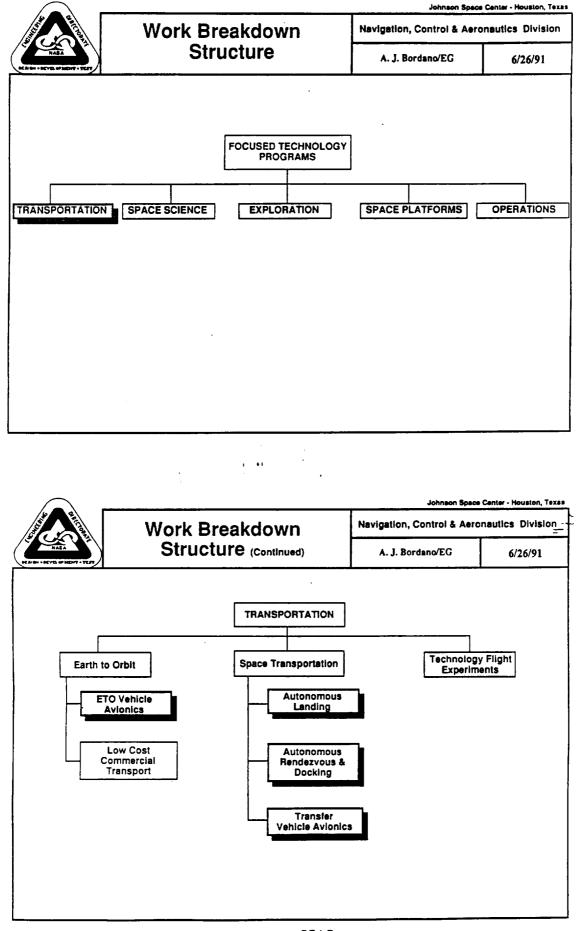

. ..

٠


.

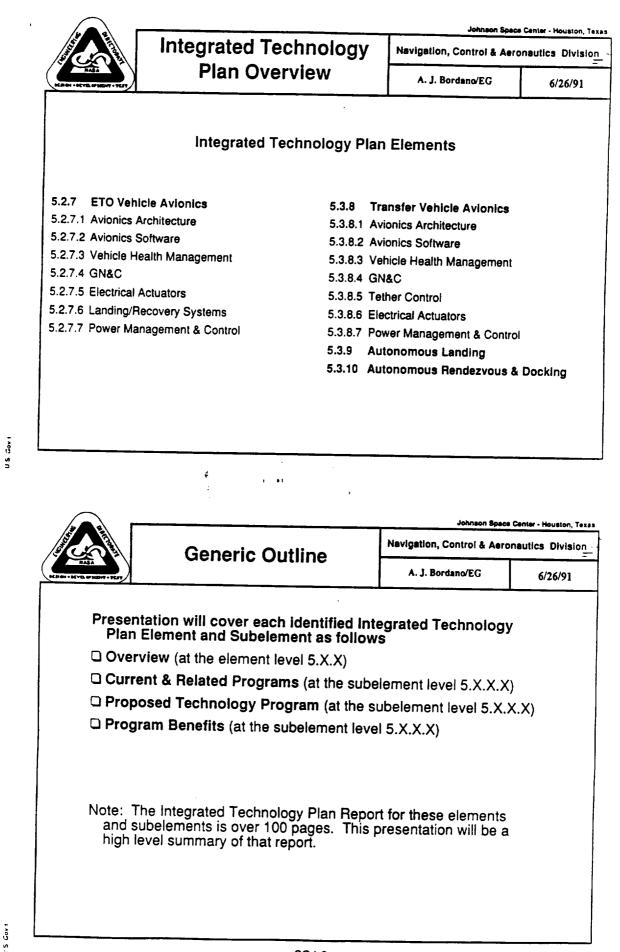



U S. Govi



CG4-5

J.S. Gov 1

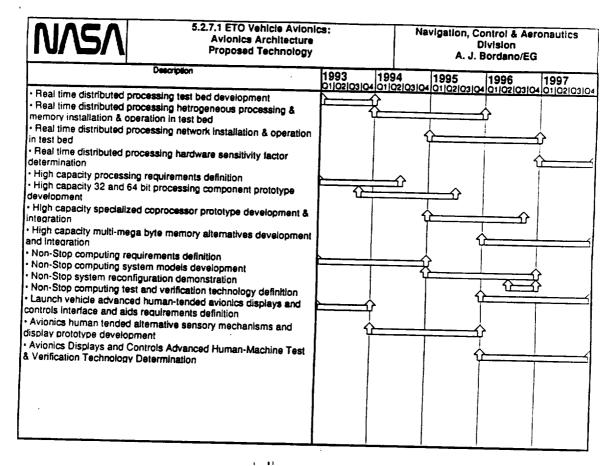


U.S. Gov I

U S. Gov I

.

U.S. Gov I

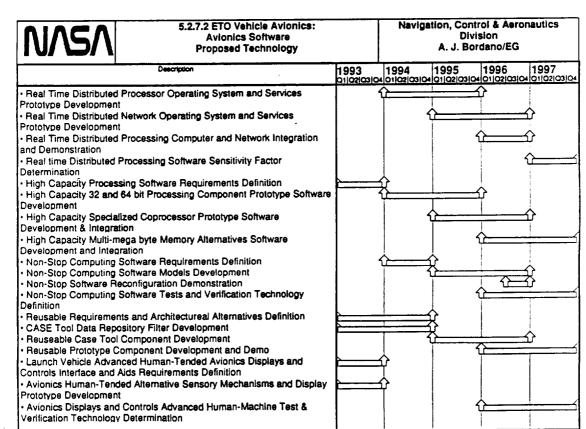

	5.2.7 ETO Vehicle Avionics	Navigation, Control & Aero	Control & Aeronautics Division				
NASA NESGUINEYE WINDOW - TEST	Overview	A. J. Bordano/EG	6/26/91				
autonomy fo • Avionics A • Avionics S • Vehicle Hea • Power Man • Guidance, I software t probability	 The next generation of space transports will need to have increased mission safety, more autonomy for reduced crew workload, and reduced operational costs. Avionics Architecture - for increased avionics performance Avionics Software - addresses mission and safety features in software operating systems kernel Vehicle Health Management - for self diagnosing and self compensating integrated systems Power Management and Control - for reliable, universal, modular, electrical power bus systems Guidance, Navigation, and Control - offers efficient computational algorithms and sensors, software tools to analyze complex body dynamics, and enhanced launch and land on demand probability Electrical Actuation Systems - replaces hydraulic systems to enhance system reliability, reduced 						
•	Advanced Landing & Recovery Systems - for enhanced booster recovery and landing technology						
The following advanced vehicles will all require some combination of these advanced technologies:							
• HLLV, NLS,	HLLV, NLS, PLS, CTV, ACRV, ALS, and ELV's						
ETO and Transfer Vehicle Avionics technology development share common goals which invites and in fact, for cost effectiveness, dictates collaboration and interfacing between the two areas of development.							

,

					Navigation, Control & Aeronautics Division A. J. Bordano/EG			
Description		1990 D 10 10310	1991 0102030	1992 010 0 04	1993 ດຸທຸທຸກ_04	1994 0 0 0 0	1995 0 10 10 30	
Flight Data System Open Architectus Definition & Methodology Development				Ц5				
Flight Data System Open Architectur Flight Data System System Profiles Flight Data System Open Architectur Analysis and Trades					}			
Flight Data System Open Architectur Development	re Prototype				4	<u>}</u>		
Network Performance Model Bare 386 Real-time Kernel Investiga Station Flight-to-Ground Interoperab Applications-to-RODB Data Type An	ility Evaluation			* * * *				

ŝ

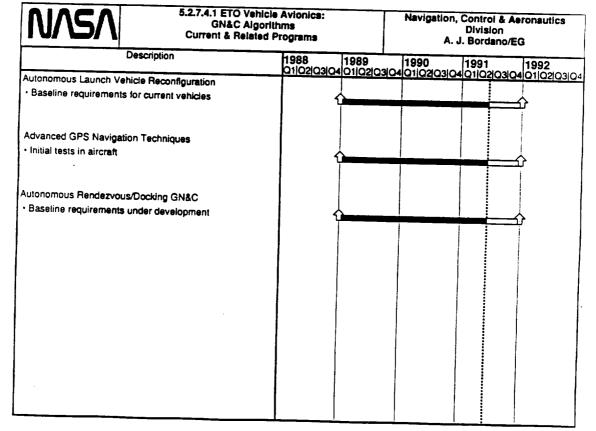
1 •1


,

_	
5	
ġ.	
Q	
vi	
ż	

			.	ohnson Space	Center - Houston, Texas
	5.2.7.1 ETO Vehi Avionics A	cle Avionics:			nautics Division
hada	Program E		A. J. Bordano	o∕EG	6/26/91
TE	CHNOLOGY	BENEF	ITS	WHY	
 data system distribu processors, memory components operatii Determine sensitivity processing performat High Capacity Proce Develop requiremen 64 bit processing co specialized high spe R4000; and multi- technologies. 	ed processing pe via test beds advanced flight ted and multiple heterogeneous , buses and other key ng in real-time. y factors governing real-time ince. stsing ts and prototypes for 32 bit and mponents, memories and buses; ed coprocessors such as i960 and egabyte memory alternatives and	 Definition of interfaces a including performance or and verify architecture or The transfer of commerci space rated components y processing capabilities to increased complexity of t 	riteria to establish oncepts. al technologies into will enable onboard accommodate he avionics suite.	architec develop costs • Compati	ment of flexible tures for reduced ment and life cycle bility with ground in both performance
 exhibiting multi-fault behavior and which ito determine the issues Determine the technoc certify non-stop com flight operations 	emonstrate system models it tolerant system and component exhibit reconfigurable capability es, costs and requirements ologies needed to test, verify and puting capabilities for space	 Non-stop requirements an tolerant components can evaluate concepts, their a implementation difficulty 	be used to test and ssociated costs, and	flexible l	ment of more launch commit ind increases in safety
display and control in sensory mechanisms - Develop prototype an environment or holo voice control interfac - Determine the techno	for advance numan-tended interfaces, and alternative ad demonstrate advanced total graphic display and high fidelity res logies needed to test, verify and an-machine interface	 Definition of requirements displays and controls, and devices can be used to pre human interface mechanis evaluation 	prototypes of such	fusion to machine	ective use of data increase the processing of on for the manned

	5.2.7.2 ETO Vehicle Avionics: Avionics Software Current & Related Programs				Navigation, Control & Aeronautics Division A. J. Bordano/EG			
Description	1990	1991	1992	1993	1994		1996	
Space Applications GN&C Characteristics and Methods Defined		1	<u>}</u>	<u>-</u>				
Space Applications GN&C Family Generated and other Applications Identified				¢	<u>ን</u>			
Space Applications Characteristics and Methods Defined for additional Applications				1	<u>}</u>	}		
Space Applications Combined Demonstration with Target Avionics Platform					٢	<u>}</u>		
Applications-to-RODB Data Type Analysis			÷ ک					
Matrix-X Simulation Development			<u>_</u>					
						-		


1 31

S. Gov

	5.2.7.2 ETO Vehicle Avionics So	Avionics:	Navigation, C		Center - Houston, T
MARA START	Program Ben	nefits	A. J. Bor	dano/EG	6/26/91
TECHNOLOGY		BENEF	ITS	WHY	
distributed and multi - Determine sensitivity	Processing d demonstrate distributed operating that operate in real-time owner	Establishes capability performance of oper distributed across me networks and vehicle	ting systems	• Assessment	of distributed stem and services
High Capacity Process Develop and prototyp specialized coprocess multi-megabyte mem storage disk for space	sing: e software for 32/64 bit processors, ors such as 1960, R4000 and ory alternatives associated with mass qualified components	Additional processing performance for the c system.	s capability and m-board data	Compatibilit systems in b and architect	oth performance
 Non-Stop Computing Develop and demonstrate software models exhibiting multi-fault tolerant system and component behavior and reconfigurable capability with and without human controls Determine the technologies peeded to test, warific and 		 Determination of requisition components for fault computing for evalual concepts, costs and in difficulty. 	resistant tion of	• More flexible criteria and in safety	launch commit increases in missic
(CASE) LOOI GALLA TEDO	nons nouter Aided Systems Engineering sitory filters for exchanging data E tools for flight software	 Establishes generic fli system elements for n program 	ght software cuse across any	Lower develo cycle costs fo element	pment and life r the software
Define and test reusabl software specific open applications. Avionics Displays and Develop and prototype voice and other sensor human operation of coi Determine the technolo	knowledge based visual, touch, display and control aids to support	• Determination of effect interface mechanisms complexity and amoun information increase	as the	Aids human da and response	ata comprehensior

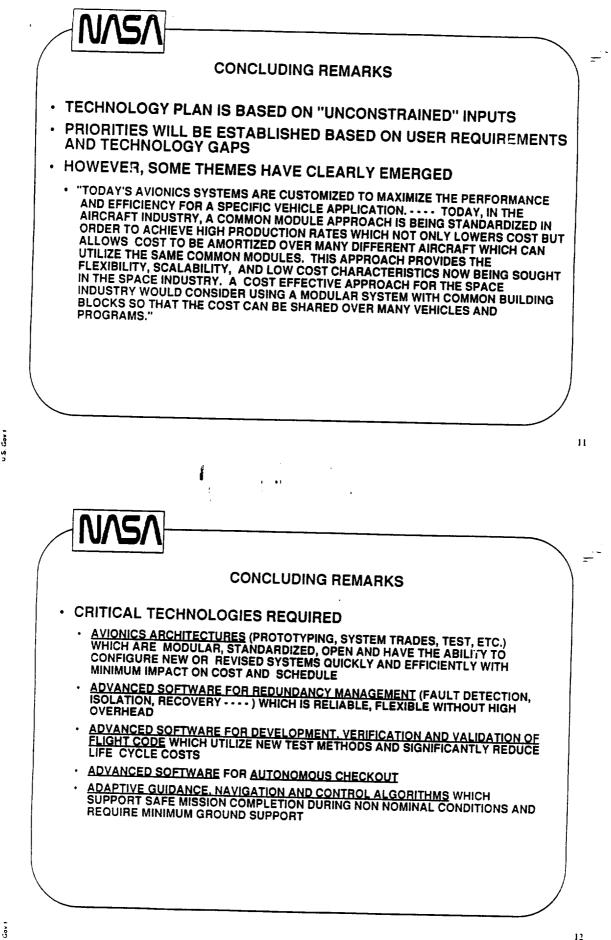
1 11

S CVI

į

.

	5.2.7.4.1 ETO Vehicle Avionics: GN&C Algorithms Proposed Technology			Navigation, Control & Aeronautics Division A. J. Bordano/EG			
Description	1993 01 02 03 04	1994	1995 401020304	1996 01 02 03 04	1997 01 02 03 0		
Autonomous Launch Vehicle Reconfiguration • Baseline requirements for advanced vehicles • GN&C Simulation • Algorithm development • Level C requirements development Atmospheric Adapative Entry GN&C • Control concept development and simulation • Environmental model development and simulation • Algorithm development and simulation Numeric/AI Guidance Techniques • Al concept development • Numeric Guidance/AI Integration • Detailed algorithm development and testing Parallel Processing GN&C Methods • GN&C processing concept development • Parallel GN&C architecture definition Advanced GPS Navigation Techniques • Advanced requirements baseline • Advanced model development • Detailed algorithm development and testing Autonomous Rendezvous/Docking GN&C • AR&D requirements development • Algorithm testing and simulation				> > >			


U.S. Gov t

.

i ki ki

Johnson Space Center - Houston, Texas

	5.2.7.4.1 ETO Veh GN&C Alg		Navigation, C	iontrol & Aero	nautics Division
HASA HASA HIMAGA	Program E	enefits A. J. Bord		tano/EG	6/26/91
TE	CHNOLOGY	BENEFIT	S		WHY
Autonomous Launch Vehicle GN&C Reconfiguration • Identify new approaches to current launch vehicle algorithms and processes that reduce or eliminate recurring engineering analysis, computer simulation and FRR activities		 Recurring launch operations costs can be reduced through automation and improvements to current GN&C algorithms and operations approaches 		• Elimination of manpower intensive activities is needed for the next generation of launch vehicles	
Atmospheric Adaptive Entry GN&C • Develop a GN&C system that can actively control heat rate, heat load or temperature while maintaining an accurate landing point		 Improved thermal protection margin and reduced sensitivity to atmospheric and system uncertainties 		• Entry vehicle landing accuracy and thermal protection system requirements are driven by the ability of the GN&C system to adapt to dispersed atmospheric conditions	
Numeric/AI Guidance Techniques • Utilize artificial intelligence techniques to provide assured convergence of numeric guidance algorithms		Accurate, reliable guidance solutions using exact environment models		Current numeric guidance schemes are not assured of always converging	
Parallel Processing GN&C Methods • Develop new approaches and algorithms that can be effectively used on parallel processing computers		Perform complex GN&C computations onboard using parallel processing		 Sequential computation limits today's GN&C processing 	
Advanced GPS Navigation Techniques • Develop new algorithms and environment models to improve GPS navigation accuracy for ETO vehicles		Accurate, autonomous space vehicle navigation		Changing environmental conditions can degrade doppler measurements	
Autonomous Rendezvous/Docking GN&C • Develop algorithm concepts and approaches to support autonomous rendezvous		Recurring costs reduced through automation and improvements to current GN&C algorithms and operations approaches		Current AR&D operations rely heavily on ground based manua procedures	

ŝ

ŝ

ŝ

VEHICLE HEALTH MANAGEMENT

٠

ROBERT L. MCKEMIE MSFC/EL43 JUNE 26, 1991

VEHICLE HEALTH MANAGEMENT

AGENDA

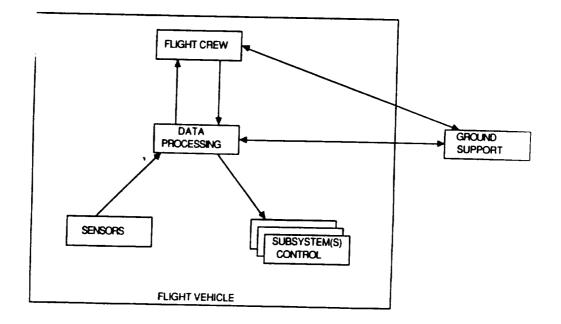
- DEFINITION/SCOPE
- TECHNOLOGY NEEDS
- CURRENT ACTIVITIES/FUTURE PLANS
- SUMMARY

VHM OVERVIEW

- DEFINITION Vehicle Health Management: The ability to verify and monitor vehicle health and to take appropriate corrective actions necessary to maintain the vehicle in a functional and/or safe state.
 - vehicle checkout
 - failure detection

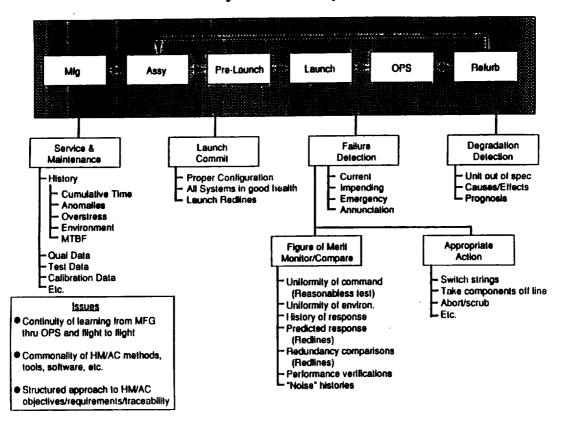
 - data processing system reconfiguration

ELEMENTS - Vehicle Health Management System includes:


Sensors Data Collection and Processing Elements Algorithms/Decision Models

Totally autonomous vehicle or containing ground based elements.

Component/subsystem/system level elements


VHM OVERVIEW

1 11

SIMPLIFIED VHM SYSTEM

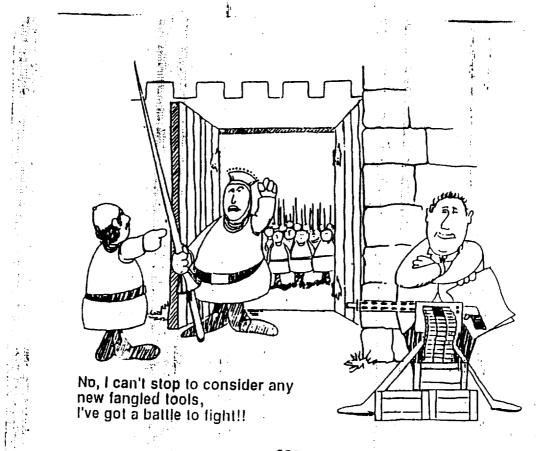
HM/AC Objectives/Requirements

VIIM OVERVIEW

• VHM is not new, but must take advantage of new technologies.

- Increased Automation
 - streamline vehicle checkout

, .


- reduce ground/flight crew requirements
- Better Detection/Prediction Methods
 - enhance troubleshooting
 - reduce hardware costs
 - improve probability of mission success
 - reduce maintenance costs
- Improved Decision Making
 - quicken response time
 - provide consistent, reliable decisions
 - improve probability of mission success
- Improved Reliability

 - reduce hardware costs improve probability of mission success

ETO VEHICLE AVIONICS - (TRANS.) 1

TECHNOLOGY PERFORMANCE OBJECTIVES

PERFORMANCE PARAMETER	CURRENT SOA	OBJECTIVE/REQUIREMENT		
EHICLE HEALTH MANAGEME				
OST	HIGH RECURRING	LOW RECURRING		
AFETY/RELIABILITY	REDLINES	SAFE SHUTDOWN/AUTOMATED SYSTEM MANAGEMENT		
Round Checkout	LABOR INTENSIVE/TIME CONSUMING	INCREASED AUTOMATION/FASTER PROCESSING		
ISSION OPERATIONS	MAN-IN-LOOP	INCREASED AUTONOMY		
CHNOLOGY INSERTION	REQUIRES REDESIGN	PLUG-IN		
AULT DIAGNOSIS	MANUAL	AUTOMATED		
PPX NEED DATE		1996 (HLLV)		

.

ADVANCED AVIONICS TECHNOLOGY REQUIREMENTS

VEHICLE HEALTH MANAGEMENT

GENERAL REOUREMENTS:

•DEVELOP FLIGHT AND GROUND AVIONICS SYSTEMS THAT ENABLE AUTOMATED VEHICLE CHECKOUT AND MONITORING TO REDUCE LAUNCH PROCESSING AND MISSION OPERATIONS COSTS.

ELEMENTS:

•INVESTIGATE <u>SYSTEM ARCHITECTURES</u> TO DETERMINE OPTIMAL CONFIGURATION TO SUPPORT AUTOMATED VEHICLE HEALTH MANAGEMENT. ARCHITECTURE MUST BE SUPPORTIVE OF NEW TECHNOLOGY INTEGRATION AS IT BECOMES AVAILABLE WITH A MINIMUM IMPACT TO THE FLIGHT VEHICLE OR GROUND SYSTEM.

•INVESTIGATE POTENTIAL <u>SENSOR TECHNOLOGIES</u> TO ENABLE THE MONITORING OF CRITICAL VEHICLE HEALTH PARAMETERS. BY SENSING CRITICAL PARAMETERS EFFECTIVELY, "GO/NO-GO" DECISIONS, FAULT DETECTION, AND HARDWARE LIFE PREDICTIONS CAN BE MADE IN A TIMELY, RELIABLE, AND CONSISTENT MANNER.

•DEVELOP <u>SYSTEMS ENGINEERING METHODOLOGIES APPROACHES AND TOOLS</u> TO SUPPORT DEVELOPMENT OF AN AUTOMATED HEALTH MANAGEMENT SYSTEM.

. ..

ADVANCED AVIONICS TECHNOLOGY REQUIREMENTS

VEHICLE HEALTH MANAGEMENT

ELEMENTS (CONT'D):

•DEVELOP <u>SOFTWARE TECHNOLOGIES</u> (E.G., EXPERT SYSTEMS) TO ALLOW DELEGATION OF DECISION MAKING FROM CHECKOUT PERSONNEL TO AUTOMATED HEALTH MANAGEMENT SYSTEM. THIS WILL ALLOW VEHICLE PROCESSING WITH A SMALLER TEST TEAM AND REDUCE THE CHANCE OF HUMAN ERROR.

•DEVELOP <u>SIMULATION/DEMONSTRATION TECHNIQUES</u> TO VERIFY PERFORMANCE OF THE HEALTH MANAGEMENT SYSTEM AND TO ESTABLISH CONFIDENCE IN AUTOMATED CHECKOUT AND CONTROL. TOTAL CONFIDENCE IS REQUIRED PRIOR TO ITS FULL IMPLEMENTATION ON A FLIGHT VEHICLE.

REPRESENTATIVE TECHNOLOGIES

SENSORS

-PLUME OPTICAL ANALYSIS -HYDROGEN LEAK DETECTION -REMOTE OPTICAL INSPECTION -BIT

•SOFTWARE

-DATA TRENDING ALGORITHMS -NEURAL NETS -PARITY SPACE ALGORITHMS -MODEL BASED DIAGNOSTICS

SYSTEMS TOOLS

.

-COST/BENEFIT MODELLING -DIGRAPH TOOLS -SYSTEM SIMULATION

VIIM ACTIVITIES/PLANNING

1 81

•ESTABLISHED AS A SATWG (STRATEGIC AVIONICS TECHNOLOGY WORKING GROUP) PANEL

-MSFC/LeRC CO-CHAIR -EXTENSIVE NASA/INDUSTRY PARTICIPATION

•NASA/INDUSTRY MEETING, SEPT., 1990, INDIATLANTIC, FL

•VIIM WORKSHOP, LeRC, DEC., 1990 (SPACE BASED VEHICLES)

•VHM WORKSHOP, MSFG, JUNE, 1991 (E-T-O LAUNCH SYSTEMS)

· DEVELOP AND MAINTAIN VIM TECHNOLOGY REQUIREMENTS (ON-GOING)

-JSC/KSC WORKSHOP (ORB/SSF), SEPT. 1991

•SENSOR WORKSHOP (SSC), FALL, 1991

+SOFTWARE WORKSHOP (ARC), SPRING, 1992

SUMMARY

.

•VHM PANEL ACTIVITIES PROVIDE NASA FOCUS FOR VHM TECHNOLOGY NEEDS/PLANS

-ESTABLISH JOINT NASA/INDUSTRY DIALOGUE

-IDENTIFY AND PRIORITIZE TECHNOLOGY NEEDS

-SUPPORT TECHNOLOGY DEVELOPMENT EFFORTS

1 11

-IDENTIFY/SUPPORT BRIDGING TASKS

·EFFORT WILL BE ON-GOING, LONG TERM ACTIVITY

.

•ENHANCED VIIM IS A KEY TO COST-EFFECTIVENESS AND MISSION SUCCESS OF FUTURE PROGRAMS

SPACECRAFT GUIDANCE RESEARCH AT LANGLEY

Douglas B. Price Head, Spacecraft Controls Branch Langley Research Center

June 26, 1991

Briefing Contents

- Spacecraft Guidance Technology at LaRC
- Guidance Group Mission Statement
- Mission Statement Implementation
- Technical Program Summary

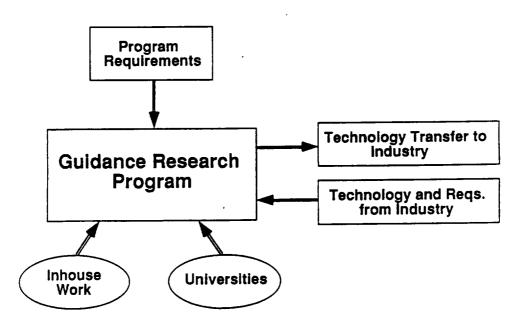
1 1

• Summary

SCB Guidance Group Mission

- To develop algorithmic technology for guidance of aeromaneuvering spacecraft subject to uncertainties
- To identify and advocate technology for sybsystems needed by guidance algorithms;
 e.g. electro-optical sensors
- To actively interchange technology and requirements with industry

How the Mission is Accomplished


- "Program requirements" are imposed by characteristics of a proposed mission/system, e.g. ALS
- Guidance group focusses inhouse and grant-based academic research on program requirements
- Resulting technology is shared with industrial partners via Technology Interchange Tasks

Technology Interchange Tasks

- Industrial researchers exercise and demonstrate new technology with guidance group support
- "Lessons learned" and refined concepts and requirements feed back to guidance group
- Guidance group works with academics to enhance university research focus

.,

Research Implementation Flow

Technical Program Summary

- Issues
- Algorithmic technology activity
 - goals
 - guidance synthesis techniques discrete time methods perturbation methods neural methods
 - globally convergent algorithms
- Validation/modelling support

• • • •

Technology interchange

Issues in Aeromaneuvering Spacecraft Guidance

- Highly constrained trajectories
- Limited control authority/sluggish rotational response
- Energy and/or constraint performance dominated by uncertain atmospheric effects
- Above issues are shared by:
 - launch systems
 - aerobrakes
 - aerospace planes

Algorithmic Technology Goal: Direct Statistical Guidance Synthesis (DSGS)

- Statistics of process uncertainties are direct inputs to a formal guidance synthesis algorithm
 - winds
 - hardware failures
 - plant uncertainties

1 11

- Benefits:
 - design directly for probability of achieving mission goals
 - reduce design/testing cycles for guidance design

Steps Toward DSGS

- 1. Develop technology for reliable, accurate deterministic optimal and suboptimal control synthesis
- 2. Extend problem formulations to include random process statistics
- 3. a. Validate in test bed

76.

b. Ensure that results have industrial applicability

Trajectory Optimization Techniques

- Focus is on numerical solution of optimal control necessary conditions in discrete time
- Inhouse, grant-based and contract work is implemented in "Variational Trajectory Optimization Tool Set" (VTOTS)

1 11

Variational Traject	bry Optimization Tool Set
	VTOTS)
Plant	Genstrained Booster
Constraints	conding Histories.
Tabular Data	
Cost Function	
Computer Algebra FORTRAN Generator	
	500-(s)===500
Robust Globally	Symbolic calculus s/w lor
Newton Convergent	Automatic analysis
Code Homotopy Code	Past. globally convergent trajectory
	Solution algorithms
	Confouration optimization capability.
	Constant at an address with the second s

ORIGINAL PAGE IN OF POOR QUALITY

VTOTS Trajectory Prototyping Tool

GOAL:

- Fast, accurate solution of Variational Optimal Control Boundary Value Problems for:
- trajectory/configuration optimization
- guidance synthesis
- Very simple user interface: "OTIS-like" ease of use

VTOTS Participants

- NASA LaRC/Ga. Tech.
 - joint development of algorithmic theory and problem solution code
- McDonnell Douglas Space Systems Co.
 - OTIS to VTOTS adaptation
 - aeroheating capability
 - automatic mesh generation issues
- Cornell University
 - parallel Newton code for solving necessary conditions

Impediments to "OTIS-Like" Ease of Use

- Derivation of necessary conditions
- State inequality constraints
- Boundary conditions

1 11

- Numerical stability
- Lack of "OTIS-like"user community

Derivation of Necessary Conditions

- Problem
 - derive costate ODEs by differentiating Hamiltonian
 - solve nonlinear equations for controls
- Solution
 - symbolic computation front end; user merely inputs plant and cost function
 - control equations represented as functions to be zeroed (solved) at discrete time steps

State Inequality Constraints

- Problem
 - pre-assume structure of active constraint arcs
 - construct trajectory structure using internal boundary conditions and conditions on time derivatives of constraints
- Solution
 - demonstrations and trades on several discrete time problem representations, with constraint necessary conditions represented by Mangasarian functions
 - no apriori imposition of structure on problem

Boundary Conditions

. ..

- Problem
 - costate boundary conditions obtained via solution of nonsquare linear system for "undetermined multipliers"
- Solution
 - state and costate necessary conditions represented as an equivalent square nonlinear system in states and costates
 - no analysis necessary for implementation

Numerical Sensitivity

- Problem
 - traditional methods for solution of necessary conditions highly nonconvergent
- Solution
 - discrete time representations converge robustly
 - globally convergent methods under development for initial guesses

1.01

 analytic differentiation where possible; high-accuracy numerical differentiation techniques else

Lack of OTIS-Like User Community

- Problem
 - OTIS is an excellent package with strong following
- Solution
 - working with industrial partner to give VTOTS
 - similar "taste and feel" to OTIS
 - features for industrial utility
 - pending successful VTOTS development, conduct an OTIS/VTOTS flyoff
 - possibly seek co-sponsorship arrangement with Air Force

Examples of Perturbations

Singular Perturbations

$$\dot{x} = f(x,y,u)$$

 $\varepsilon \dot{y} = g(x,y,u)$

Regular Plant Perturbations

 $\dot{x} = f(x, u) + \varepsilon g(x, u)$

Regular Trajectory Perturbations (Linearization)

$$x = x + \delta x \qquad u = u + \delta u$$
$$\dot{x} = f(x, u)$$
$$\delta \dot{x} = \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial u} \delta u$$

: • • • •

Important Limitation of Discrete-Time Methods

BANDWIDTH:

- frequency content of optimal trajectory limited by discretization mesh density
- disturbances outside Nyquist frequency not represented

these may be important for constraint performance

Perturbation Methods

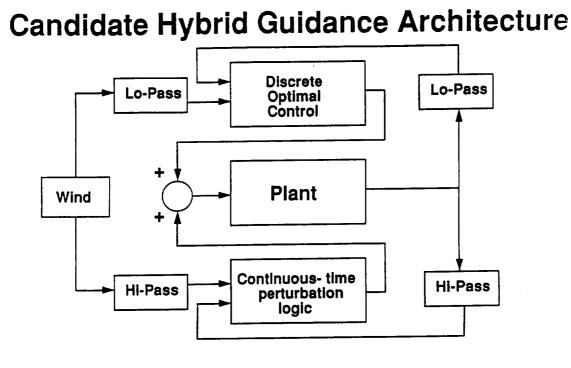
Exploit alternate plant representations for guidance synthesis

VTOTS:

Solve optimal control problem via more tractable trajectory representation

PERTURBATION METHODS:

Approximate optimal control problem by expanding about solution of a convenient "neighboring" problem


• • • • • • •

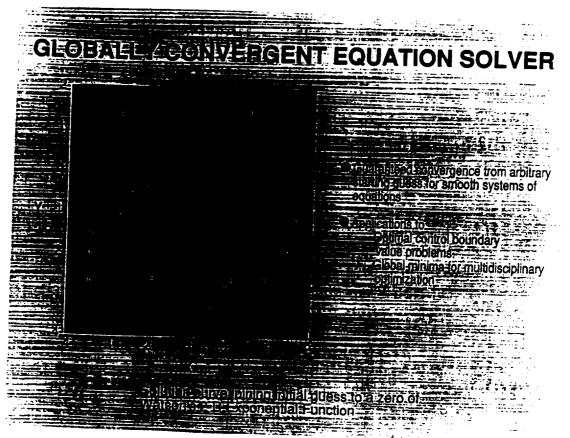
Comments

- Guidance group supports research in all three perturbation categories; inhouse activity in regular perturbations
- Regular perturbations are applicable to launch vehicles
- Regular perturbation schemes can be exploited to restore high-frequency effects (e.g. wind gusts) to guidance schemes based on discrete-time optimal control

CG6-12

(1 - 2)

Neural Methods


- Current activity entirely contracted out
 - 2 universities (joint activity)
 - 1 SBIR Phase II contract

. ..

- Both efforts stress use of neural net as rapid interpolation system, but
 - different guidance architectures
 - different training methods

Globally Convergent Algorithms

- Activity supports
 - initial guess generation in VTOTS
 - calculation of global minima in direct optimization problems
- Two approaches under investigation
 - extensions to Chow-Yorke homotopy techniques
 - "genetic" minimization algorithms

ORIGINAL PAGE IS OF POOR QUALITY

Chow-Yorke Homotopy Techniques

- Extension of "continuation" method
 - avoids singularities which can destroy progress of calculations
 - failure can occur when calculations become smoothly unbounded
- Inhouse activity centers on procedures for preserving boundedness
- FORTRAN implementations for general functions and for VTOTS finite element discretization

• •I

Genetic Algorithm

- Non-derivative procedure for functional minimization
- At each iteration, a random population of solution candidates is modified by "reproduction, crossover and mutation" operations
- The "fittest" lowest cost population elements dominate "less fit" higher cost elements
- We're not sure how it works, but it performs impressively

Validation/Modelling Support

- Evaluation of candidate guidance schemes via Monte Carlo simulation
- Development of high quality simulations of pertinent random atmospheric phenomena for guidance validation

Stochastic Atmosphere Simulation

+ **1**)

- Constructed and analyzed fidelity of Gaussian random model for synthetic KSC launchsite winds
- Procedure for controlling spatial frequency bandwidth of atmospheric variations in an inhouse trajectory simulation implementation of the GRAM model

Monte Carlo Guidance Evaluations

Two studies underway

- performance evaluation of a suboptimal analytic aerospace plane guidance rule for ascent
- optimal control-based launchsite wind profiler requirements study for Shuttle

Generic Hypersonics (GH) Guidance & Optimization Program at Langley

Technical Focus:

 Technology for trajectory and system optimization and synthesis of suboptimal aerospace plane guidance laws

Approach:

- Combined program of grant/contract/inhouse research and development
- Exploit leveraging opportunities from other Langley guidance activities

GH Guidance and Optimization Foci (I)

- Simplified procedures for solving variational optimal control problems
- Finite element discretizations of optimal trajectory boundary value problems (spinoff from Advanced Launch System)
- Use of variational optimal control formulations
 for system configuration optimization

GH Guidance and Optimization Foci (II)

Motivations for emphasis on variational methods

- direct treatment of sensitivity functions
 useful for system optimization
- numerical schemes lead to solution of equations, rather than search for minima

System Optimization Studies

- Comparison of static and variational optimal control formulation of a system parameter optimization problem
- TASK: choose thrust angle for max performance
- a) direct optimization of energy rate at points along a fixed trajectory
- b) optimal control of thrust angle for payload to orbit along identical trajectory

System Optimization Studies (II)

Exact calculation of state constraint sensitivity functions

1 11

- Constraint sensitivities obtained via quadrature of Lagrange multipliers on state constrained trajectory arcs
- Concept demonstration for dynamic pressure constraint on fuel optimal ascent of Langley Accelerator
- Results to be obtained via Variational Trajectory Optimization Tool Set (VTOTS)

Other Technology Interchange Activities

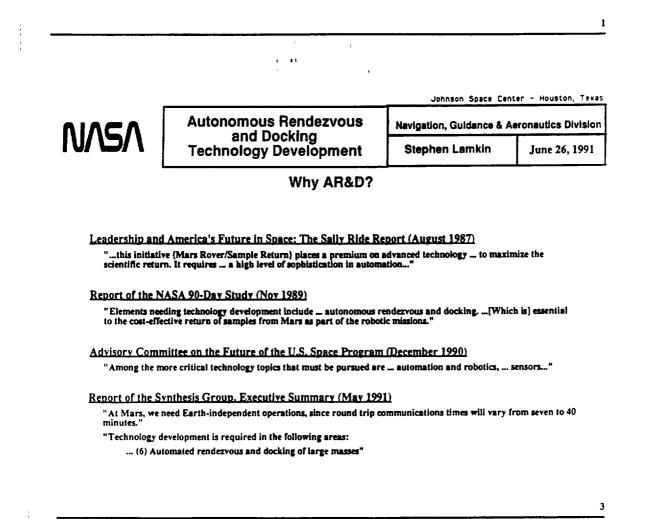
Active:

Codevelopment of VTOTS with MDSS

Pending:

- Launch vehicle guidance exploiting regular perturbation of optimal return function
- Aerobrake performance sensitivity to guidance and atmospheric knowledge assumptions

Summary


: • •1 •

- Guidance group develops technologies for guidance of aeromaneuvering spacecraft
- Guidance group's program focusses inhouse and academic resources on industrial requirements
- Group implements technology interchange with industry by constructing opportunities for technology demonstration by industrial research groups

Autonomous **Rendezvous & Docking Technology Development**

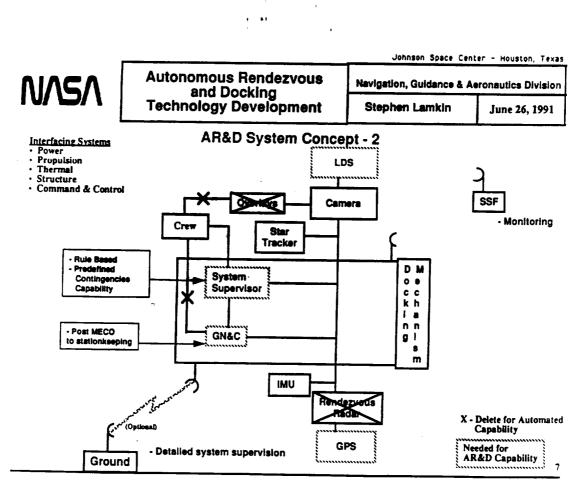
Status & Plans

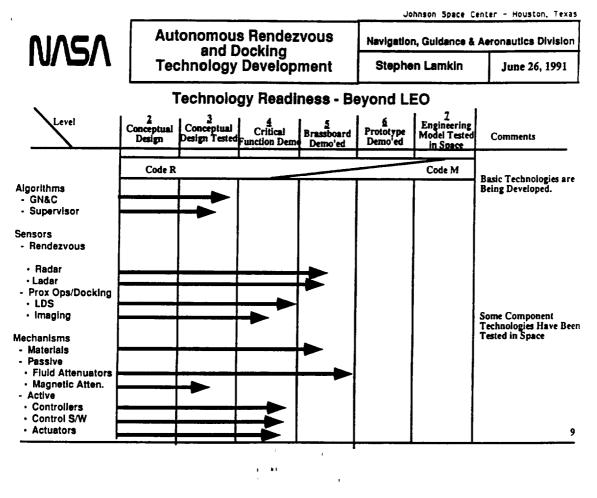
Navigation, Guidance & Aeronautics Division

June 26, 1991

5

Background


- Exploration Technology Program AR&D (Previously Pathfinder)
 - Identified Subtask Technology Requirements


 - Developed Preliminary System Requirements
 Docking Ground Demo (Sensor & Mechanism Hardware, GN&C) in FY91 - AR&D Graphics Demo (Hardware Math Models, GN&C) in FY 90 & 91
- <u>Conducted Rendezvous, Proximity Operations, & Docking (RPOD) Quality</u> Function Deployment (QFD

- Team Members Include JSC Engineering & Operations Organizations plus Industry (General Dynamics, Martin Marietta, Lockheed, McDonnell Douglas, TRW, Draper Labs)

Conducted Customer Needs Survey, both Programmatic (LMEPO, CTVPO) & Technological (Code R, JSC, MSFC)

- Results will Support Development of NASA Strategic & Tactical Plans in this Technology Area

Johnson Space Center - Houston, Texas

Autonomous Rendezvous	Navigation, Guidance & Aeronautics Division		
and Docking Technology Development	Stephen Lamkin	June 26, 1991	

- Functional Partitioning (Ground, Transfer Vehicle, SSF)
- System Acceptability/Mission Success/Safety
- Level of Independence
- Modularity/Flexibility
- Performance Requirements vs Mission Constraints (Sensors, Mechanisms, Control Effectors)
 - •• Fuel •• Plume Effects
 - Mechanism Intelligence
 Lighting
 - •• Sensor Handover Zones
 - •• Sensor Accuracy vs Mechanism Robustness
 - •• Environmental Effects (Thermal, Duration, Solar Radiation)

11

NASA

Milestones

Earth Orbit		T	T		T		<u> </u>		
Lunar Missions				TV 🔺	1	PLS A			
Mars Missions						Luner	rander Vet	•	
	FY92	FY93	FY94	FY95	FYS	Unman FY97	ed Processo FY98	▲ FY99	FY2000
Define User Requirements for AR&D Technology									1 1 2000
Develop Graphics Simulation for Lunar/Mars Environment									
 Conduct Mission Studies & Analyses to Define System & Performance Requirements 									
Develop & Evaluate AR&D System Concepts Suitable for Uers Requirements									
Conduct Ground Demonstrations of Brassboard Integrated Systems & Individual Elements									
Conduct Flight Experiments & Demonstrations in a Realistic Environment									

ORIGINAL PAGE IS OF POOR QUALITY

INTEGRATED TECHNOLOGY PLAN for the CIVIL SPACE PROGRAM

AUTONOMOUS LANDING

Controls Committee Review

McLean, VA June 26-27, 1991

Ken Baker ER2/Intelligent Systems Branch Automation & Robotics Division Engineering Directorate Johnson Space Center

Integrated Technology Plan

U.S. Gov 1

Autonomous Landing

OBJECTIVES

Develop Technology to Enable Landing of Planetary Exploration Spacecraft:

- Safely in the Face of Surface Hazards Presented by Rough Terrain
- Accurately, i.e. Close to the Area of Mission Interest
- · Autonomously, i.e. Without Real-Time Ground Control

BENEFITS

- Increased Probability of Safe Landing
- Reduced Structural Mass Needed to Make the Lander Robust Enough to Survive Touchdown
- Reduced Resources Needed to Survey Area of Mission Interest from Orbit Until Safe Landing Site Is Found

. ..

nous Landing

BASIC TECHNICAL APPROACH

Precision Landing

- Scenario:
 - Select, Prior to Deorbit, a Safe Landing Site Using High Resolution Orbital Imagery
 - During Descent, Maneuver Accurately Enough to Land Within That Site
- Technology Need: Sensor, Algorithm & On-Board Computer to Provide Navigation Measurements With Respect to the Surface of the Planet That Are:
 - Accurate and
 - Robust to Variations in Operating Conditions Such As: Observing Geometry, Illumination Geometry, etc.

On-Board Hazard Detection & Avoidance

- Scenario:
 - Aim the Lander At an Area That Is Expected A Priori to Contain Small, Safe Landing Sites Within Its Maneuver Range
 - In Real-Time Detect a Safe Site & Maneuver to Land There
- Technology Need: Sensor, Algorithm & On-Board Computer That Provide Reliable Detection of Landing Hazards Within the Current Terminal Maneuver Footprint

US COV

ŝ,

31

- · · · · · · · · ·

Integrated Technology Plan

FR 7/CR/T13-483-204

•

PATHFINDER STUDY RESULTS

Image Matching Navigation Using Visible Images (JPL, JSC)

- Template Matching of Optical Images (JPL):
 - --- Position Error on Simulated Mars Terrain: 0-50 Pixels¹¹
 - Possible Source of Errors;
 - Distortion of On-Board Image vs. Reference Due to Lander Trajectory Dispersion
 - Size and Resolution of Reference Image¹²
- Hybrid Optical Image Matching (JSC):
 - Synthetic Estimation Filters^{13, 14} for *Robust* Detection of Landmarks
 - --- Taking Into Account Practical Limits of Real Optical Computing Devices
 - --- Being Tested on Images of Lab./Simulated Mars Terrain

Hazard Detection (JSC/ARC)

- Sensor Surveys¹⁵ That Included Laser Radar, Passive Computer Vision, Hybrid Interferometric Imaging & SAR, Identified Imaging Laser Radar as the First Choice, But:
 - Arrays of GaAlAs Laser Diodes & Si Avalanche Photo-Diode Detectors with Pre-Amps Need Improvement
 - Best Performance from LADAR/Mars Terrain Simulations Is Pr {Correct Detection of Hazard} = 0.95 → Pr {False Alarm} = 0.12¹⁶

June 25, 1991

ne Landing

	WORK BREAKDOWN STRUCTURE
WBS CATEGORY	ACTIVITIES
Systems Engineering	Determine Requirements Develop Mars/Lunar Surface Models Identify Candidate Approaches & Associated Technology Development Needs Collect Terrain Elevation Maps & Images for Earth Analogs of Mars Terrain Closed Loop Sim. of Precision Landing and of Hazard Detection & Avoidance Select Most Promising Approaches for Development & Field Test of Prototypes
Precision Landing	Develop & Evaluate Selected Techniques Such As: Track Orbital/Surface Beacon from Lander for Navigation Updates Surface Image/Feature Matching for Navigation Updates Using Visible Images, Radar Images or Digital Terrain Maps Develop Prototype Instruments, Such As: Hybrid Optical Image Correlator Imaging Radar On-Board Digital Computer
Hazard Detection & Avoidance	Develop & Evaluate Selected Techniques Such As: Active Detection via Imaging Laser Radar Passive Computer Vision (Slope via Shape from Motion, Rock Detection via Shadows) Hybrid Interferometric Imaging Develop Prototype Instruments, Such As: Imaging Laser Radar Hybrid Interferometric Imager

ER2/KB/713-483-2041

Page 9

• •

Integrated Technology Plan

REFERENCES

- Anon., MRSR Flight System Requirements, Jet Propulsion Laboratory/Johnson Space Center, Pasadena, CA/Houston, TX (June 9, 1989).
- A. Friedlander, MRSR Mission Success Probability, Science Applications International Corp., Schaumburg, Illinois (May 23, 1989). Presentation to MRSR MDT/SDT Meeting
- Anon., "MRSR Program System Requirements," 650-2-200, Jet Propulsion Laboratory/Johnson Space Center, Pasadena/Houston (June 9, 1989).
- Anon., MRSR Flight System Requirements, Jet Propulsion Laboratory/Johnson Space Center, Pasadena, CA/Houston, TX (June 9, 1989).
- R. Hain, Safe Landing Area Availability on the Surface of Mars, Draper Laboratory, Inc., Cambridge, MA (July 13, 1990).
 Presented at the Pathfinder/Autonomous Lander Intercenter Working Group Videocon on September 20, 1990
- H. Masursky and N. L. Crabill, "Viking Site Selection and Certification," NASA SP-429, NASA Langley, Hampton, VA (1981).
- A. Engel, T. Bogner, T. Dierlam, and K. Spratlin, Autonomous Landing Study: Probability of Safe Landing, Draper Laboratory, Cambridge, MA (July 20, 1989). Briefing to MRSR MDT/SDT on July 20, 1989, NASA Contract NAS9-18147
- T. J. Brand and S. R. Bauer, Deorbit/Entry Navigation Performance, Draper Laboratory, Cambridge, MA (September 6, 1989). Presentation to MRSR Phase A Midterm Review, NASA Contract NAS9-18147
- J. R. Carr and J. S. Sobek, "Digital Scene Matching Area Correlator (DSMAC)," pp. 36-41 in Image Processing for Missile Guidance, Proc. SPIE Vol. 238, ed. T. F. Weiner, (1980).
- 10. D. M. Prescott, Pershing II Weapon System Reuse Implementation Plan: Revision 1, Pershing Project Manager's Office, Redstone Arsenal, Alabama (March 1990).
- R. M. Vaughan, "Landmark Identification and Modelling for Terrain-Following Navigation," Interoffice Memorandum 314.8-772, Jet Propulsion Laboratory, Pasadena, CA (August 30, 1990).

CODE RC CONTROLS PROGRAM

OVERVIEW BRIEFING

FOR

CONTROLS COMMITTEE

OF THE

SPACE SYSTEMS & TECHNOLOGY ADVISORY COMMITTEE

CLAUDE R. KECKLER

NASA - LANGLEY RESEARCH CENTER

JUNE 27, 1991

,

OVERVIEW CONTENT

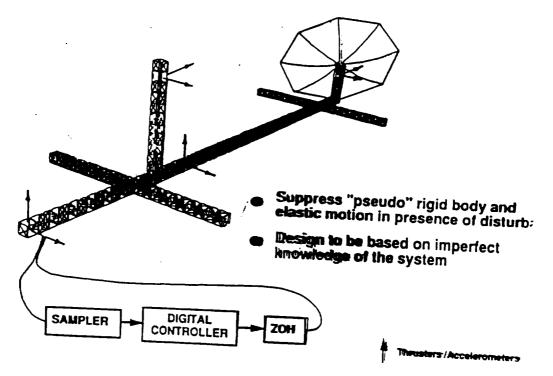
CONTROLS RESARCH, AND DEVELOPMENT OF ANALYTICAL TOOLS, SOFTWARE PACKAGES, AND HARDWARE COMPONENTS AT:

- ARC	- GSFC	- JPL

- JSC - LaRC - MSFC

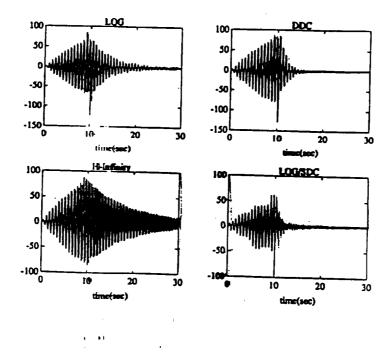
GOALS

 Design & validate controllers for rigid-body control and vibration supression of the CSI Phase Zero Evolutionary model.


APPROACH

- Apply advanced control design techniques:
 - Linear-Quadratic-Gaussian (LQG)
 - Dissipative
 - H_{ee}
 - Dissipative augmented LOG (HAC/LAC)

...


- · Incorporate robustness in the designs
- Evaluate via simulation and actual testing.
- Compare results

SCHEMATIC OF CONTROL PROBLE

CONTROLLER COMPARISONS

CLOSED-LOOP: EXPERIMENTAL TIME HISTORIES ACCELERATION #8 (IN/S²)

CLOSED-LOOP DAMPING

EXPERIMENT VS ANALYSIS

.

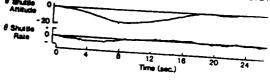
.

	EXPE	RIMENT	ANAL	YSIS
	MODE 7	MODE 8	MODE 7	MODE 8
LQG	3%	3.5 %	2.9 %	2.7 %
DDC	8.5 %	14%	7.0 %	23.9 %
H∞	1 %	2 %	1.6 %	2.4 %
LQG/SD	12 %	16 %	15 %	15 %

ORIGINAL PAGE IS OF POOR QUALITY

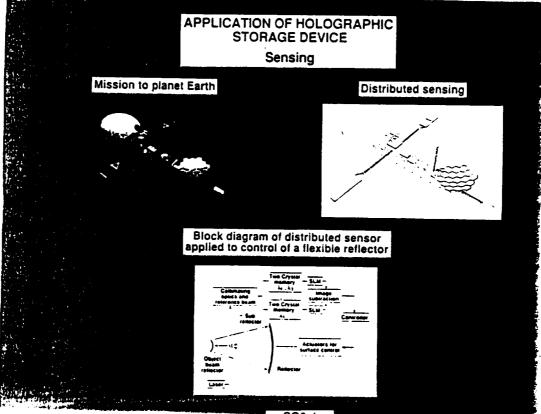
89-3395

SPACECRAFT CONTROL LABORATORY EXPERIMENT (SCOLE) CONTROL LAWS


1 11

VIBRATION SUPPRESION USING THRUSTERS

RIGID BODY BANG-BANG SLEW ONLY



BANG-BANG SLEW & VIBRATION SUPPRESION

MASA

L-89-10136

CG9-4

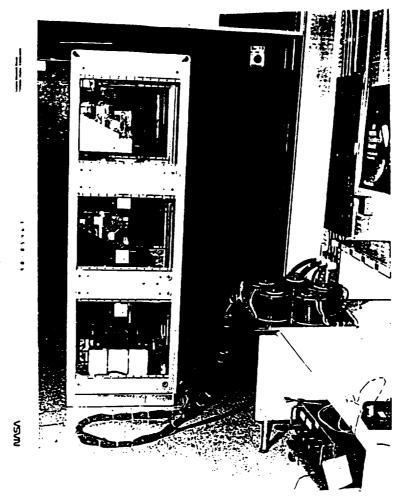
GRANTS

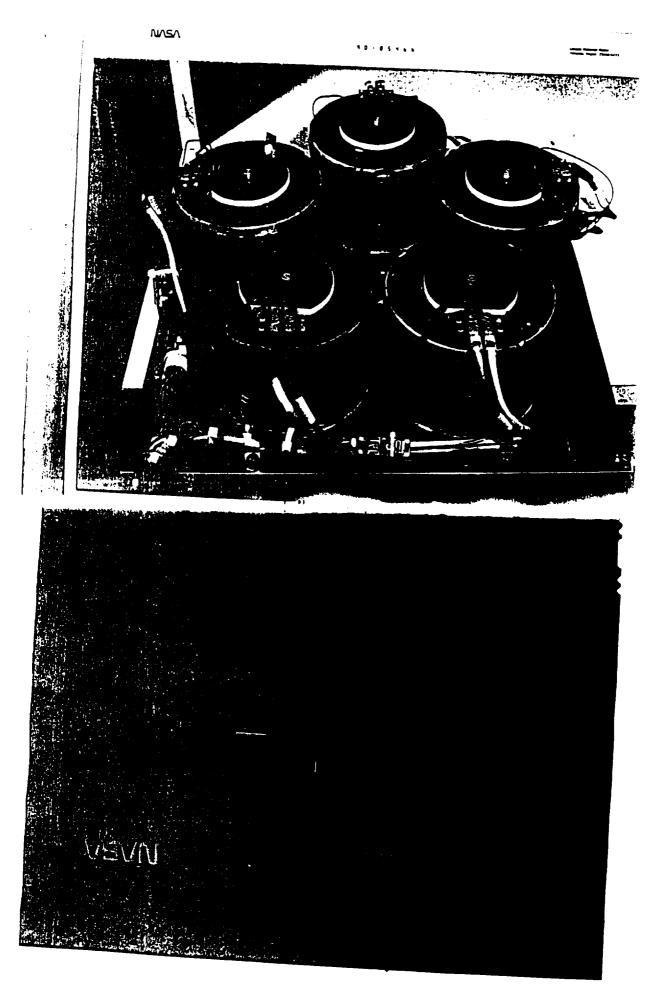
* MIT -

Develop faster photorefractive materials

* Johns Hopkins

Develop photorefractive thin films for large focal planes

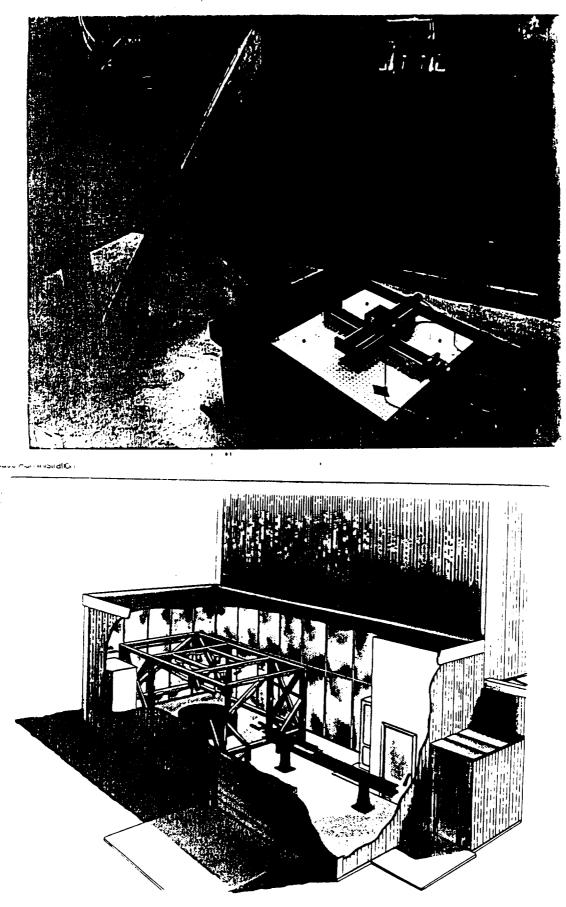

* VPI


Analyse performance of interferometric sensor versus incoherent sensor for control of large reflector

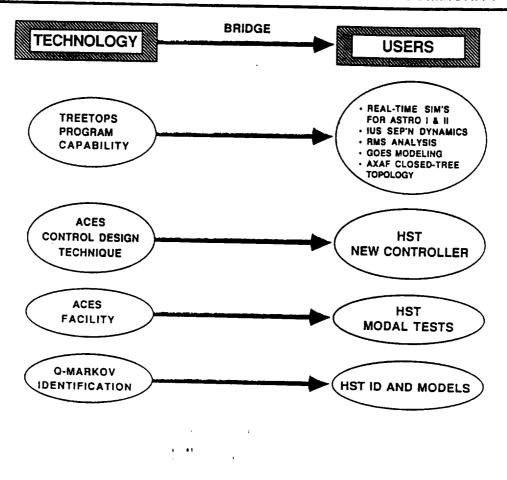
Develop control laws for distributed sensing and processing

* UCLA

Develop optical processing for implementing control



ORIGINAL FROM 18 OF POOR QUALITY


CG9-6

.

BRIDGING 506 RTOP TECHNOLOGY TO THE USER COMMUNITY

NC/OC Pointing Performance Comparison Based on March 30 SAGA Test Data

$\sum_{i=1}^{n}$	EC	N	E	OD	D	AY	NI	GHT
	NC	oc	NC	ос	NC	ос	NC	ос
GYRO HOLD	21.0 18.3 11.1	33.0	31.1 24.2 15.3 10.5	77.3 24.3 28.5	5.9(53)	13.0(42)	4.1(29) 3.1(27) 9.4(15)	7.6(29)
FINE LOCK	12.8	29.3	ND	ND	6.4(39)	11.3(45)	ND	7.5(4)
COARSE TRACK	9.9	26.1	ND	ND	6.4(21)	9.4(42)	5.0(4)	12.5(4)

ND - No Data, () Duration of the Measurement in Minutes

All Numbers are RMS pointing errors in milli-arcseconds (RSS of V2 & V3) EON - END OF NIGHT, EOD - END OF DAY OC - ORIGINAL CONTROLLER (LOCKHEED)

н

ORIGINAL PAGE IS OF POOR QUALITY

PROGRAM ELEMENTS

- H-INFINITY CONTROLLER DESIGN AND IMPLEMENTATION BY OHIO UNIVERSITY INVESTIGATOR DR. DENNIS IRWIN
- ONE-CAT CONTROLLER IMPLEMENTATION BY CONTROL DYNAMICS COMPANY -- WORK COMPLETED AND FULLY REPORTED IN PREVIOUS PRESENTATIONS
- ADDITION OF THE BIDIRECTIONAL LINEAR THRUSTERS AND THE ROLL TORQUE MOTORS TO THE ACES FACILITY
 - ... THIS WORK PREEMPTED BY THE USE OF THE FACILITY FOR THE...
- GUEST INVESTIGATOR PROGRAM

1 11

H-INFINITY CONTROLLER DESIGN, IMPLEMENTATION, & TEST

- GOAL: DESIGN AND IMPLEMENT AN H-INFINITY CONTROLLER DESIGN ON THE ACES FACILITY AND TEST IT FOR ROBUSTNESS AND PERFORMANCE
- H-INFINITY DESIGN WAS PERFORMED; HOWEVER, THE PERFORMANCE WAS POOR BECAUSE OF THE REQUIREMENT FOR AN EXTREMELY RELIABLE SYSTEM MODEL

MODEL OF SUFFICIENT FIDELITY IS NOT AVAILABLE FOR ACES

- EFFORT REFOCUSED ON REFINING MULTIVARIABLE MODELS (SYSTEM ID) AND ON PERFORMING CONTROLLER DESIGN USING EXPERIMENTAL FREQUENCY RESPONSE DATA
- INNOVATIVE MODELING TECHNIQUE HAS BEEN DEVELOPED FOR MULTI-INPUT MULTI-OUTPUT (MIMO) SYSTEMS
 - - DETERMINANTAL MODELING
 - - RESIDUE MATRIX IDENTIFICATION

- GOAL: SIGNIFICANTLY UPGRADE TREETOPS CAPABILITY, EXPAND IT TO INCLUDE MODEL REDUCTION AND CONTROLLER DESIGN FUNCTIONS, AND INCREASE THE COMPUTATIONAL EFFICIENCY
- PURPOSE: A USER-FRIENDLY ANALYSIS AND DESIGN TOOL IS NEEDED TO ANALYZE AND DEVELOP CONTROLLER METHODOLOGIES FOR COMPLEX MULTIBODY SYSTEMS
- METHODOLOGY: ENHANCE THE TREETOPS CODE TO INCLUDE
 - MODEL REDUCTION
- · SYMBOLIC REPRESENTATIONS
- · ORDER-N FORMULATION
- · THERMAN ANALYSIS
- EQUILIBRIUM AND TRIM . SYSTEM IDENTIFICATION
- SENSITIVITY ANALYSIS
 GRAPHICAL USER INTERFACE
- · INVERSE DYNAMICS

. ..

٠

n n n Kara

1. ¹ **5** 1

· CONTROLLER DESIGN

TREETOPS

- THE TREETOPS SUITE OF PROGRAMS HAS BEEN USED EXTENSIVELY IN THE ANALYSIS OF SPACECRAFT AND STRUCTURES INCLUDING
 - EFFECTS OF THE MOBILE TRANSPORTER AND MOBILE SERVICE CENTER MOTION ON SPACE STATION ATTITUDE CONTROL
 - - SHUTTLE DOCKING AND BERTHING TO SPACE STATION USING THE REMOTE MANIPULATOR SYSTEM
 - - SIMULATIONS OF ASTRO I AND ASTRO II, AXAF, GOES, & IUS
- THERE ARE 47 UNIVERSITIES, CORPORATIONS, AND GOVERNMENT AGENCIES CURRENTLY USING TREETOPS
- TREETOPS HAS BEEN EXTENDED FOR PARALLELIZATION AND VECTORIZATION ON THE COMPUTATIONAL CONTROLS WORKSTATION DELIVERED TO JSC

A SIMULATION EXAMPLE WITH 11 BODIES, 85 FLEX DOF'S, 16 RIGID DOF'S, INTEGRATED CONTROLLERS, AND ORBITAL ENVIRONMENT SHOWED A RUN TIME REDUCTION FROM 18900 TO 225 MINUTES VIA VECTORIZATION.

CONTROL SYSTEM DESIGN ANALYSIS CURRENT RESEARCH THRUSTS

- INteractive Controls Analysis (INCA) Program

- Windowed Observation of Relative Motion (WORM) Program
- Analysis and Simulation Tools for Engineering Controls (ASTEC)
- System Identification (FY90 Code RC)

e 11

- Robust Control of Flexible Structures (FY91 Code RC)

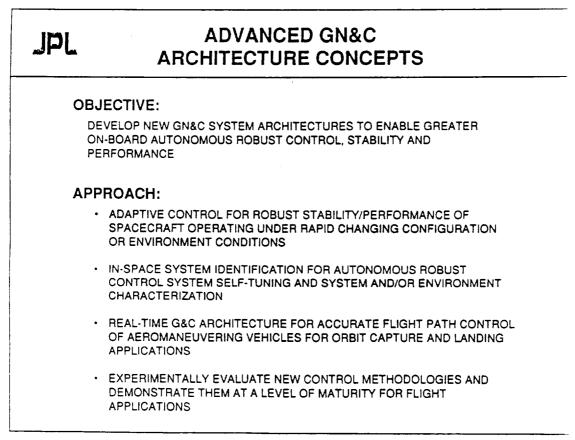
INCA OVERVIEW

- Comprehensive Control System Design Analysis Package
- Developed in Close Coordination with GSFC Controls Analysts
- For Large (100th Order) or Small Order Systems
- Runs on VAX Computers with VMS Operating System
- Version 3.13 Available Through COSMIC

-

WORM OVERVIEW

- 2 and 3 Dimensional Plotting Package
- INCA-derived Interface
- Used as Simulation and On-orbit Telemetry Output Device and as a Quick Means to Massage Data via Functional Relations
- Runs on VAX Computers with VMS Operating Systems
- Version 2.32 Available Through COSMIC


ASTEC OVERVIEW

- Multi-platform Control System Design, Analysis and Simulation Package
- Window/Mouse Environment
 - Microsoft Windows 3.0 for PC
 - Macintosh
 - X-Windows for Unix Systems
 - Common Portable Math Library for all Versions
 - C++ Programming Language
 - INCA-based Algorithms

.

MULTIBODY APPLICATION TECHNOLOGY

Biomechanics	Inverse Dynamics Rolling/Sliding Joints Generalized Joint Constraints
Molecular Dynamics	Non-linear Stability Very Large Order Problems (100-500 DOF's) Clustering Concepts Generalized Bodies Massively Distributed Sensors/Actuators
Automotive	Real-time Man-in-the-Loop (50Hz goal) Real-time Hardware-in-the-Loop Visualization of Dynamic Systems Parallel Processing Load Apportionment
Human Factors	Man/Machine Interaction Dynamics & Performance
Robotics	Intermittant Loop Closure with Impact Inertial Contact through Seating Geared Joints
Spacecraft	Modal SynthesisMethods for Noncollacation Problems Discos callable by INCA for Nonlinear Simulation Recursive Linearization for Multibody Systems Discos Provided Linear Plant Model for INCA
	,

STABILIZATION & IDENTIFICATION

APPLICATION:

JPL

IN-SPACE SYSTEM IDENTIFICATION AND CONTROL TUNING TO ENABLE RELIABLE PRECISE STABILIZATION OF FUTURE SPACECRAFT

- MULTI-INSTRUMENT PLATFORMS
- LARGE ANTENNAS
- MULTI-APERTURE REFLECTORS
- INTERFEROMETER OBSERVATORIES

DESCRIPTION OF EFFORT:

ADVANCES NEW IN-SPACE ID TECHNOLOGY THROUGH

- CONCEPTUAL INNOVATIONS
- THEORETICAL DEVELOPMENT
- COMPUTER SIMULATION/VERIFICATION
- PHYSICAL GROUND EXPERIMENTS
- APPLICATION METHODS AND SOFTWARE DELIVERABLES
- FLIGHT EXPERIMENTS

JPL **STABILIZATION & IDENTIFICATION**

PLANNED DEVELOPMENTS (FY91-95)

- DEVELOP REDUCED VARIANCE SPECTRAL ESTIMATION OF THE . PLANT TRANSFER FUNCTION
- DEVELOP THE ROBUSTNESS TO SYSTEM NOISE AND UNMODELED
- DEVELOP THE CAPABILITY TO HANDLE LARGE DATA SETS
- EXTEND THE CAPABILITY OF THE NEW ID METHODS TO LARGER . MULTIVARIABLE SYSTEMS
- DEVELOP THE FIRST GENERATION APPLICATION METHODS AND . SOFTWARE TOOLS FOR MULTIVARIABLE ID/ROBUST CONTROL
- DESIGN, BUILD AND DEMONSTRATE A PROOF-OF-CONCEPT ٠ NEURAL NET MIMO ID/ROBUST CONTROLLER

APPLICATION:

ADAPTIVE CONTROLLERS ARE NEEDED FOR THE NEXT GENERATION SPACE SYSTEMS WHICH HAVE ANY OR ALL OF THE FOLLOWING ATTRIBUTES:

- HAVE SIGNIFICANT TIME-VARYING MASS PROPERTIES AND CHANGING DISTURBANCE ENVIRONMENT
- CANNOT BE TESTED FULLY ON THE GROUND DUE TO LOGISTIC CONSTRAINTS
- FLEXIBLE MODES AND/OR NON-COLLOCATED ACTUATOR/SENSOR CONFIGURATIONS
- UNCERTAINTIES DUE TO LARGE ANGLE ARTICULATION, FAST SLEW
 OR OTHER NONLINEAR EFFECTS

JPL ADAPTIVE POINTING AND TRACKING CONTROL

....

DESCRIPTION OF EFFORT:

DEVELOP ON-BOARD STABLE MULTIVARIABLE ADAPTIVE REGULATION AND TRACKING SYSTEM (SMARTS) CAPABILITY WHICH CAN CONTROL SPACECRAFT WITH

- VERY HIGH ORDER OF STATE VARIABLES (E.G. 100'S)
- MANY SENSORS AND ACTUATORS
- UNCERTAIN AND/OR CHANGING SPACECRAFT DYNAMICS, ENVIRONMENT AND MISSION SCENARIOS
 - SMARTS I: FOR SPACECRAFT WITH COLLOCATED SENSORS AND ACTUATORS
 - SMARTS II: FOR SPACECRAFT WITH SENSORS AND ACTUATORS THAT CANNOT BE COLLOCATED
 - SMARTS III: NEURAL BASED WITH LEARNING CAPABILITY

MAY 29, 1991

TASK 1. CONTROL OF SPACECRAFT

- ADVANCED CONTROL THEORY
 - DEVELOPMENT OF ROBUST CONTROL SYSTEM DESIGN TECHNIQUES FOR DISTURBANCE REJECTION IN FLEXIBLE SPACE STRUCTURES
 - DEVELOPMENT OF ADAPTIVE SYSTEM IDENTIFICATION AND CONTROL TECHNIQUES BASED ON ARTIFICIAL NEURAL NETWORKS.
- ADAPTIVE CONTROL

1

- TESTING OF STATE SPACE SELF TUNING ADAPTIVE CONTROL ON SPACE STATION ATTITUDE CONTROL SIMULATOR

1 81

	·	Jomson Space Center-	HOUSTON Tavar
	REVIEW OF CONTROLS	NAVIGATION, CONTROL, AND AR	
ACSIGN + ACYEL OF REAT + TELT		JOHN W. SUNKEL	MAY 29, 1991

- INFLIGHT EVALUATION OF THE STRUCTURAL INTEGRITY OF
 SPACECRAFT
 - DEMONSTRATE FREQUENCY BASED LOCALIZATION TO SUPPORT STRUCTURAL HEALTH MONITORING OF FLEXIBLE SPACECRAFT.
- ADVANCED RCS LOGIC FOR FLEXIBLE MULTI-BODY SPACE VEHICLES
 - DEVELOP ADVANCED RCS LOGIC FOR FLEXIBLE MULTI-BODY SPACECRAFT INCLUDING SPACE STATION DURING ORBITER BERTHING

- DEVELOP NEW RCS PHASE PLANE LOGIC TO ACCOMMODATE SIGNIFICANT STRUCTURAL MODE INTERACTION

Hardware:

- The front end processor is a Silicon Graphics machine.
- The high speed parallel processing unit uses 4 Intel 860 boards.
- Intel 860 benchmark numbers:

SUN	Data General	SUN	Silicon Graphics	intei	
68020	88000	Sparc	R3000/3010	80860	
(1) 1.0	11.7	8.6	18.5	47.1	
(2) 1.0	4.5	5.4	18.0	55.5	

- (1) Inversion of a 100x100 matrix
- (2) Two-body dynamics simulation (approximately 10.8 MFLOPS)

; ł

i, -

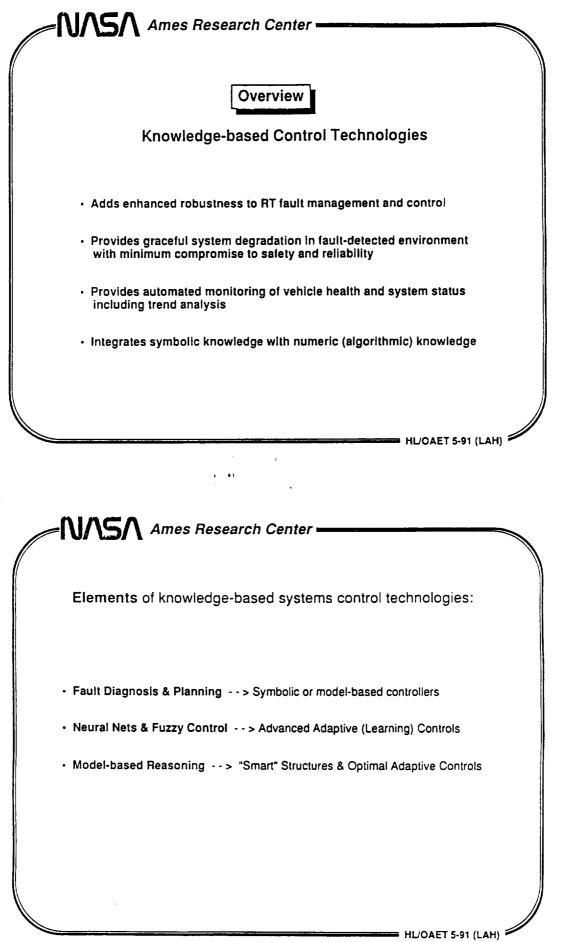
10

	Solarson Space Center*	Houslon, Texas	
REVIEW OF CONTROLS TECHNOLOGY PROGRAM	NAVIGATION, CONTROL, AND AERONAUTICS DIVISION		
	JOHN W. SUNKEL	MAY 29, 1991	

Performance:

- Space Station Example is for the assemble complete configuration that includes the following:
 - 11 flexible bodies with flex modes up to 5Hz for 11 independently articulating flexible body configuration
 - Total of 101 system degrees of freedom (85 flex and 16 rigid) including core body (9 modes), 2 Alpha booms (6 modes), and 8 solar panels (8 modes each)
- SSF PDR RCS and CMG controllers running at 5 Hz
- Joint controllers for the solar panels
- Complete orbital environment

;; ;;


; ; ;

- Flex body data obtained from NASTRAN for each body.
- Space Station dynamics simulated for one orbit (90 min) with the RCS control system in the attitude hold mode
- Computational performance (all times in min)

SSCOMP	SGI	SUN-4	VAX-8850
90	675	2025	235
		1 D1	

- Current ongoing and future work involves
 - Upgrading the parallel controller
 - Completing the model database
 - Developing and completing the interface to IGES graphics
- Enhancing the user interface as well as the simulation capabilities

Fuzzy Logic Control

Automatic Train Control

- Has been in successiul application since July 1987 in Sendai, Japan
- Uses rules of the form,
- If speed of the train exceeds the speed limit,

Then the maximum brake notch is selected -

Space Shuttle attitude control

- Under study at NASA JSC and NASA Ames, preliminary results show significant fuel savings over the conventional On-orbit digital autopilot
- Uses rules of the form,
- If attitude error is Negative Medium and attitude rate error is Negative Small,
- Then Acceleration (converted to Jet on / off command) is Negative Small

SUMMARY

. 1

- COMPREHENSIVE, DIVERSIFIED RESEARCH PROGRAM
- OBJECTIVES AIMED AT RELEVANT NATIONAL GOALS
- SIGNIFICANT MILESTONES/PROGRESS BEING ACHIEVED
- RESOURCES LIMITING PACE OF ACHIEVEMENTS

OVERVIEW OF JPL ACTIVITIES IN TRANSPORTATION GUIDANCE, NAVIGATION, AND CONTROL

LINCOLN J. WOOD

29 MAY 1991

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY

,

1 11

PROGRAM ELEMENTS TO BE DISCUSSED

AEROMANEUVERING GUIDANCE, NAVIGATION, AND CONTROL (506-46-1 AND 506-46-2)

PATHFINDER/ETP AEROBRAKING GN&C (591-42-3 AND 593-11-3)

PATHFINDER/ETP AUTONOMOUS LANDING (591-13-1 AND 591-13-2)

PATHFINDER/ETP AUTONOMOUS RENDEZVOUS AND DOCKING (591-21-2)

FY89/90 PRODUCTS - SUMMARY

- 0 ONBOARD, REAL-TIME GUIDANCE AND CONTROL ALGORITHMS
 - O SEVERAL NEW GUIDANCE ALGORITHMS FOR AEROASSISTED ORBIT TRANSFER, INCLUDING SIMPLE, NEAR-OPTIMAL SCHEMES
 - 0 PERTURBATION GUIDANCE ALGORITHMS WITH BOUNDED CONTROL
 - O RE-ENTRY VEHICLE MODELING
 - O ADAPTIVE AND NONADAPTIVE CONTROL ALGORITHM DEVELOPMENT
- 0 GUIDANCE AND NAVIGATION ALGORITHMS FOR AEROMANEUVERING ENTRY TO LANDING
- 0 MARS APPROACH NAVIGATION ACCURACY ASSESSMENT
 - CHARACTERISTICS OF OPTIMAL AEROASSISTED TRAJECTORIES

1 11

- O MINIMUM-FUEL PROPULSIVE AND AEROASSISTED TRANSFERS BETWEEN ARBITRARY ELLIPTICAL ORBITS
- 0 OPTIMAL AEROMANEUVERING PLANE CHANGE TRAJECTORIES USING MULTIPLE ATMOSPHERIC PASSES
- O MAXIMUM AEROMANEUVERING ORBIT PLANE CHANGES SUBJECT TO HEATING RATE CONSTRAINT
- O COMPARISON OF COST FUNCTIONS FOR AEROMANEUVERING TRAJECTORY OPTIMIZATION PROBLEMS

LJW-2

PARTICIPANTS DURING FY89 AND FY90

.

.

0 JPL

Ω

- 0 LINCOLN J. WOOD TASK LEADER
- O WILLIAM M. MCENEANEY/ALEX S. KONOPLIV/VIJAY ALWAR GUIDANCE AND NAVIGATION
- 0 DHEMETRIOS BOUSSALIS/ASIF AHMED/DON WANG CONTROL SYSTEMS
- 0 UNIVERSITY OF MICHIGAN PROFESSOR NGUYEN X. VINH (TRAJECTORY OPTIMIZATION)
- 0 UNIVERSITY OF TEXAS AT AUSTIN PROFESSORS DAVID G. HULL AND JASON L. SPEYER (GUIDANCE)
- 0 RICE UNIVERSITY PROFESSOR ANGELO MIELE (TRAJECTORY OPTIMIZATION AND GUIDANCE)

FY89 PRODUCTS: JPL IN-HOUSE - GUIDANCE AND NAVIGATION (506-46-2)

- 0 THREE NEW GUIDANCE ALGORITHMS DEVELOPED FOR AEROASSISTED ORBITAL TRANSFER
 - 0 BASED ON APPROXIMATE SOLUTION OF OPTIMAL CONTROL PROBLEM LOH'S TERM ASSUMED DEPENDENT ON INDEPENDENT VARIABLE ONLY
 - 0 APPLICABLE TO BOTH COPLANAR AND NON-COPLANAR ORBIT TRANSFERS
 - 0 TWO ALGORITHMS MAXIMIZE EXIT SPEED FOR FIXED HEADING ANGLE, ALTITUDE, AND FLIGHT PATH ANGLE AT EXIT - MOST USEFUL FOR PRE-FLIGHT TRAJECTORY OPTIMIZATION
 - 0 THIRD ALGORITHM MINIMIZES CONTROL EFFORT FOR FIXED VELOCITY, HEADING ANGLE, ALTITUDE, AND FLIGHT PATH ANGLE AT EXIT
 - 0 INTENDED FOR ONBOARD, REAL-TIME GUIDANCE
 - 0 SIMPLE ENOUGH TO BE IMPLEMENTED ONBOARD
 - 0 PERFORMED WELL IN PRESENCE OF ATMOSPHERIC MODELING ERRORS IN PRELIMINARY TESTS
- 0 THREE UNIVERSITY CONTRACTS MONITORED

LJW-4

FY89 PRODUCTS: JPL IN-HOUSE - CONTROL SYSTEMS (506-46-1)

0 ADAPTIVE AND NONADAPTIVE CONTROL LAWS EVALUATED

1 81

- 0 FOR COPLANAR SKIP TRAJECTORY
- 0 USING BANK MODULATION FOR LIFT VECTOR CONTROL
- 0 USING AERODYNAMIC FORCES AS WELL AS THRUSTERS FOR ROLL CONTROL
- 0 SIMULATION SOFTWARE EXPANDED TO INCLUDE OUT-OF-PLANE DYNAMICS
 - 0 FOR CONTROL LAW EXPANSION TO INCLUDE BOTH ROLL AND PITCH AXIS CONTROL
- 0 STUDY ON LEARNING AND DECISION-MAKING MODEL FOR HIGHER-LEVEL ADAPTATION COMPLETED
 - 0 METHODS TO COPE WITH GREATER RANGE OF UNCERTAINTY AND UNMODELED CHANGES, ESPECIALLY IN AUTONOMOUS OPERATIONS

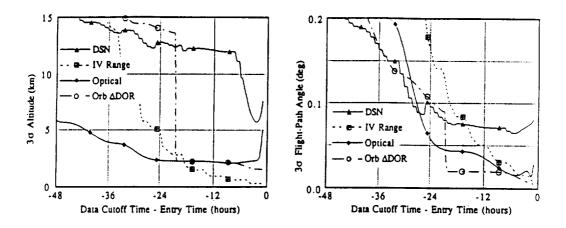
FY90 PRODUCTS: JPL IN-HOUSE - CONTROL SYSTEMS (506-46-1)

RE-ENTRY VEHICLE MODELING

- 0 DEVELOPED DYNAMIC AND KINEMATIC EQUATIONS OF MOTION FOR USE IN DESIGN AND ANALYSIS OF CONTROL ALGORITHMS AND DEVELOPMENT OF SIMULATION TOOLS
- 0 DERIVED AERODYNAMIC COEFFICIENTS AND STABILITY DERIVATIVES FOR BICONIC AEROSHELL

0 DEVELOPED AEROMANEUVERING CONTROLS SIMULATION PROGRAM CONTROL ALGORITHM DEVELOPMENT

- 0 CONDUCTED OPEN-LOOP SIMULATIONS TO EVALUATE VEHICLE AERODYNAMIC PERFORMANCE AND STABILITY CHARACTERISTICS
- 0 CONDUCTED PRELIMINARY INVESTIGATION OF EFFECT OF LONGITUDINAL NORMAL MODES OF OSCILLATION ON HYPERSONIC VEHICLE PERFORMANCE
- 0 EXTENDED PLANAR CONTROL LAWS TO 3-D VEHICLE DYNAMICS AND CONTROL
- 0 DEVELOPED CONTROL LAW FOR SUPPRESSION OF DOMINANT SHORT-PERIOD NORMAL MODE OF OSCILLATION
- 0 QUALITATIVELY DEMONSTRATED PITCH OSCILLATION SUPPRESSION VIA SIMULATION


t \min

LJW-7

FY89/90 PRODUCTS: JPL IN-HOUSE - MARS APPROACH NAVIGATION (591-42-3)

.

- 0 ACCURACY OF APPROACH NAVIGATION HAS MAJOR IMPACT ON ABILITY TO PERFORM AEROCAPTURE AT MARS
- 0 ESTIMATES MADE OF TRAJECTORY KNOWLEDGE ACCURACY AT ENTRY INTERFACE, ASSUMING VARIOUS DATA TYPES (FUNDED JOINTLY WITH JPL'S EXPLORATION INITIATIVE STUDIES OFFICE - CODES SL AND RZ)
 - 0 EARTH-BASED RADIO METRIC DATA ONLY (DOPPLER, RANGE, AND DELTA-DOR AT ANTICIPATED ACCURACY LEVELS OF LATE 1990s)
 - 0 EARTH-BASED PLUS VEHICLE-TO-VEHICLE RADIO METRIC DATA (MARS ORBITER IN EITHER 1/5-SOL OR AREOSYNCHRONOUS ORBIT)
 - 0 EARTH-BASED RADIO DATA PLUS ONBOARD OPTICAL DATA (IMAGES OF DEIMOS AND PHOBOS)
- 0 EARTH-BASED TRACKING OF BOTH APPROACH VEHICLE AND MARS ORBITER 0 REPRESENTATIVE ACCURACY REQUIREMENTS AT NOMINAL ENTRY TIME (L/D = 0.7, V-INFINITY = 3.4 km/s, 500-km CIRCULAR TARGET ORBIT)
 - 0 40 KM IN ALTITUDE
 - 0 0.5 DEG IN FLIGHT PATH ANGLE

Summary for Altitude Error

Summary for FPA Error

- 0 CONTINUE DEVELOPMENT OF ONBOARD, REAL-TIME, NEAR-OPTIMAL GUIDANCE ALGORITHMS AND TEST WITH REALISTIC ERROR MODELS
- 0 EXTEND AEROCAPTURE GUIDANCE AND NAVIGATION S/W TO INCLUDE NAVIGATED STATE AS WELL AS REAL STATE FOR EVALUATING GUIDANCE ALGORITHM PERFORMANCE
- 0 PLANETARY APPROACH NAVIGATION AND GUIDANCE
 - 0 CONTINUE WORK IN PROGRESS WITH IMPROVED ERROR MODELING AND FURTHER VARIATION OF KEY PARAMETERS
 - 0 PERFORM PRELIMINARY ASSESSMENT OF RELATIVE MERITS OF VARIOUS DATA TYPES
- 0 COMPLETE UNIVERSITY RESEARCH
 - 0 DETERMINATION OF CHARACTERISTICS OF OPTIMAL AEROASSISTED TRAJECTORIES
 - 0 DEVELOPMENT OF GUIDANCE ALGORITHMS

- FY92 IDENTIFY CANDIDATE GUIDANCE/ATMOSPHERIC SENSOR ARCHITECTURES
- FY93 DEFINE NAVIGATION TECHNOLOGY

.

.

FY94 PERFORM CONCEPTUAL DEMONSTRATION OF GUIDANCE/NAVIGATION SYSTEM

1

- FY96 BEGIN TESTBED VALIDATION OF LUNAR RETURN GN&C SYSTEM
- FY97 DEFINE GN&C FOR FLIGHT TEST
- FY98 BEGIN TESTBED VALIDATION OF GN&C SYSTEM FOR MARS

. .

TASKS TO BE PERFORMED JOINTLY WITH LARC

LJW-13

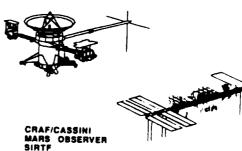
A NASA PROGRAM AUGMENTATION: COMPUTATIONAL CONTROL

G. K. MAN

BRIEFING TO SSTAC - 6/27/91

AGENDA

- OBJECTIVE
- MOTIVATION
- CURRENT LIMITS


. ..

- NASA TOOL DEVELOPMENT EXPERTISE
- TECHNICAL APPROACH
- RECENT ACCOMPLISHMENTS
- FOREIGN CAPABILITIES
- TECHNOLOGY TRANSFER
- PLAN
- SUMMARY

- COMPUTATIONAL CONTROL IS UPGRADING INFRASTRUCTURE TOOLS NEEDED FOR DESIGN AND PERFORMANCE TESTING OF <u>ALL</u> MAJOR CURRENT AND FUTURE NASA MISSIONS
- NEW TOOLS WILL PROVIDE RISK REDUCTION AND PRODUCTIVITY ENCHANCEMENT TO ALL FLIGHT SYSTEMS

EXPLORATION

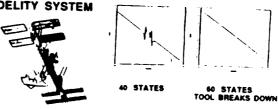
TRANSPORTATION

. ...

SPACE SCIENCE SPACESTATION

INTRODUCTION

OBJECTIVE


TO DEVELOP A NEW GENERATION OF ARTICULATED MULTIBODY MODELING, CONTROL DESIGN AND SIMULATION ALGORITHMS, AND PROTOTYPE SOFTWARE TOOLS FOR SPACECRAFT AND ROBOTS

- . FOR DESIGN, FUNCTIONAL AND PERFORMANCE TESTING
- · TO HANDLE HIGH FIDELITY MODELS (>100 STATES)
- . TO REDUCE MISSION RISK AND ENCHANCE PRODUCTIVITY

MOTIVATION

CURRENT TOOLS SEVERELY LIMIT COMPREHENSIVE CONTROL DESIGN AND VERIFICATION AND ARE INADEQUATE FOR FUTURE NEEDS

- · CANNOT HANDLE HIGH FIDELITY SYSTEM
- EXCESSIVE RUN TIME
- · NOT USER FRIENDLY

LIMITATION OF CURRENT TOOLS - GALILEO CASE STUDY

GALILEO SCAN PLATFORM POINTING CONTROL EXAMPLE

SPACECRAFT CONFIGURATION

HIGHLY SHAPLIFIED MODEL (20 DOF)

- CRAY X-MP CANNOT SIMULATE HIGHLY SIMPLIFIED GALILEO MODEL IN REAL-TIME (FALLS SHORT BY A FACTOR OF 10)
- CURRENT SIMULATION TECHNOLOGY LIMITS NASA'S ABILITY TO VERIFY SPACECRAFT DESIGN (REAL-TIME HARDWARE-IN-THE-LOOP TESTING IS LIMITED TO HIGHLY SIMPLIFIED RIGID BODY SIMULATIONS)
- NEED FOR NEW INFRASTRUCTURE TOOLS HAS REACHED A CRITICAL POINT. NEW TOOLS ARE NECESSARY TO SUPPORT CURRENT AND FUTURE AGENCY MISSIONS.

SPACECRAFT COMPUTATIONAL CONTROL TOOL DEVELOPMENT EXPERTISE

NASA TECHNICAL CONTRIBUTIONS

CONTROL DESIGN & ANALYSIS	MULTIBODY SIMULATION	COMPUTER AIDED ENGINEERING SHELL
CONTROL C	MBODY	CASCADE
INCA	DISCOS	
MATRIXX	TREETOPS	ISM
SAMSON	SDEXACT	IDEAS
	ODEAAOT	
	20390	

•

TECHNICAL APPROACH

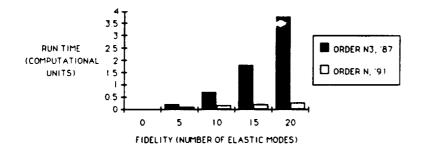
- SPATIAL RECURSION ALGORITHMS (FACTOR OF N INCREASE IN SPEED)
- PARALLEL COMPUTING (SPEED INCREASE ~ # OF PROCESSORS)
- SYMBOLIC MANIPULATION (> FACTOR 5 IMPROVEMENT IN SPEED)
- OBJECT-ORIENTED ENVIRONMENT FOR NEW ALGORITHM DEVELOPMENT & IMPLEMENTATION
- PROBLEM-SPECIFIC ALGORITHMS AND SOFTWARE TO PROVIDE GOOD NUMERICAL CONDITIONING & COMPUTATIONAL EFFICIENCY
- STATE-OF-ART SOFTWARE & HARDWARE (E.G. LAPACK)

KEY PRODUCTS

REAL-TIME SIMULATION SYSTEM FOR SPACECRAFT HARDWARE-IN-THE-LOOP TESTING

INTEGRATED ANALYSIS & SIMULATION WORK-STATION

MODERN CONTROL DESIGN & ANALYSIS SOFTWARE


SELECTED RECENT ACCOMPLISHMENTS

. .

- GSFC HAS ENHANCED DISCOS BY REPLACING THE ORDER N³ ENGINE BY AN ORDER N ENGINE FOR RIGID AND ELASTIC SYSTEMS. THE UPGRADED DISCOS IS UNDER BETA TESTING.
- JPL HAS DEVELOPED NEW HIGHLY EFFICIENT DYNAMICS ALGORITHMS FOR REAL-TIME SIMULATION (DARTS), BASED ON SPATIAL OPERATOR ALGEBRA, FOR SPECIALIZED COMPUTER ARCHITECTURES (E.G. PARALLEL COMPUTERS). CRAF/CASSINI HAS ADOPTED THIS NEW ALGORITHM FOR THE DEVELOPMENT OF A REAL-TIME SIMULATION CAPABILITY FOR SPACECRAFT TESTING.
- JSC AND LaRC HAVE DEVELOPED A NEW SPACE STATION COMPUTATIONAL CONTROL WORKSTATION (SSCOMP) FOR CONTROL DESIGN, ANALYSIS AND SIMULATION. THE SIMULATION CAPABILITY IS 120 TIMES FASTER THAN 1987 TECHNOLOGY FOR A 140 STATES SPACE STATION.
- MSFC HAS UPGRADED TREETOPS WITH A NEW ORDER N ALGORITHM. THE NEW CODE IS BEING USED BY JSC FOR THE SHUTTLE RMS.

IMPROVEMENT IN TECHNOLOGY FROM 1987

DEVELOPMENT OF ORDER N MULTIBODY SIMULATION CAPABILITY

NEW/EMERGING CAPABILITIES

- ORDER-N DISCOS
- DARTS $\sqrt{}$
- √ SSCOMP
 - ORDER-N TREETOPS

. ...

FEATURES OF THE DARTS ALGORITHM

GENERAL EQUATIONS OF MOTION FOR A SPACECRAFT:

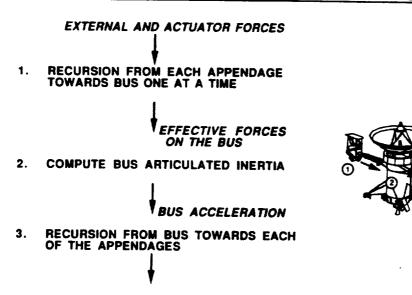
 $M(q)\ddot{q}+C(q,\dot{q})=T$

CONVENTIONAL ALGORITHM

- REQUIRE ORDER N³ COMPUTATION
 COMPUTE THE MASS MATRIX M
 COMPUTE THE CORIOLIS AND CENTRIFUGAL FORCES C

- SOLVE THE LINEAR EQUATION

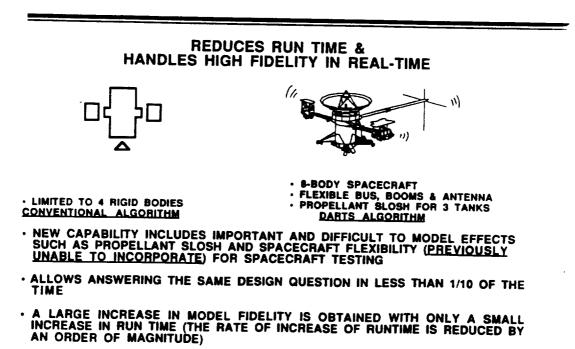
Mg =T-C FOR g


DARTS ALGORITHM

- REQUIRE ORDER N COMPUTATION
 DOES NOT REQUIRE M, OR C OR SOLVING THE LINEAR EQUATION
 BASED UPON A SPATIAL OPERATOR EXPRESSION FOR M⁻¹
- · RECURSIVELY COMPUTE a

THE DARTS ALGORITHM

- REDUCES COMPUTATIONAL TIME (FROM CUBIC TO LINEAR COMPUTATIONAL COMPLEXITY)
- IS HIGHLY PARALLELIZABLE
- . IS RECURSIVE AND MODULAR RESULTING IN REDUCED SOFTWARE COSTS


ARCHITECTURE OF THE DARTS ALGORITHM

1 83

MODAL AND HINGE ACCELERATIONS q

CRAF/CASSINI APPLICATION

• THE PROTOTYPE SSCOMP IS AN INTEGRATED SELF-

CONTAINED CAD PLATFORM FOR SPACE STATION G,N & C ANALYSIS • ORDER-N ALGORITHM FOR FLEXIBLE MULTI-BODIES SPACECRAFT • SYMBOLIC CODE GENERATOR • OBJECT ORIENTED INTERFACE • 3-D SOLID MODELING FOR ANIMATION • SILICON GRAPHICS COMPUTER WITH 4 I-860 BOARDS • COMPUTATIONAL PERFORMANCE FOR ONE (90 MIN) ORBIT SIMULATION WITH RCS CONTROL SYSTEM IN ATTITUDE HOLD MODE (101 DEGREES OF FREEDOM) <u>SSCOMP</u> |SGI |SUN-4 |VAX-8850 90(MIN) |675 |2024 |235 • SIGNIFICANCE THIS HIGH PERFORMANCE (A ORDER OF MAGNITUDE

THIS HIGH PERFORMANCE (A ORDER OF MAGNITUDE INCREASE IN SPEED) WORKSTATION IS THE MODEL FOR A FUTURE CONTROL ANALYSIS AND SIMULATION PLATFORM

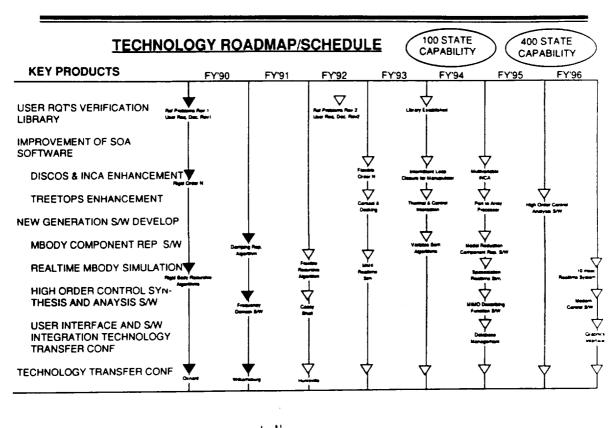
FOREIGN CAPABILITY ISSUES

NUBEMN-	GERMANY	SYM-	YUGOSLAVIA
NEWEUL-	GERMANY	SPACAR-	NETHERLANDS
MEDYNA-	GERMANY	AUTODYN-	BELGIUM
MESA VERDE-	GERMANY	PLEXUS-	FRANCE
DECAP-	ITALY	DAPHNE-	JAPAN

1 11

EMPHASIS - AUTOMOBILS, TRAINS, HELICOPTERS, SPORTS, ROBOTS, SPACECRAFT

- FOREIGN TECHNOLOGIES ARE ADVANCING AT A RAPID PACE:
 - EUROPEANS ARE BUILDING POWERFUL TOOLS BASED ON U.S. TECHNOLOGY
 - JAPAN IS ENTERING THE FIELD IN THE LAST 2 YEARS WITH AMBITIOUS GOALS
- U.S. IS UNIQUELY QUALIFIED TO MAINTAIN THE LEADERSHIP ON <u>HIGH PERFORMANCE COMPUTING AND SIMULATIONS</u> BY BUILDING ON OUR NEW HARDWARE AND SOFTWARE TECHNOLOGIES

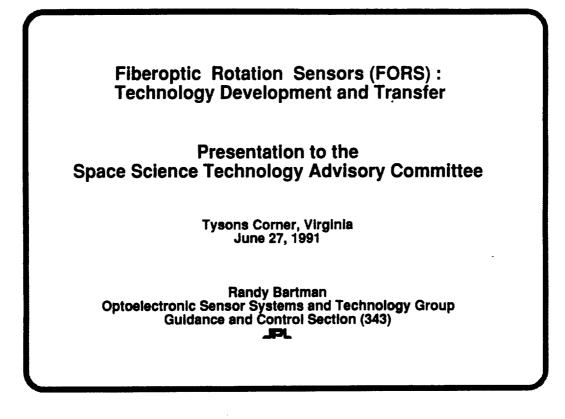

TECHNOLOGY TRANSFER

- MULTIAGENCY, UNIVERSITY AND INDUSTRY WORKING AND ADVISORY COMMITTEE TO FACILITATE COMMUNICATION
- EARLY RELEASE OF TECHNOLOGY TO U.S. INDUSTRY
- UNIVERSITY OF IOWA/NSF VERIFICATION LIBRARY FOR REQUIREMENTS AND BENCHMARK PROBLEMS
- ANNUAL TECHNOLOGY TRANSFER WORKSHOP/ CONFERENCE TO DESEMINATE RESEARCH FINDINGS

PERFORMANCE OBJECTIVE & RESOURCE

KEY PARAMETERS	PERF	ORMANCE O	BJECTIVES	
· APPROXIMATE NEED DATE	<u>1991</u>	1994	1996	
SYSTEM FIDELITY FOR Control Design (# OF States)	10	100	400	مع مستعد (() بالانتقار
RUN-TIME FOR REALTIME Hardware-in-the-loop Testing of a 150 states System (msec)	100	10	<10	
USER FRIENDLINESS (TIME TO Setup a 100 states Simulation)	DAYS	HOURS	MINUTES	

FUNDING REQUIREMENT FOR ALL CENTERS (\$K)	FY92	FY93	FY94	FY95	FY96
	3600	3600	3600	3600	3600



LONG RANGE PLAN

SUMMARY

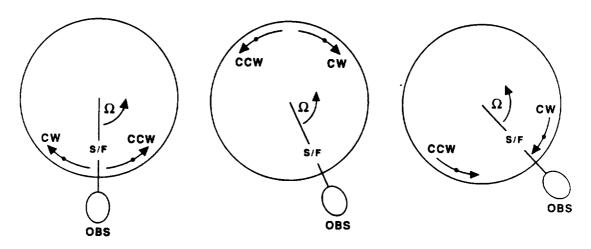
- NEED FOR NEW GENERATION TOOLS HAS HIT CRITICAL LEVEL
- NASA UNIQUELY QUALIFIED TO LEAD DEVELOPMENT OF NEW TOOL
- NASA HAS MADE SIGNIFICANT TECHNICAL PROGRESS IN KEY AREAS
 - FAST ALGORITHMS FOR HARDWARE-IN-THE-LOOP SIMULATION
 - NEW ANALYSIS WORKSTATION
- PRELIMINARY PROGRAM PLAN DEFINED
- NASA READY FOR PROGRAM START NOW

.

Overview

Background Material

- What is FORS?
- Why are we pursuing it?
- Brief history of FORS development
- FORS Engineering Model Development and Technology Transfer
 - Goal / Objectives / Assumptions
 - Schedule / Resources
 - Responsibilities
- Summary

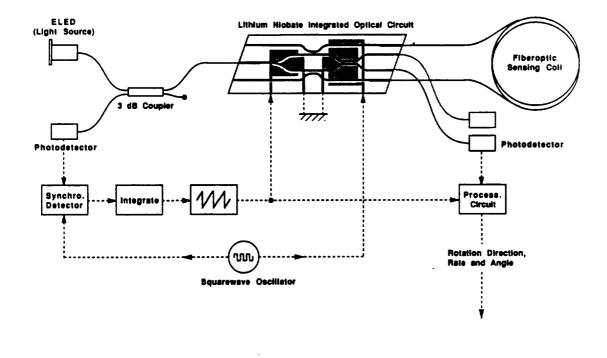

What is FORS?

- All solid state optical gyro, based on the Sagnac effect
- Unique (NASA patent #4,662,751) optical processing technique is used to convert gyro rotation rate into an optical beat frequency
 - Angular position is read by counting beats
- Implemented through the use of
 - Integrated optical circuits (AT&T Bell Labs, UTP)
 - Polarization-maintaining, low loss optical fiber
 - Semiconductor optical source, detectors operating at a wavelength of 1.3 μm

Note: Much of this technology is being developed by and for the telecommunications industry

FORS Principle of Operation - The Sagnac Effect

. .



Two light beams (CW and CCW) start at the same time but race in opposite directions around a waveguide. As the physical waveguide rotates, the attached "observer" (OBS) and the "start / finish line" (S/F) rotate with it ...

... Giving an "unfair advantage" to CW in the race for S/F: although it travels no faster than CCW, CW arrives at S/F first because of S/F's rotation.

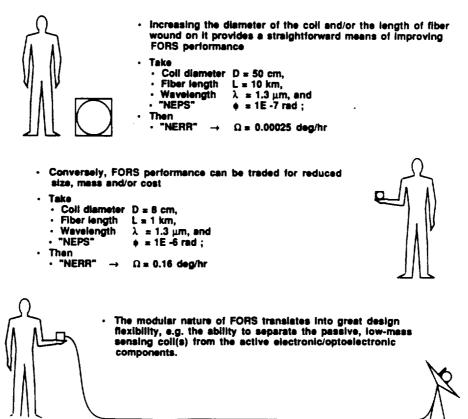
This "unfair advantage" manifests itself as a relative or "non-reciprocal" phase shift, Φ_g , between the CW and CCW beams. Suppose CW and CCW are light beams of wavelength λ and the waveguide is an optical fiber of length L wound on a spool of diameter D: then Φ_g is given by

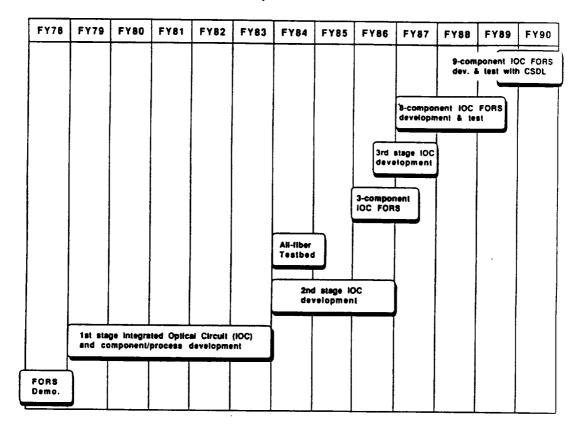
$$\Phi_{\rm s} = 2\pi \frac{LD}{\lambda c} \Omega$$
CG12-2

- Navigational grade performance with improved lifetime, power, mass, cost, availability, flexibility
- All solidstate strapdown rotation sensor
 - No moving parts
 - Modular construction

- Optoelectronic technology →
 - Leverage telecommunications industry investments
 - Non-obsolescent
 - Potentially expanded vendor base

Inertial Sensors Comparison DRIRU II vs. FORS

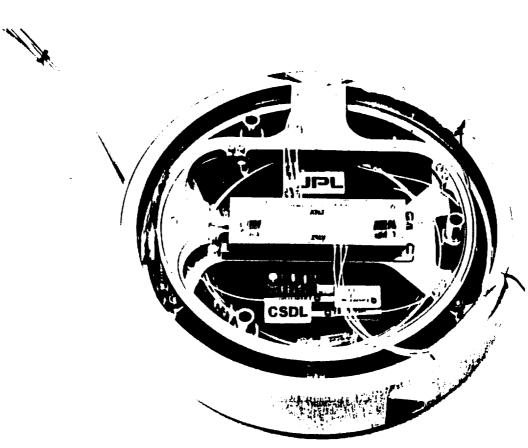

Characteristics	DRIRU II	FORS (equiv. perf.)		
 Long term drift Max. input rate Operational life Mass Power (low rate) Power (high rate) Unit cost 	\$ 2.1- \$ 3.5 M	< 0.003 deg/hr (goal) > 100 deg/s ≥ 12 years < 10 kg < 10 W < 10 W \$ 1.3 M		
- Auvantages of FOF	RS and their implications			
 Greater lifetime: Allows extended (continuous) gyro operation during mission. This simplifies mission planning and/or increases operational flexibility. 				


• Reduced mass:	Reduced launch cost (7 kg x \$ 100 K/kg) and/or increased science payload
Reduced power:	Reduced power system cost (13 W x \$ 80 K/W) and/or more power available for science payload

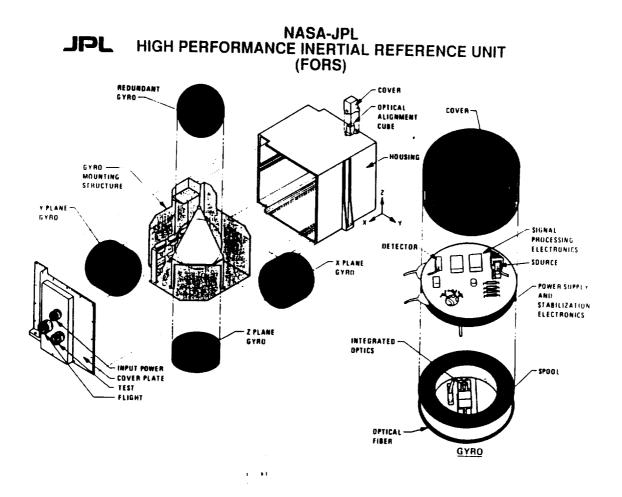
Lower unit cost: Reduced by \$ 0.8 M - \$ 2.2 M / IRU

. ..

FORS Scaling and Design Flexibility


FORS Development - FY78 to FY90

JPL / CSDL Cooperative Development Effort


- MOU / MOA between JPL and Charles Stark Draper Laboratory for cooperative development of JPL's FORS technology
 - Goal 1: Demonstrate FORS technology readiness for use on CRAF/Cassini
 - Goal 2: Develop and build first FORS EM and flight units
 - Goal 3: Transfer FORS technology to American industry

Key JPL/CSDL Accomplishments 1989 - 1991

- MOU / MOA between JPL / CSDL signed (8/89)
- JPL FORS technology transfer to CSDL
- Design, fabrication of 3 FORS brassboards
- Static & dynamic tests of brassboards
- IRU design / packaging studies initiated
- Successful FORS Technology Readiness Review (9/90)
- Additional funding commitments from Codes Q&R (~2/91)
- Preliminary review of FORS EM Development Plan (5/91)

CG12-6

FORS: Demonstrated "nav-grade" performance

<u>Time interval</u>	Pointing error reg.* (3σ)	Pointing error act. (3σ)
0.5 sec	2.3 μrad	0.15 µrad
100 sec	43 μrad	3.1 μrad
2 hours	0.5 mrad	0.5 mrad **

* CRAF / Cassini requirement

** Corresponds to rotation rate of 0.005°/hr

FORS Engineering Model Development Program

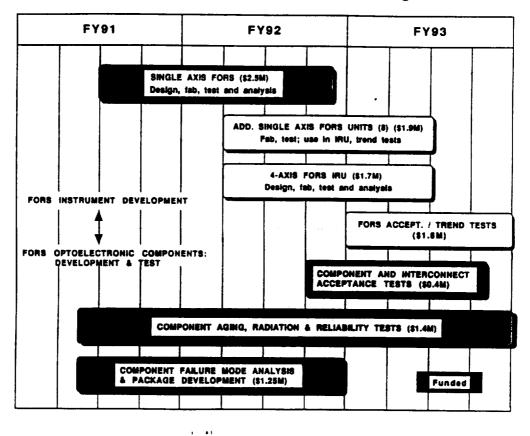
Goal

. ..

 Make available to NASA users a space-qualifiable Fiberoptic Rotation Sensor (FORS) Inertial Reference Unit (IRU)

.

- A FORS IRU will possess navigational grade performance and will offer significant advantages over current IRUs :
 - Improved lifetime
 - Lower power
 - Lower mass
 - Lower cost
 - Greater design flexibility


Objectives

- Develop, demonstrate engineering model* FORS four-axis IRU
 - Develop, demonstrate FORS single-axis EM
 - Develop, demonstrate flight-packaged, high reliability FORS optoelectronic components and interconnects
 - Fabricate additional single-axis FORS units
 Conduct reliability, acceptance & long-term trend tests
- Transfer FORS technology to industry
 - Multi-vendor base
- * Engineering model: Full flight functionality. Capable of being environmentally tested to flight environments. Same hardware, assembly techniques as flight hardware. Flight or nearly flight form factor.

Assumptions

- Time frame
 - Four-axis IRU EM by end of FY93

- Earliest users: AXAF, SIRTF, EOS, HST
- Funding
 - Total cost: \$ 10.7 M over FY91-93
 - Expected sources: NASA Codes Q, R, S(?), CSDL CSR
- One integrated program with two major activity areas
 - FORS instrument development ("system design")
 - FORS optoelectronic component development
- Cooperative effort with industry: JPL-led, industry-performed
 - FORS instrument: JPL / Charles Stark Draper Lab
 - FORS components: JPL / vendors

FORS Engineering Model Development Program

FORS Engineering Model Development Responsibilities Matrix

	JPL	CSDL	Vendors
FORS Instrument Development	 Overall management Mission / IRU reqs. Reliability / QA stds. Environmental test Full tech support 	 Instrument design Instrument fab Functional test Tech transfer Tech / mgt. support 	Indirect
FORS Optoelectronic Component Development	 Fallure modes Component reqs. Reliability / QA stds. Function / Env. tests Tech support 	 Component reqs. Functional tests Specific components Indirect 	 Fallure modes Comp. py= develop. Reliabilit 2A stds. Function nv. tests Mgt. support

Summary

- Why FORS?
 - 0.01-0.001°/hr gyro for space applications
 - Reduced mass, power, cost and increased lifetime, reliability, design flexibility vs. spinning mass gyros
- Successful development program to date
 - Brassboards designed, fabricated and under test
 - Demonstrated 0.005°/hr performance
- Proceeding with development of Engineering Models
 - JPL-led, industry-performed
 - Single-axis FORS EM by end of FY92
- Model for technology transfer
 - Multi-code funding (Codes R,Q,S)

. ...

• Joint effort with industry (CSDL, others)

.

PRECISION INSTRUMENT & TELESCOPE POINTING

OBSERVATION SYSTEMS PROGRAM AREA OF THE SPACE SCIENCE TECHNOLOGY PROGRAM

F. Hadaegh

F. Tolivar

Integrated Technology Plan for the Civil Space Program Review Tysons Corner, Virginia, June 24-28, 1991

> а • • •1 • •

PRECISION INSTRUMENT & TELESCOPE POINTING

AGENDA

- TECHNOLOGY NEEDS
 - APPLICATION THRUSTS
 - INSTRUMENT POINTING
 - TELESCOPES AND INTERFEROMETERS
- INTEGRATED TECHNOLOGY DEVELOPMENT PLAN
 - CHALLENGES
 - APPROACH
 - DEVELOPMENT PROGRAM
 - SCHEDULE
- RECOMMENDATIONS

TECHNOLOGY NEEDS

THE PRECISION INSTRUMENT & TELESCOPE POINTING PROGRAM WILL PROVIDE THE 1-2 ORDER-OF-MAGNITUDE INCREASE IN PRECISION POINTING CAPABILITY (IE, POINTING CONTROL, STABILITY, AND KNOWLEDGE) REQUIRED BY NUMEROUS OSSA FUTURE MISSIONS

ASTROPHYSICS MISSION

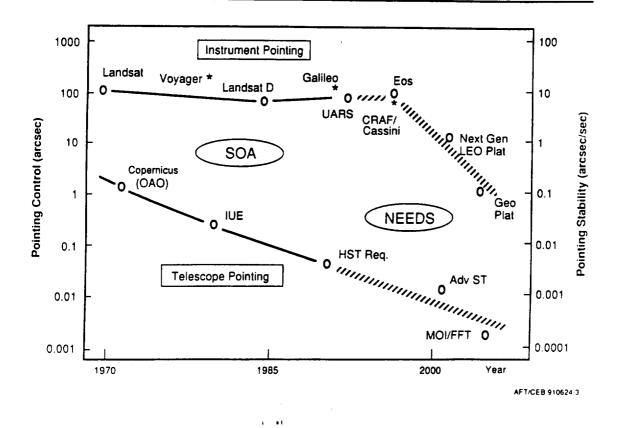
- Moderate Optical Interferometer (MOI)
- Imaging Interferometer (II)
- * Next Generation Space Telescope (ST-NG)
- * Large Deployable Reflector (LDR)
- Lunar Based Interferometers and Segmented Reflectors
- EARTH SCIENCE MISSIONS
 - Advanced LEO/GEO Instruments
- SOLAR SYSTEM EXPLORATION

.

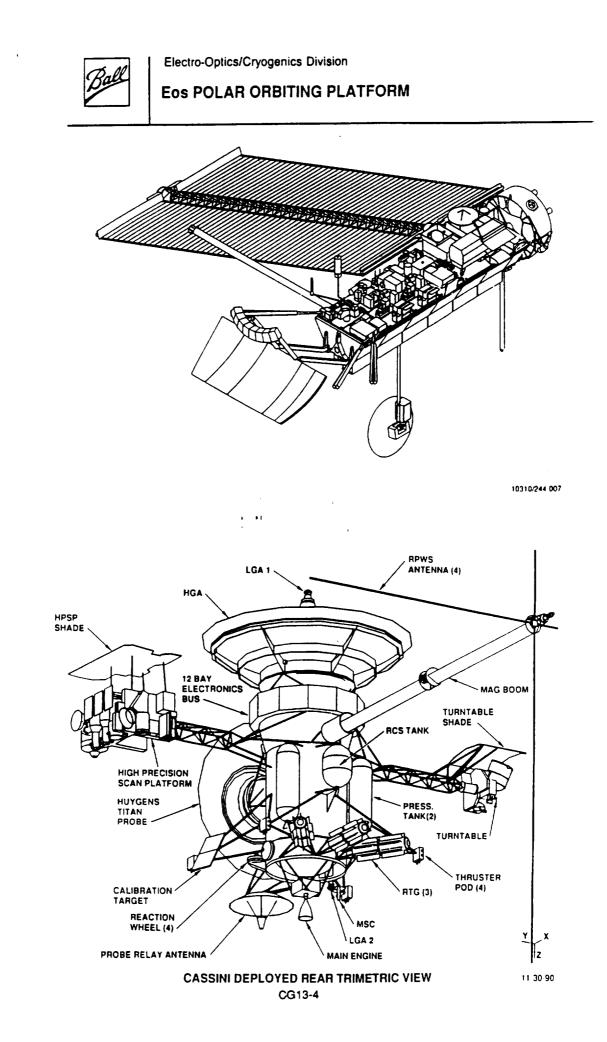
• Toward Other Planetary Systems (TOPS 1 & 2)

1 11

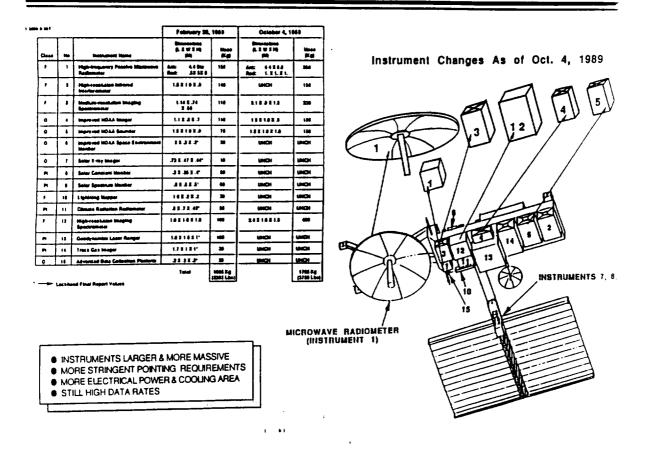
AFT 910624 2A


PRECISION INSTRUMENT & TELESCOPE POINTING

APPLICATION THRUSTS

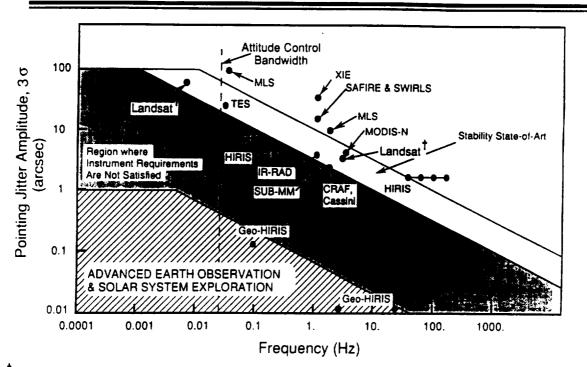


AFT 910624.2


POINTING NEEDS vs SOA

INSTRUMENT POINTING NEEDS

GEOPLAT

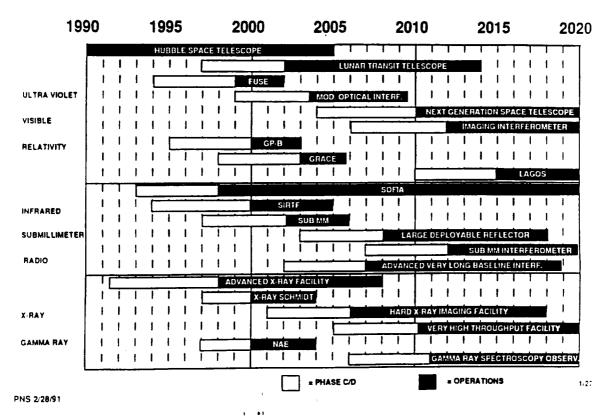


PRECISION INSTRUMENT & TELESCOPE POINTING

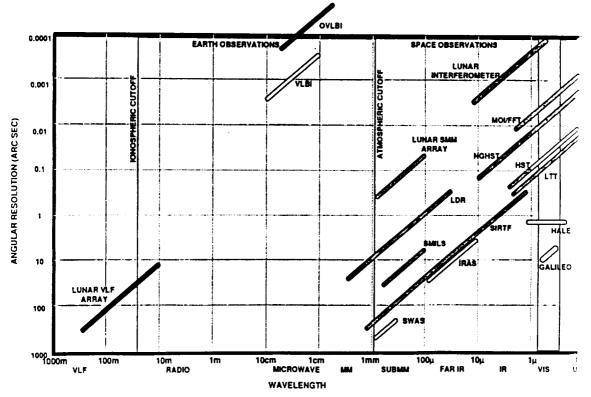
INSTRUMENT POINTING TECHNOLOGY REQUIREMENTS vs SOA

	EOS, C/C STATE-OF-ART (1991) LEO (1 arcsec = 3 m)	ADVANCED EOS/GEOPLA LEO (1 arcsec = 3 m)	T/SOLAR SYS EXPL NEEDS GEO (1 arcsec = 160m)
PIXEL SIZE	30 m	3 m	30 m
POINTING TECHNOLOGY	Core Attitude//*av ReferencePrecision Trackers & GPSStatic StructureActive Structure AlignmentFixed Instrument MountsPrecision Pointing and IsolationPre-launch AlignmentOn-board Attitude Transfer SystLimited Autonomy/ServicingExtensive Autonomy		ment d Isolation
CONTROL 3 0	108 arcsec	10 arcsec	1 arcsec
KNOWLEDGE 3 a	50 arcsec	5 arcsec	0.5 arcsec
STABILITY 3 o	100 arcsec/100 sec 10 arcsec/1 sec 1 arcsec/0.01 sec	10 arcsec/100 sec 1 arcsec/1 sec 0.1 arcsec/0.01 sec	1 arcsec/100 sec 0.1 arcsec/1 sec 0.01 arcsec/0.01 sec
DATASET COREGISTRATION	Via Ground Processing of Image Data	Via On-board Boresigi	nt Alignment Sensing
	Registration to $\frac{1}{4}$ Pixel Best Case	Autonomous Registri	ation to 1 Pixel

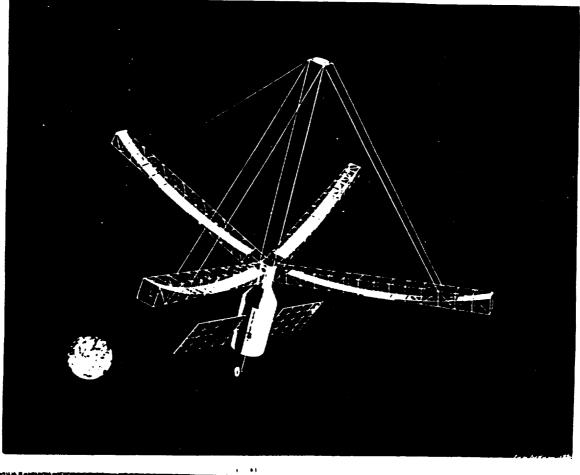
INSTRUMENT POINTING STABILITY STATE-OF-THE-ART vs FUTURE NEEDS

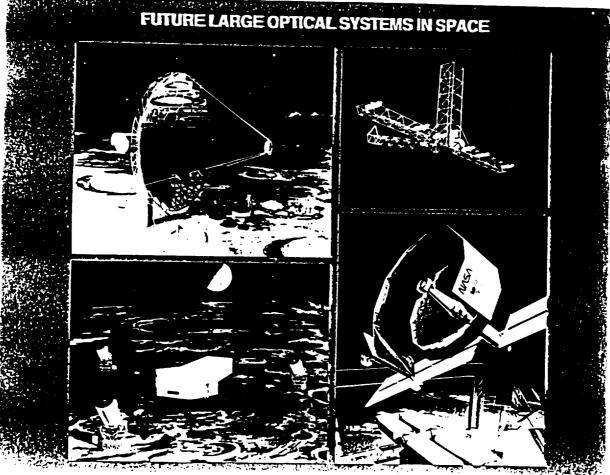

. ..

[†] Sudley, J. and J.R. Schulman, "In-Orbit Measurements of LANDSAT-4 Thematic Mapper Dynamic Disturbances," NASA/Goddard Space Flight Center.


AFT/CEB 910624-6

TELESCOPE & INTERFEROMETER POINTING NEEDS


NEXT CENTURY ASTROPHYSICS PROGRAM: CANDIDATE MAJOR AND MODERATE MISSIONS: 1995 - 2020 (FOR TECHNOLOGY PLANNING PURPOSES)



ANGULAR RESOLUTION VERSUS WAVELENGTH FOR FUTURE ASTRONOMICAL SPACE INSTRUMENTS

CG13-7

CG13-8

PRECISION INSTRUMENT & TELESCOPE POINTING MISSION REQUIREMENTS

MISSION	TECHNOLOGY FREEZE DATE	APERTURE/ BASELINE	POINTING ACCURACY	POINTING STABILITY	MISSION DURATION
NGST	2004	10 m	50 nrad	5 nrad	15 YEARS
LTT	1995	2 m	TBD	TBD	10 YEARS
LAGOS	2009	10 ⁷ km	TBD	0.3 prad	10 YEARS
MOI	1997	20 m	0.3 nrad	0.3 nrad	5 YEARS
SIRTF	1994	1 m	300 nrad	300 nrad	3 YEARS
LDR	2006	20 m	250 nrad	125 nrad	10 YEARS
NGOVLBI	2000	TBD	500 nrad	500 nrad	10 YEARS
FFT	1997	30 m	0.8 nrad	0.8 nrad	10 YEARS
SMMM	1996	3.65 m	2.5 mrad	1.25 mrad	2 YEARS
FUSE	1993	1 m	2.5 nrad	1.25 nrad	4 YEARS
SMMI	2006	t km	TBD	TBD	10 YEARS
LI	2003	10 km	TBD	TBD	10 YEARS
HXIF	1999	TBD	TBD	TBD	10 YEARS
			T		AFT/GES 910624-8
		• • • I			

PRECISION INSTRUMENT & TELESCOPE POINTING INTEGRATED TECHNOLOGY DEVELOPMENT PLAN

• INCREASE SPACE BASED TELESCOPE POINTING CAPABILITY BY 1-ORDER OF MAGNITUDE BEYOND HST

- 10 FOLD IMPROVEMENT IN PRECISION/STABILITY
- · PROVIDE NEW CAPABILITIES FOR LINE-OF-SIGHT TRASFER,
- TELESCOPE NODDING AND MULTI-APERTURE POINTING

INCREASE REMOTE SENSING INSTRUMENT POINTING CAPABILITY BY 2-ORDERS OF MAGNITUDE

- 100 FOLD IMPROVEMENT IN PRECISION/STABILITY
- INCREASE SCIENCE THROUGHPUT AND OPERATIONAL EFFICIENCY VIA ON-BOARD POINTING AUTOMATION
- PROVIDE NEW CAPABILITIES IN TARGET REFERENCED POINTING, ATTITUDE TRANSFER AND INSTRUMENT CO-BORESIGHTING

INCREASE RELIABILITY, LIFETIME AND EFFICIENCY OF POINTING COMPONENTS

• 3 FOLD IMPROVEMENT IN RELIABILITY AND LIFE OF CRITICAL COMPONENTS

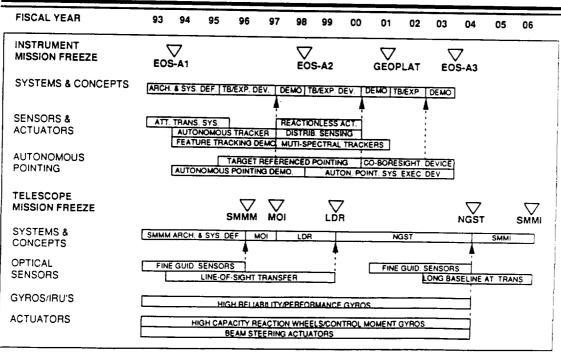
. ..

AFT 910624 10

PRECISION INSTRUMENT & TELESCOPE POINTING

TECHNOLOGY DEVELOPMENT APPROACH

- FOCUSED DEVELOPMENT OF
 - ADVANCED POINTING SYSTEM ARCHITECTURE
 - SENSOR AND ACTUATOR BRASSBOARDS
 - HARDWARE AND SOFTWARE TESTBED DEMONSTRATIONS
- COORDINATE PLANNING AND IMPLEMENTATION WITH OSSA ADVANCED DEVELOPMENT


TECHNOLOGY DEVELOPMENT PROGRAM

INSTRUMENTS TELESCOPES · SENSORS/ACTUATORS · ADVANCED OPTICAL SENSORS - EXTENDED IMAGE/FEATURE TRACKERS - FINE GUIDANCE SENSORS AUTONOMOUS STAR TRACKERS AUTONOMOUS STAR TRACKERS - ATTITUDE TRANSFER SYSTEMS - LINE-OF-SIGHT TRANSFER SYSTEMS - REACTIONLESS ACTUATORS - IMAGE MOTION COMPENSATION INERTIAL ROTATION SENSORS/IRU'S TARGET-REFERENCED POINTING TRACKING - EARTH/FEATURE BASED - EARTH COORDINATES (LONGITUDE/LATITUDE) PRECISION ACTUATORS - SUPERQUIET HIGH-CAPACITY REACTION WHEELS AND CONTROL MOMENT GYROS INSTRUMENT CO-BORESIGHTING MOMENTUM COMPENSATED POINTING · MULTIPLE INSTRUMENTS BEAM STEERING DEVICES - MULTI-SPECTRAL IMAGE REGISTRATION · SYSTEM DESIGN, ANALYSIS, INTEGRATION AND AUTONOMOUS POINTING EXECUTIVE TESTING - HIGH LEVEL COMMAND CAPABILITY ON-BOARD SEQUENCE GENERATION/EXECUTION SEQUENCE INTERRUPT/RESTART · SYSTEMS DESIGN, ANALYSIS, INTEGRATION, AND TESTING

AFT 910624 12

PRECISION INSTRUMENT & TELESCOPE POINTING

SCHEDULE

RECOMMENDATIONS

- PROCEED WITH PROGRAM PLANNING AT 10-12 M\$/YEAR LEVEL
- CONTINUE STRONG COORDINATION BETWEEN TECHNOLOGY DEVELOPERS AND USERS
 - FORM INTERCENTER TECHNOLOGY DEVELOPERS AND USERS WORKING GROUP
 - REVIEW OF GOVERNMENT/INDUSTRY CAPABILITIES
 - OSSA UPDATE OF MISSION REQUIREMENTS

1 11

 START EARLY (i.e., FY 93) TO INSURE AVAILABILITY OF TECHNOLOGY PRODUCTS TO NEAR TERM USERS (i.e., EOS, SMMM, and MOI)

AFT 910624 14

ŧ

APPENDIX

						· Sk	
NAME	HUBBLE SPACE TELESCOPE	LUNAR TRANSIT TELESCOPE	MODERATE OPTICAL INTER- FEROMETER	NEXT GENERATION HST	LUNAR IMAGING INTER- FEROMETER	FILLED FIZEAU TELESCOPE	LAGOS
LOCATION	LOW EARTH ORBIT	MOON	900 KM Earth Orbit	EARTH ORBIT OR MOON	MOON	900 KM EARTH ORBIT	SOLAR ORBIT AT L5 POINT
MISSION DURATION	15 YEARS WITH SERVICING	10 YEARS	5-10 YEARS	15 YEARS	10 YEARS	10 YEARS	10 YEARS
WAVELENGTH	0.1 - 1 MICRON (2.5 MICRON WITH UPGRADE)	0.1 - 2.5 MICRONS	0.1 - 2.5 MICRONS	0.1 - 10 Microns	0.1 - 10 MICRONS	0.1 - 1 MICRON	<< 1 Hz GRAVITY 1.6 MICRON SENSOR
APERTURE SIZE	2.4 M	1 - 2 M	50 CM APERTURES 10 - 30 M BASELINE	10 - 16 M	I.5 M APERTURES 1 KM BASELINE	30 M CROSS, DILUTE APERTURE	30 CM APERTURE 10 ⁷ KM BASELINE
OPTICS TEMPERATURE PNS 2/28/91	AMBIENT	100 K	AMBIENT	< 100 K	AMBIENT	AMBIENT	ULTRA STABLE

IR-SUBMM-RADIO MISSIONS

						· · · ·	
NAME	SOFIA	SIRTF	SMILS	LARGE DEPLOYABLE REFLECTOR	LUNAR SMM INTER- FEROMETER	ADVANCED ORBITING VLBI	
	C 141 AIRCRAFT	HIGH EARTH ORBIT	70,000 X 1,000 KM EARTH ORBIT	100,000 KM EARTH ORBIT	MOON	HIGHLY ELLIPTICAL EARTH ORBIT AND EARTH	
MISSION DURATION	10 YEARS	3 - 6 YEARS	2 - 4 YEARS	10 - 15 YEARS	10 YEARS	10- YEARS	
WAVELENGTH	IR THROUGH SUBMILLIMETER	1.4 - 1200 MICRONS	100 - 800 MICRONS	30 -3000 MICRONS	100 - 800 MICRONS	3 CM - 1.5 MM	
APERTURE SIZE	2.5 M	1 M	3.6 M	10 - 20 M	4-5 M APERTURES 1 KM BASELINE	25 M	
OPTICS TEMPERATURE	AMBIENT		AMBIENT	AMBIENT	AMBIENT	AMBIENT	

X-RAY, γ -RAY MISSIONS

			- All and a second		e ¹ .	1	1
NAME	AXAF	NUCLEAR ASTROPHYSICS EXPLORER	HARD X-RAY IMAGING FACILITY	VERY HIGH THROUGHPUT FACILITY	GAMMA RAY SPECTROSCOPY OBSERVATORY		
LOCATION	600 KM EARTH ORBIT	LOW EARTH ORBIT	SPACE STATION ATTACHED OR FREE FLYER	MOON	MOON		
MISSION DURATION	15 YEARS WITH SERVICING	2 -4 YEARS	10 YEARS	20 YEARS	10 YEARS		
WAVELENGTH	0.09 - 10 KeV	10 KeV - 10 MeV	20 KeV - 2 MeV	0.15 - 40 KeV	10 KeV - 10 MeV		-
APERTURE SIZE	1,700 CM ² GRAZING INCIDENCE MIRRORS	325 CM ² AREA, 2600 CM ³ VOLUME	20 X 20 M, 30 M ² CODED APERTURE	20 X20 M 30 M ² GRAZING INCIDENCE	1000 CM ² AREA 7640 CM ³ VOLUME		
OPTICS TEMPERATURE PNS 2/28/91	AMBIENT	AMBIENT	AMBIENT	AMBIENT			

誰

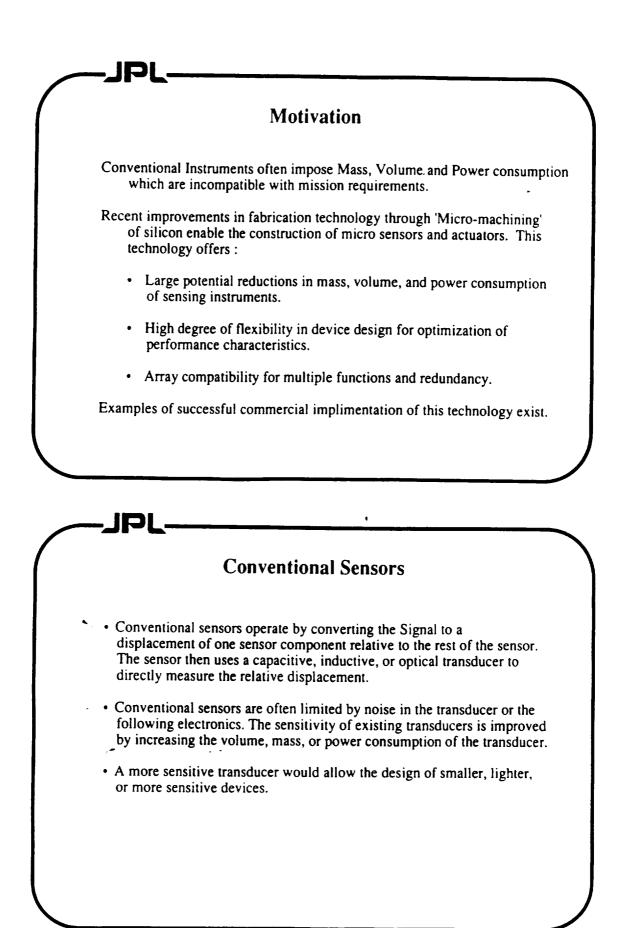
W.J. Kaiser and T.W. Kenny

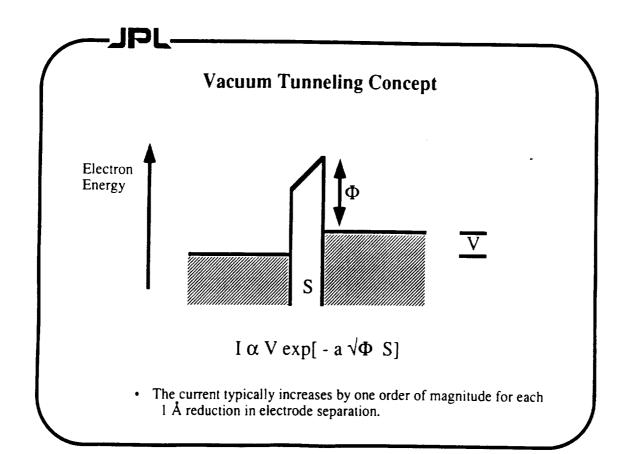
Center for Space Microelectronics Technology Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109

Outline

Motivation for work on Micro-sensors and Micro-instruments.

Some examples of miniature sensors for in-situ measurements.

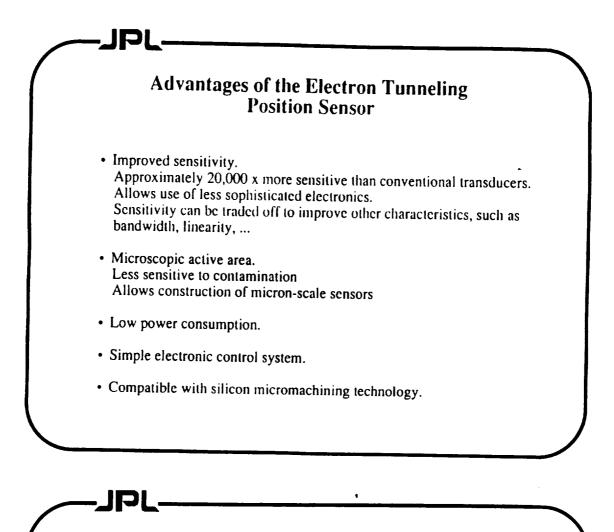

Research and development of the Electron Tunneling Sensor.


Application to Infrared Detection.

Conclusions

D

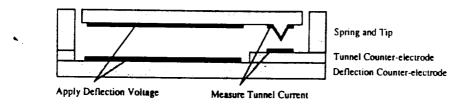
JP



Transducer Sensitivity Comparison

JPL

Transducer Type	. Capacitive	Tunneling
Active Area	10 μm x 10 μm	10 Å x 10 Å
Electrode Separation	1 μm	5 Å
Bias Voltage	1 Volt	100 mV
Measurement Frequency	200 kHz	DC - 10 MHz
Measurement Current	1.1 nA	1 nA
1 % Transducer Signal	90 Å	0.004 Å

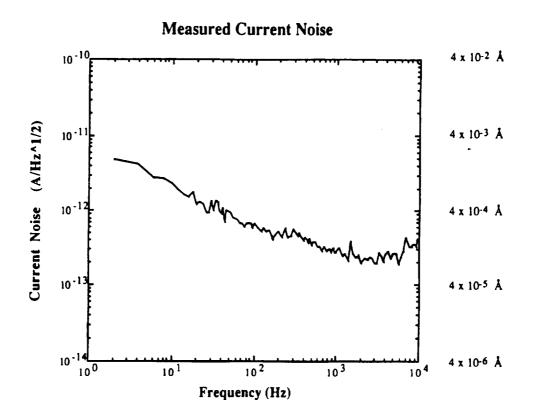

Tunnel Sensor Prototypes

- Piezoelectric bimorph as actuator with gold film and wire as tunneling electrodes. Featured sensitivity of ~ 10⁻⁵ g. Demonstrated use of tunneling as displacement transducer in a useful device. Suffered from temperature sensitivity and complicated fabrication.
- Large micromachined folded cantilever with electrostatic deflection to control separation and indium tip for tunneling. First demonstration of
 - electrostatic deflection in a tunneling device.
- Small micromachined cantilevers with integral tips for use as generic transducer components. Characterization as accelerometer gives sensitivity of 10⁻⁸ g/ √11z at 1 kHz. Use in broad class of sensors under investigation.

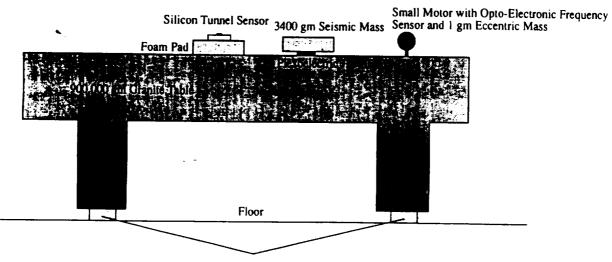
Micromachining Process

Grow thin oxide of both surfaces of double-polished (100) wafer
Spin on resist
Copy mask onto resist
Etch oxide through mask
Etch wafer

Tunnel Sensor Operation

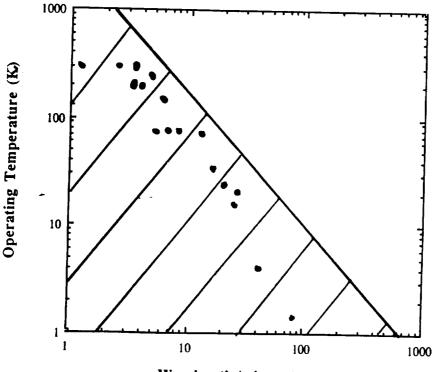


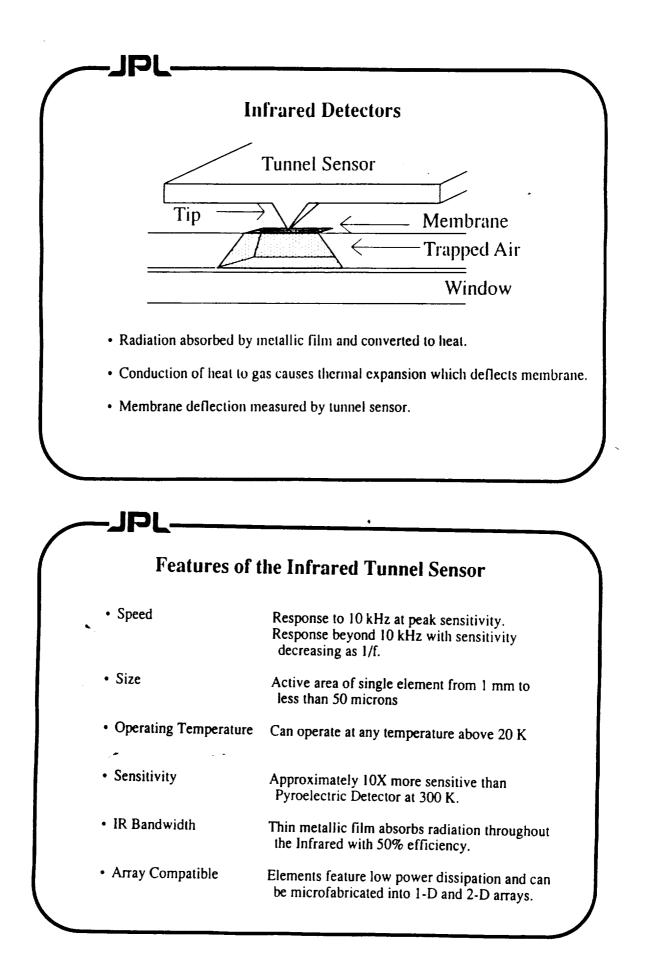
• Apply a deflection voltage until tunnel current appears.

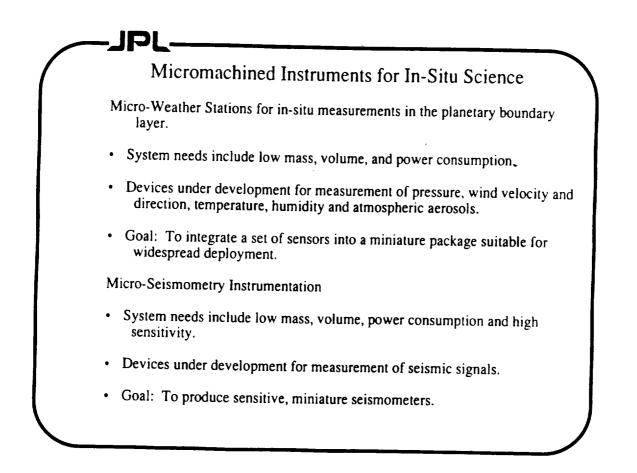

.

• Activate Feedback Loop to maintain constant tunnel current

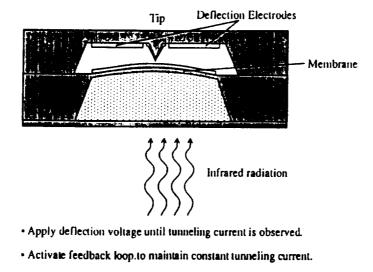
• If device experiences acceleration, spring will flex, producing a change in tunnel current.

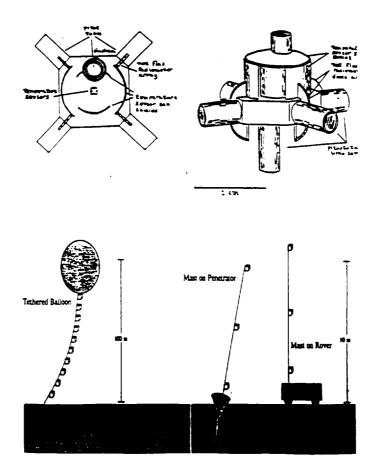

Accelerometer Demonstration


Aluminum Blocks



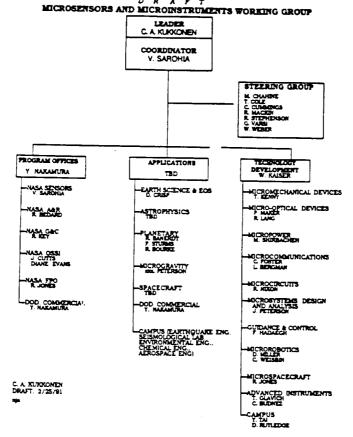
Operating ranges of Quantum IR Detectors


Wavelength (microns)


Plans : Infrared Sensor

The improved sensor is operated in the following manner :

 If radiation is applied, feedback loop applies correction to deflection electrodes. <u>Yariations in deflection voltage are processed as signal.</u>


- Micro Weather Stations for in-situ measurements in the Martian planetary boundary layer (PBL)
 - System need: Compact, low mass and low power stations for widely distributed measurements of PBL meteorology
 - Devices currently under development for measurement of pressure, temperature, wind velocity and direction, humidity, and atmospheric aerosols.
 - Low power instrument, on-board processor.
 - Development directed to fabrication of sensors for initial testing in environmental chamber
- Micro seismometry instrumentation.
 - System needs: Compact, low mass, and low power seismometers for wide distribution.
 - Currently available seismometer systems are excessively
 massive. (Approximately 4kg per measurement axis).
 - Develop compact, single crystal silicon seismometer system.
 - Extend current technology to include active electronic suspension of seismometer elements.

CG14-10

Micromachined Sensors, Actuators, and Instrument Examples

		Applications
Micro in	nstruments for meteorology	In-situ monitoring
•	Temperature	
0		
0	Wind Velocity	
ò	Humidity	
٥	Pressure Wind Velocity Humidity Aerosol detection	
Micro i <i>r</i>	mertial guidance and control	Compact vehicle nevigation
Micro se	ishoneters	Planetary science Resource mapping Wide sensor deployment
Compact instrume	analytical spectroscopy nts for in-situ science	Photoemission Auger SEM
Micro in	struments for gas monitoring	In-situ measurements Environmental monitorin Planetary in-situ scien
ir/vis/u	v sensors and instruments	Infrared imaging Atmospheric science In-situ monitoring
Micro op	tical systems	Compact spectrometers Gas detection In-situ monitoring
	communication systems	Hulti-node rf

MICRO GUIDANCE & CONTROL INITIATIVE

Fred Y. Hadaegh

June 27, 1991

SSTAC ITP - OAET/RC

Ċ. I

JPL

۰.

.

MICRO GUIDANCE & CONTROL TECHNOLOGY INITIATIVE

TOPICS

OVERALL PURPOSE AND OBJECTIVES MICRO G&C APPLICATION PAYOFFS SELECTED TASK THEMES & TECHNOLOGIES TECHNOLOGY DEVELOPMENT PLAN SUMMARY ISSUES

MICRO GUIDANCE & CONTROL TECHNOLOGY

APPLICATIONS

THE APPLICATION NEEDS FOR FUTURE SPACE SYSTEMS HAVE BEEN IDENTIFIED AS FOLLOWS:

· NEW GUIDANCE AND CONTROL CAPABILITIES

- DISTRIBUTED MICRO-SENSOR SYSTEM IDENTIFICATION
- MULTIVARIABLE CONTROL OF STRUCTURAL DYNAMICS
- DISTRIBUTED SHAPE & POSITION CONTROL OF MIRROR ARRAYS
- EMBEDDED STABILIZATION OF TELESCOPE & INSTRUMENT OPTICS
- DISTRIBUTED MICRO-INTERTIAL REFERENCES
- EMBEDDED HEALTH MONITORING OF G&C EFFECTORS

TYPICAL APPLICATION: REMOTE SENSING PLATFORMS, INTERFEROMETERS & DEPLOYABLE REFLECTORS

•MINIATURIZE EXISTING CAPABILITIES

- ATTITUDE & MANEUVER CONTROL SYSTEM
- MICRO-INERTIAL REFERENCES
- MICROELECTRO-OPTICS FOR MINIATURE CAMERAS & REMOTE SENSORS
- INERTIAL NAVIGATION SYSTEMS
- HEADING REFERENCE UNITS
- MINI-CAMERA POINTING & STABILIZATION
- ANTENNA POINTING & STABILIZATION

TYPICAL APPLICATION: MICRO-SPACECRAFT, MICRO-LANDERS, MICRO-ROVERS

MICRO GUIDANCE & CONTROL TECHNOLOGY

- OVERALL PURPOSE: DEVELOP NEW MICRO-MINIATURIZED G&C SYSTEM ARCHITECTURES AND FUNCTIONS THAT MEET THE NEEDS OF FUTURE SPACE SYSTEMS
 - CONDUCT ADVANCED DEVELOPMENT THROUGH PROOF-OF-CONCEPT DEMONSTRATIONS
 - TRANSFER NEW TECHNOLOGIES TO NASA ADVANCED DEVELOPMENT SPACE PROGRAMS
- KEY OBJECTIVES: DEVELOP THE G&C MICRO-SENSING, COMPUTATION, AND CONTROL ARCHITECTURES AND FUNCTIONS THAT WILL ENABLE:
 - 100/1 OR MORE REDUCTION IN SIZE, MASS, AND POWER
 - 10/1 OR MORE RECURRING COST REDUCTION AND LOWER COST GROWTH RATES
 - SOLID STATE RELIABILITY AND REDUCED PERFORMANCE RISK
 - ROBUST PERFORMANCE OVER TEMPERATURE, VIBRATION, RADIATION
 - EMBEDDED HEALTH MONITORING
 - VIABLE DISTRIBUTED FAULT TOLERANT G&C ARCHITECTURES

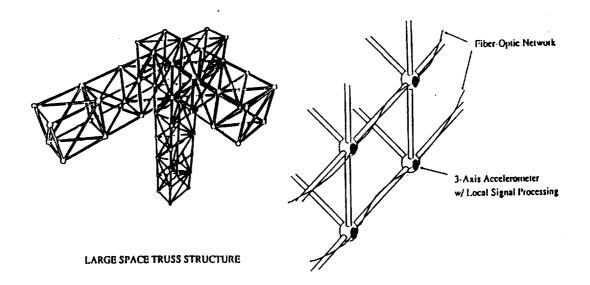
MICRO GUIDANCE & CONTROL TECHNOLOGY INITIATIVE

PAYOFFS

- 100/1 OR MORE REDUCTION IN SIZE, MASS, AND POWER
- 10/1 OR MORE RECURRING COST REDUCTION AND LOWER COST GROWTH RATES
- SOLID STATE RELIABILITY AND REDUCED PERFORMANCE RISK
- ROBUST PERFORMANCE OVER TEMPERATURE, VIBRATION, RADIATION
- EMBEDDED HEALTH MONITORING
- VIABLE DISTRIBUTED FAULT TOLERANT G&C ARCHITECTURES
- MASSIVELY DISTRIBUTED CONTROL CAPABILITY

MICRO GUIDANCE & CONTROL TECHNOLOGY

SELECTED TASK THEMES


MAJOR ADVANCES IN MICRO G & C WILL BE INCORPORATED IN DEVELOPMENT PRODUCTS PLANNED UNDER SIX TASK THEMES:

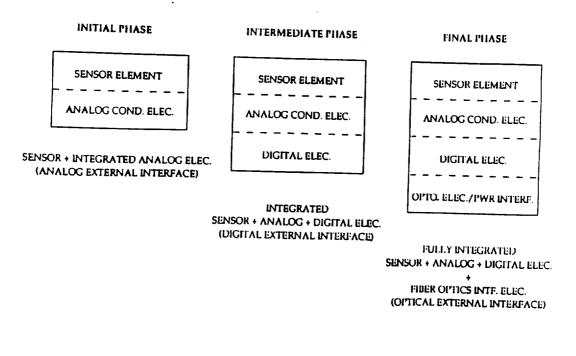
- MASSIVELY DISTRIBUTED MICROSENSING FOR SYSTEM ID & CONTROL TO ENABLE SPACE INTERFEROMETERS/LARGE REFLECTORS
- LIGHT POWERED REMOTE PROCESSING NETWORK FOR G&C MICROSENSING TO ENABLE VIABLE DISTRIBUTED ID/CONTROL ARCHITECTURES
- MICRO G&C FOR MICRO-SPACECRAFT AND MICRO-ROVERS TO PROVIDE ESSENTIAL SYSTEM FUNCTIONS
- SIX-DEGREE-OF-FREEDOM MICRO-INERTIAL MEASUREMENT UNIT FOR MICRO-SPACECRAFT AND MICRO-ROVERS TO ENABLE G&C NAVIGATION SUBSYSTEMS
- ACTIVELY CONTROLLED MICROMACHINED DEFORMABLE MIRRORS FOR ADAPTIVE REFLECTORS TO PROVIDE OPTICAL PERFORMANCE NOT OTHERWISE FEASIBLE
- EMBEDDED HEALTH SENSING FOR G&C EFFECTORS TO PREDICT/MANAGE MISSION EFFECTIVENESS & LIFETIME


3-AXIS LIGHT POWERED SENSING SYSTEM

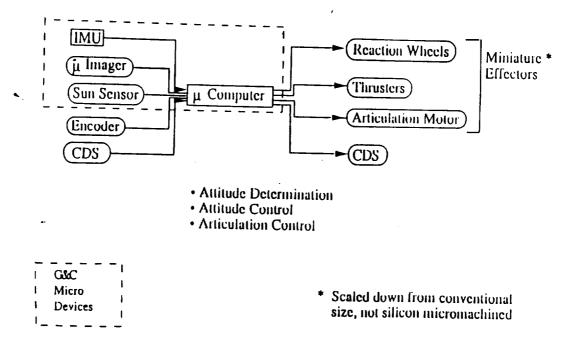
ENABLES

MASSIVELY DISTRIBUTED SENSING FOR I/D CONTROL

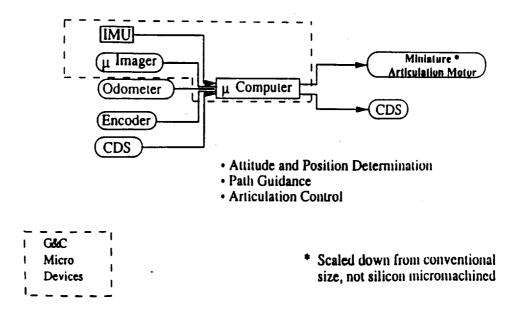
FYH

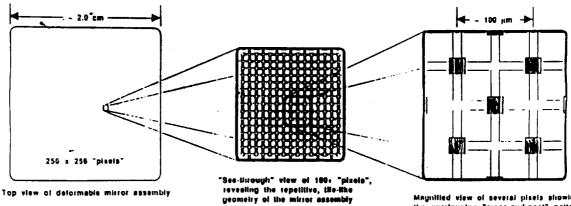

REMOTE SIGNAL PROCESSOR FOR MOTION SENSORS

FEATURES:

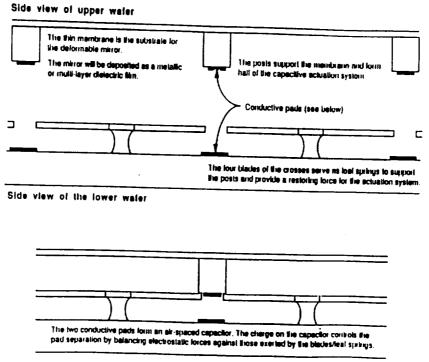

- 1. Single chip implementation
- 2. Programmable measurement • Resulution, gain, offset
- 3. Low power, <10 us for most measurements

MASSIVELY DISTRIBUTED MICRO SENSING FOR ID/CONTROL

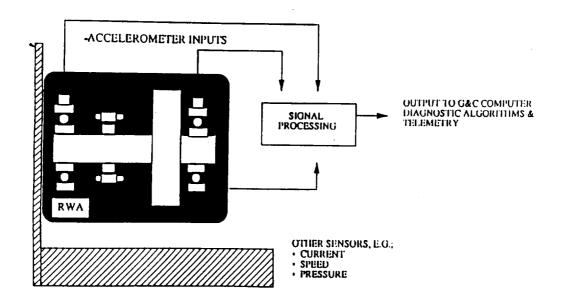

REMOTE PROCESSING NETWORK/STRUCTURE PHASED INTEGRATION AND TEST


MICRO-SPACECRAFT G&C

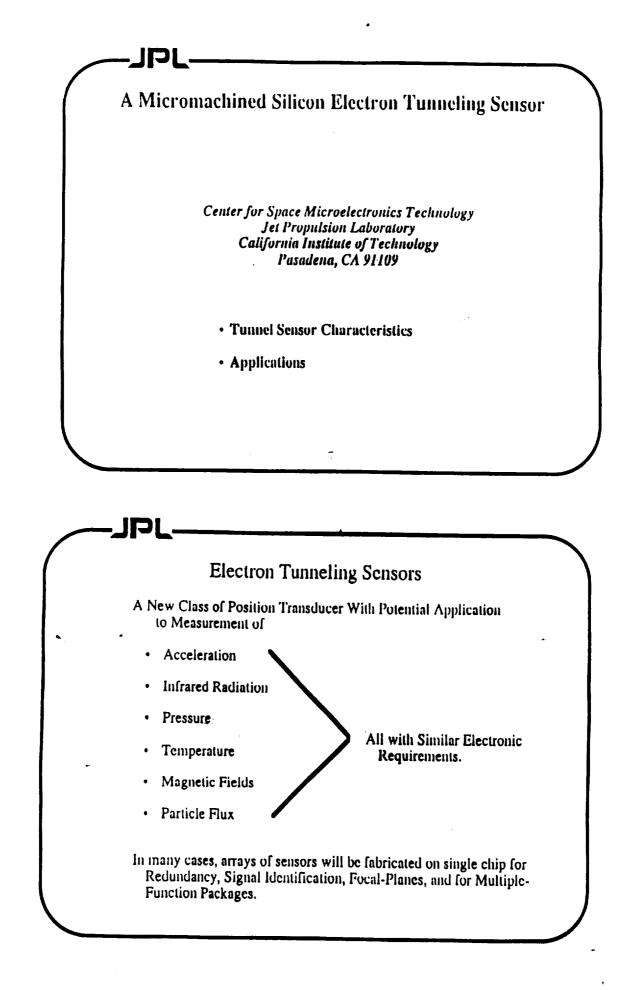
MICRO-ROVER G&C

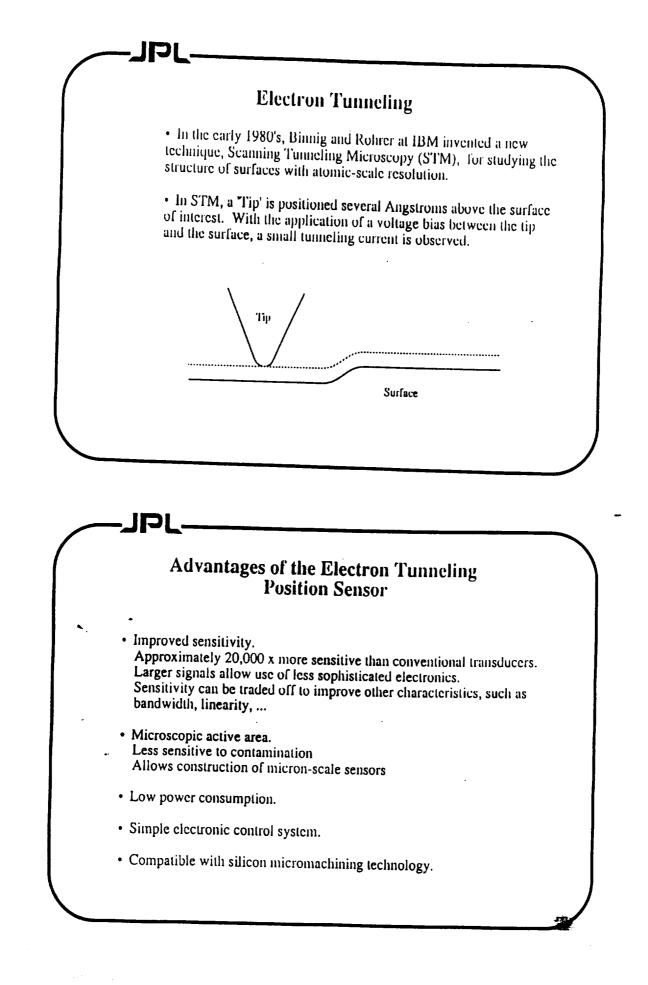

Micromachined Deformable Mirror

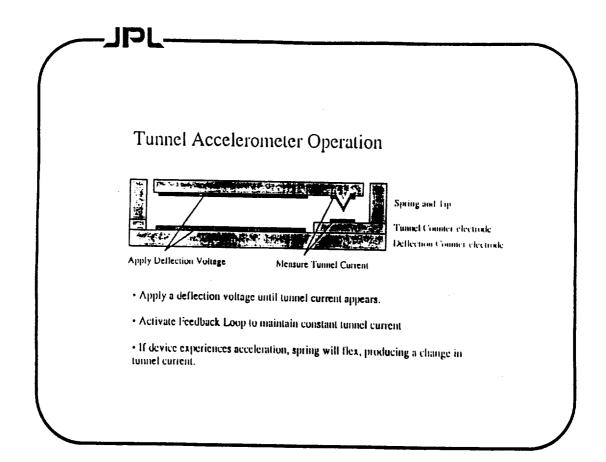
Assembly consists of two micromactilined silicon waters mounted face-to-face and bonded together around their peripheries

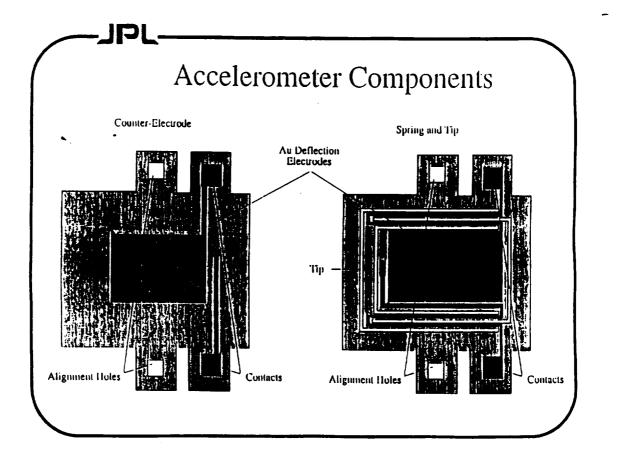

Magnified view of several pixels showing the overlapping "cross-and-post" pattern of the actuator / mirror support structure

Micromachined Deformable Mirror




Side view of the mirror assembly


EMBEDDED HEALTH MONITORING OF G&C EFFECTORS

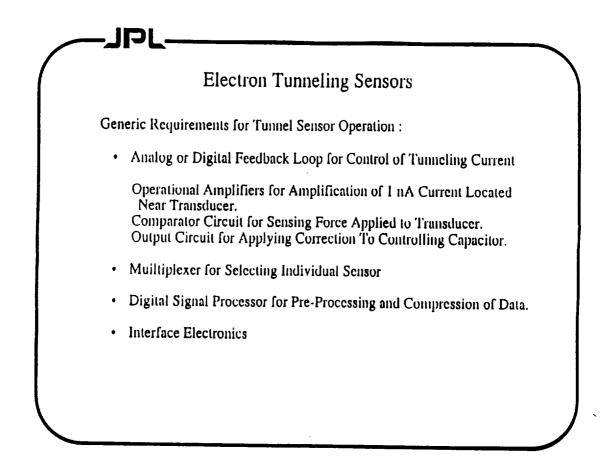


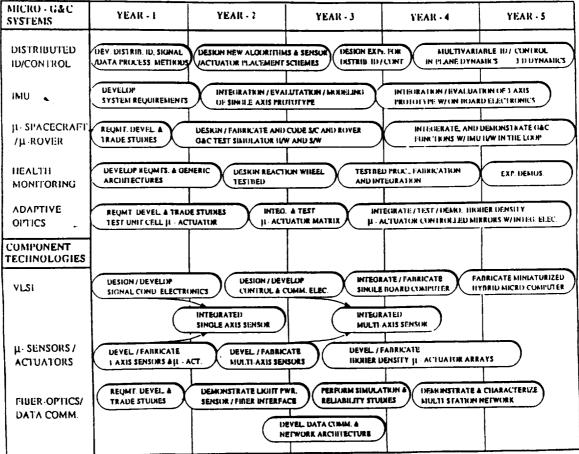
Reaction Wheel Test Bed

ORIGINAL PAGE IS OF POOR QUALITY

Transducer Sensitivity Comparison

Transducer Type	Capacitive	Tunneling
Active Area	10 µm x 10 µm	10 Å x 10 Å
Electrode Separation	1 µm	5 Å
Bias Voltage	1 Volt	100 mV
Measurement Frequency	200 kHz	DC - 10 MHz
Measurement Current	1.1 nA	1 nA
1 % Transducer Signal	90 Å	0.004 Å


Electron Tunneling Sensors


Present Proof-of Concept demonstrations rely upon off-chip electronics for simplicity and ease of modification.

Future completed devices will require integration of sensor and electronics.

Use of micromachined silicon for sensor structure will allow integration of sensor and electronics in the same silicon crystal.

Integrated sensors will be important for a broad class of NASA applications and will be candidates for technology transfer to industry.

MICRO-G&C TECHNOLOGY DEVELOPMENT PLAN

CG15-12

•.

.

SUMMARY

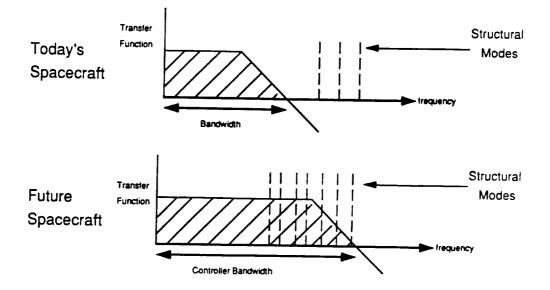
THIS INITIATIVE IS PLANNED TO:

- DEVELOP MICRO-G&C TECHNOLOGIES THAT MEET THE NEEDS OF FUTURE SPACE SYSTEMS
- ENABLE NEW CAPABILITY IN DISTRIBUTED CONTROL
- MAJOR REDUCTION IN G&C MASS, SIZE, POWER, PERFORMANCE RISKS, COSTS AND COST GROWTH
- HAVE SELECTED TASK THEMES WITH TIME-PHASED DEVELOPMENT PRODUCTS OVER FIVE YEARS
- HAVE TASKS AND PRODUCTS THAT ARE SYNERGISTIC IN SUPPORTING NEW G&C SYSTEM FUNCTIONS AND ARCHITECTURES

--

.

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM


CONTROLS-STRUCTURES INTERACTION (CSI) TECHNOLOGY PROGRAM SUMMARY

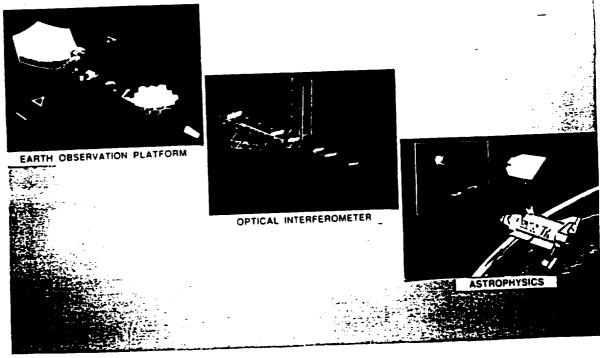
EARTH ORBITING PLATFORMS PROGRAM AREA OF THE SPACE PLATFORMS TECHNOLOGY PROGRAM

Jerry R. Newsom NASA LaRC June 26, 1991

CONTROLS- STRUCTURES INTERACTION

CSI technology embraces the understanding of the interaction between the spacecraft structure and the control system, and the creation and validation of concepts, techniques and tools for enabling the interdisciplinary <u>design</u> of an integrated structure and control system, rather than the <u>integration</u> of a structural design and a control system design. (SSTAC 1987)

CONTROLS-STRUCTURES INTERACTION (CSI) TECHNOLOGY

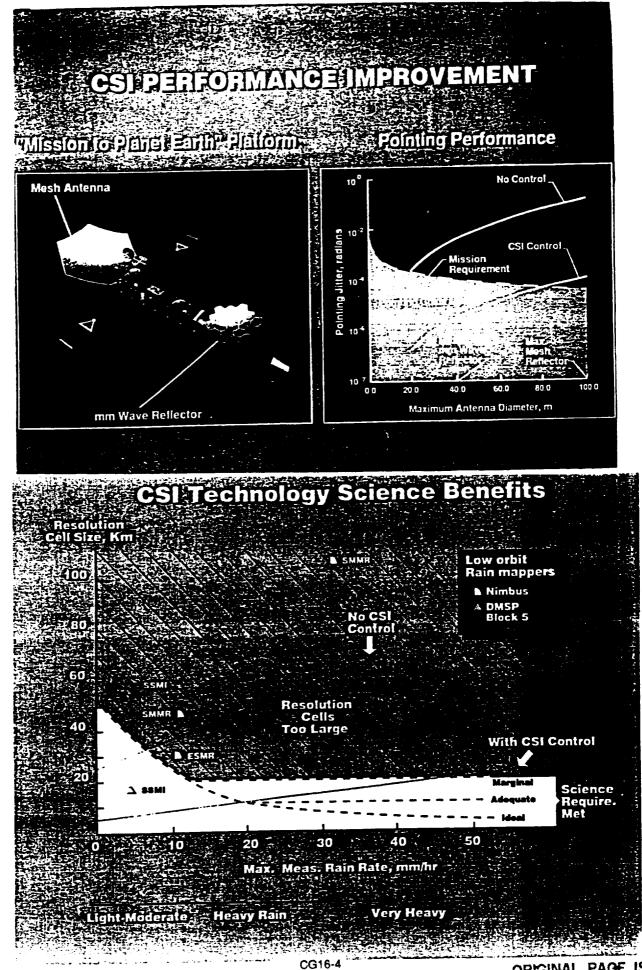

GOAL:

DEVELOP VALIDATED CSI TECHNOLOGY FOR INTEGRATED DESIGN/ANALYSIS AND QUALIFICATION OF LARGE FLEXIBLE SPACE SYSTEMS AND PRECISION SPACE STRUCTURES

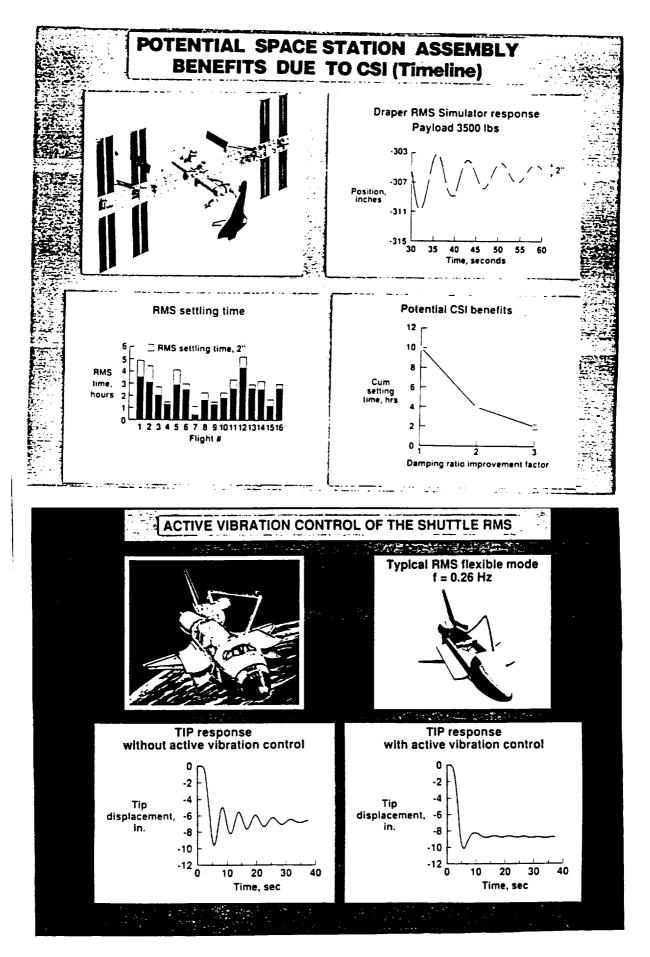
OBJECTIVES:

- To provide spacecraft dynamic response amplitude reductions of 50 percent, for any input or • maneuver, with minimum increase in system mass.
- To enable the use of wide-bandwidth CSI control systems to achieve several orders of magnitude improvement in control and pointing capabilities.
- To predict the on-orbit performance of CSI systems within 10 percent of all amplitude, frequency, time and stability requirements based on the results of integrated analyses tuned/corrected by closed-loop ground and/or flight test data.
- To develop unified controls-structures modeling, analysis and design methods which allow a complete iteration on all critical design variables in a single integrated computational framework.
- To develop the capability to validate the performance of flight systems by analysis/ground tests.

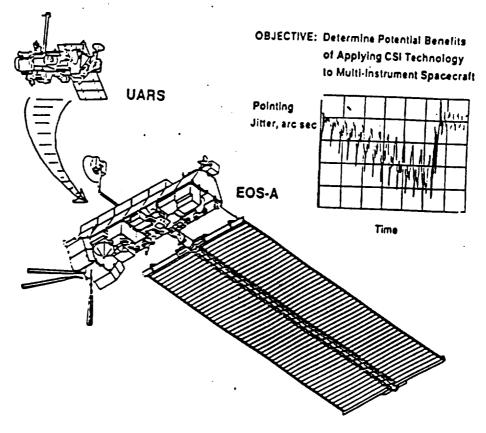
CSI PROGRAM FOCUS MISSIONS



CG16-2


CONTROLS STRUCTURES INTERACTION PROGRAM an an anna shaha - Optimizer -Control Structural **.** Design Design Variables Variables Controls Analysis Structural. Analysis -Integrated Design Methods System Studies **Flight Experiments Guest Investigators Ground Test Methods**

BENEFITS STUDY

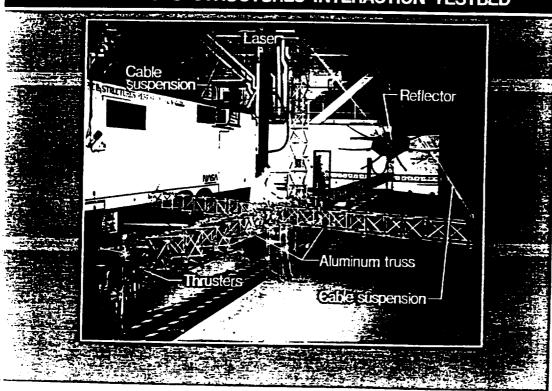

- PURPOSE: To Quantify the Specific Advantages of CSI Technology for Future Missions Requiring Large Space Structures.
- APPROACH: Select a Future NASA Mission and Define Differences in the Spacecraft Design and Performance Capability Using Both the Conventional and CSI Approach.
- EXAMPLES: (1) Geostationary Platform
 - (2) Shuttle RMS
 - (3) Multipayload Platform

ORIGINAL PAGE IS OF POOR QUALITY

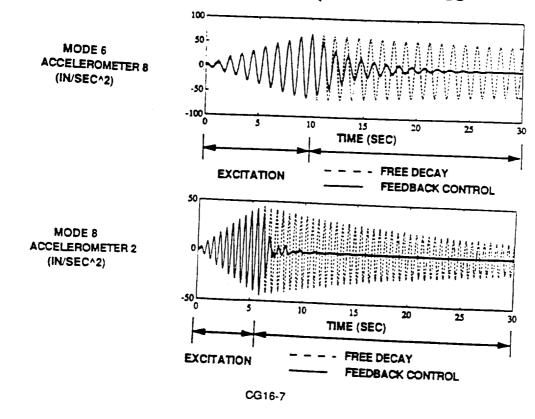
MULTI-PAYLOAD PLATFORM CSI STUDY

GROUND TESTS AND TEST METHODS

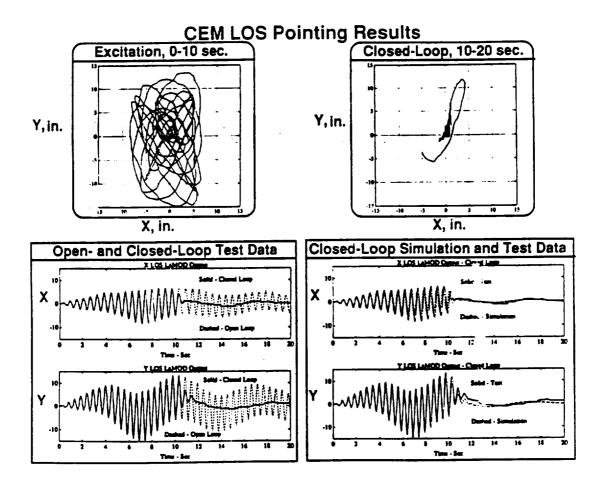
Objectives

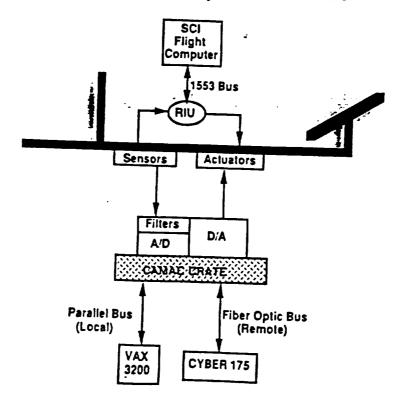

- To ascertain the applicability of theoretical CSI developments to complex hardware systems
- To develop ground test methods suitable for verifying that CSI spacecraft systems are adequate for flight

Approach


- Develop hardware testbeds
- Perform in-house analysis and tests
- Conduct guest-investigator studies

INVISA


THE PHASE-ZERO EVOLUTIONARY MODEL: A CONTROLS-STRUCTURES INTERACTION TESTBED


EXPERIMENTAL RESULTS OPEN AND CLOSED-LOOP RESPONSES

ORIGINAL PAGE IS OF POOR QUALITY

Real-Time Computer Hardware

SOFTWARE DEVELOPMENT OVERVIEW

- Entire software system developed at Langley (ACD/FSGB)
 - Real-Time Executive, Interfaces, Applications
 - RIU and 1553B interface software developed jointly with SED
- Software for all 1750A's and PC/AT will be written in Ada
- This is Langley's first production Ada project
- Similar Ada based 1750A systems are proposed for EOS missions
- Software system designed using object-orientated design methods
 - Allows software to evolve in step with hardware system
 - Testbed modules can be reused on future missions (CSI, EOS)
- Believed to be one of the first real-time distributed Ada based 1750A production systems anywhere.

GTM Testbed Description/Goals

Phase 0

Global LOS Pointing objective. Uniform structure. 500 micro radians accuracy. Active only, 8 accels, 8 thrusters.

Phase 1

Global LOS Pointing objective. Integrated controller & structure. 500 micro radians accuracy. Active only, 8 accels, 8 thrusters.

Phase 2

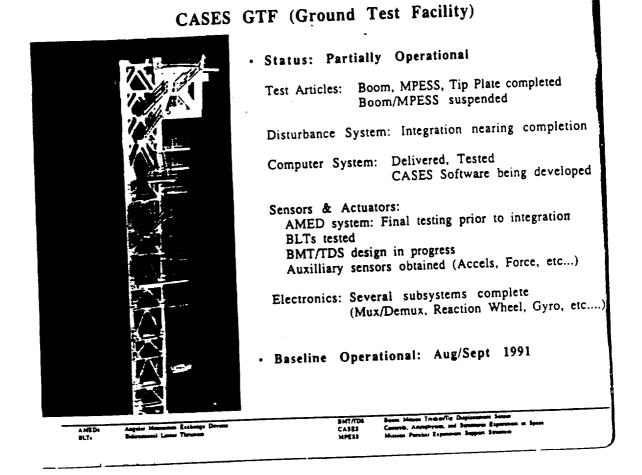
Multi-Payload Pointing objective. Phase 1 structure. 5 micro radians accuracy. 24 piezo struts, 3 gimbais.

Phase 3

Multi-Payload Pointing objective. Redesigned structure. 5 micro radians accuracy. 24 piezo struts, 3 gimbals. 100 passive struts,optimal sensor actuator placement.

Phase 4

Integrated controller & structure multi-payload free-flyer design. 5 micro radians accuracy. Integrated passive and active sensors/actuators and on-board power and computers. Implement LAC/HAC controller on structure with realistic dynamics of space platforms.


Quantify benefits of integrated controller & structure design and assess predictive accuracy.

implement distributed/centralized controllers for multi-payload platforms.

Verify integration of passive, active smart systems with multi-objective controller.

Ground test experiment for CSI Class 1 & 2 flight demonstration.

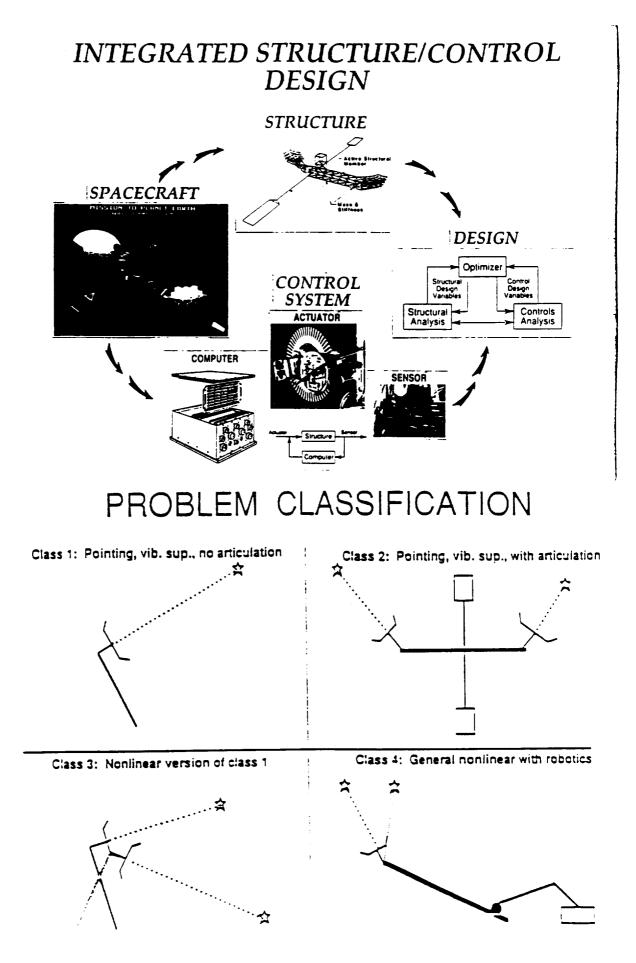
2

GUEST INVESTIGATOR PROGRAM

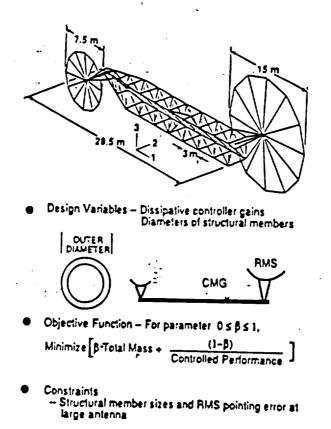
- GOAL: OBTAIN BEST AVAILABLE CSI TECHNOLOGY EFFORT FROM RESEARCHERS IN ACADEMIA & INDUSTRY.
- APPROACH: GENERAL SOLICITATION OF PROPOSALS THROUGH NRA WITH INTERCENTER SELECTION TEAM.
- STATUS:
 - Phase I Completed Eight investigators Two Test Beds LaRC - Mini-MAST MSFC - Advanced Control Evaluation for Structures (ACES)
 - Phase II Joint Program with the Air Force, Edwards AFB 101 Proposals Received Five Winners Announced December 1990 Three Test Beds LaRC - CSI Evolutionary Model (CEM) MSFC - Control, Astrophysics, and Structures Experiment in Space (CASES)
 - (CASES) AF - Advanced Space Structure Technology Research Experiments (ASTREX)

0216.10

PHASE 1 GUEST INVESTIGATOR PROGRAM

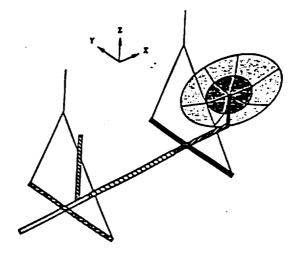

	PRINCIPAL	
CAL TECH	Dr. John Doyle	Noncollocated Controller Design
MIT	Dr. W. Vander Velde	Off-Line and On-Line Sys. ID Algorithms
PURDUE	Dr. Robert Skelton	Noncollocated Controller Design
U. CINCINNATI	Dr. Randall Allemang/ Dr. Slater	Off-Line System ID Algorithms
U. TEXAS	Dr. Bong Wie	Collocated/Noncollocated Controller Design
HARRIS	Dr. David Hyland	Noncollocated Controller Design
BOEING	Dr. Michael Chapman	Nonlinear Math Modeling
Dynamic Engin. /VPI	Wilmer Reed	Design of Passive and Active Suspension Systems

MAJOR LESSONS LEARNED


- Modeling sensors, actuators, and electronics as important as modeling structure
- Single-input single-output control design approach for flexible structure control can be effective
- System identification is an essential element for successful flexible structure control

PHASE II GUEST INVESTIGATORS

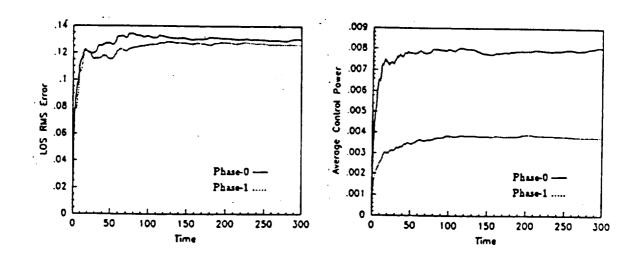
UNIVERSITY/ INDUSTRY	PRINCIPAL INVESTIGATOR	PRIMARY THRUST (Facility)	
Martin Marietta	Eric Schmitz	Smart Struts & Controller Design LaRC CSI Evolutionary Model	
Harris Corporation	David Hyland	Noncollocated Controller Design MSFC Ground CASES	
Boeing Aerospace	David Warren	CMG/RCS Pointing & Slewing Air Force ASTREX	
МІТ	Andy von Flotow	Passive Damping/Controller Design Air Force ASTREX	
Texas A&M	Srinivas Vadali	Controller Design Air Force ASTREX	


CG16-12

CONVENTIONAL VS. INTEGRATED (Dynamic Dissipative Controller) RMS < 10 μrad

	Controlled Performance	Structural Mass	Actuator Mass	Total Mass
Initial Design	1.0	1.0	1.0	1.0
Control-optimized Design β=0.15	1.30	1.0	1.45	1.18
Integrated Design β=0.15	4.03	0.66	1.44	0.97

INTEGRATED DESIGN VALIDATION PHASE-1 CEM

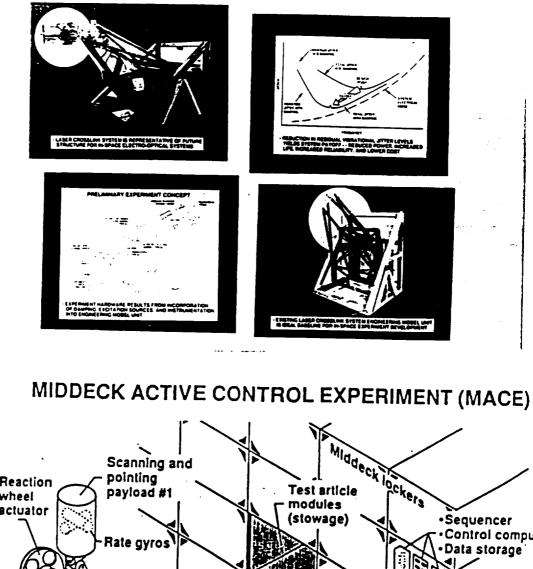


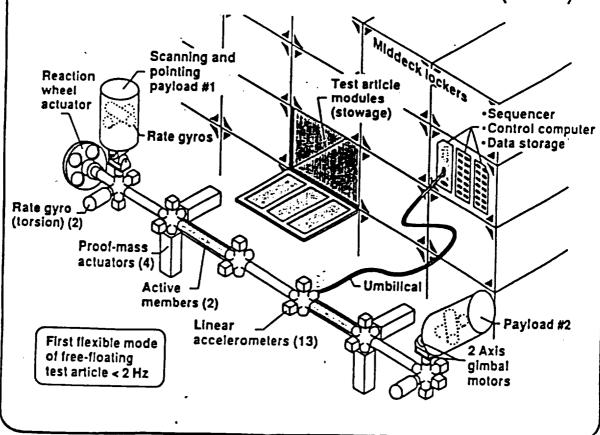
 <u>OBJECTIVE</u>: MINIMIZE THE AVERAGE CONTROL POWER WHILE MAINTAINING THE RMS LINE OF SIGHT (LOS) TO A SPECIFIED VALUE WITHOUT ANY INCREASE IN STRUCTURAL MASS (OVER PHASE-0 DESIGN).

DESIGN VARIABLES

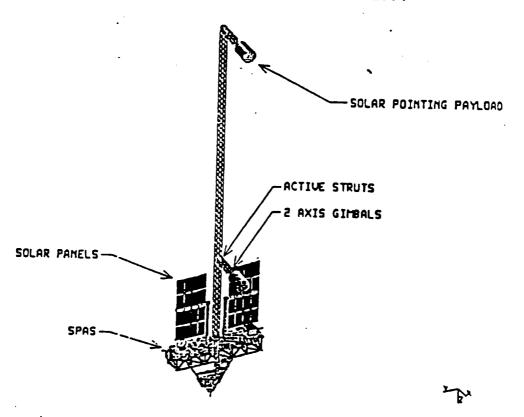
STRUCTURE - EFFECTIVE CROSS-SECTIONAL AREAS OF 21 LONGERONS, BATTENS, AND DIAGONALS CONTROL - ELEMENTS OF THE COMENSATOR AND GAIN MATRICES OF A DYNAMIC DISSIPATIVE CONTROLLER

SIMULATION RESULTS

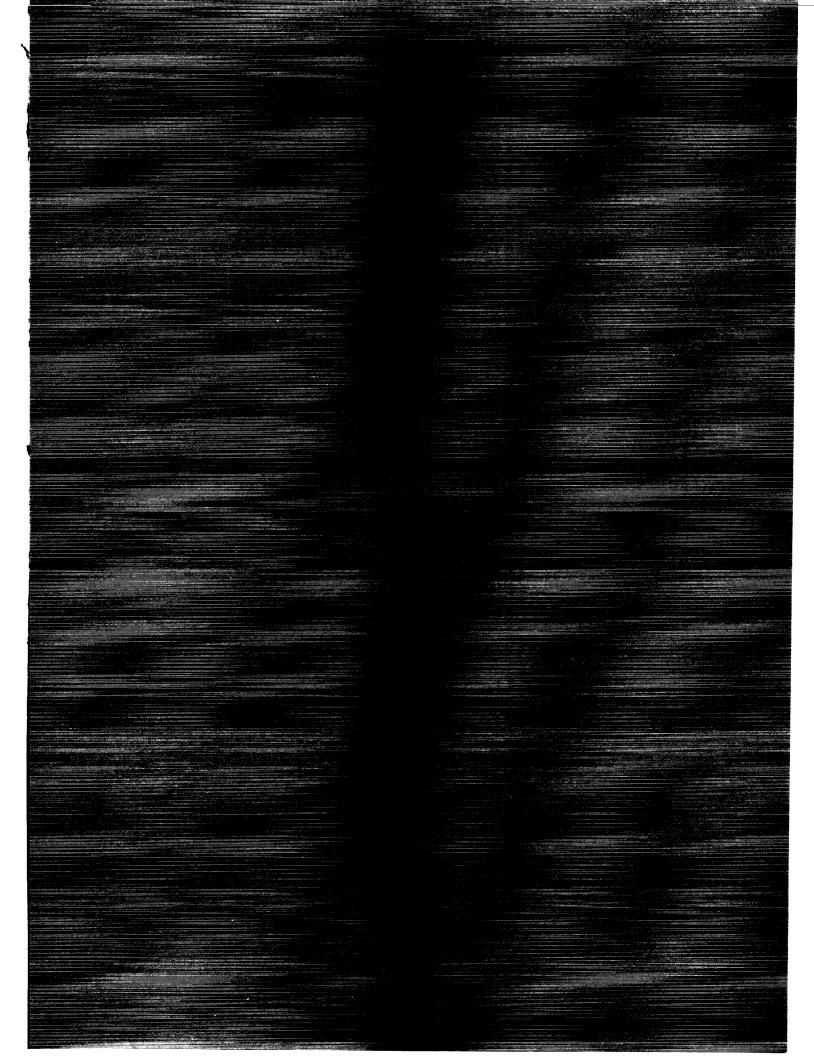

JUSTIFICATION FOR ON-ORBIT CSI EXPERIMENTS

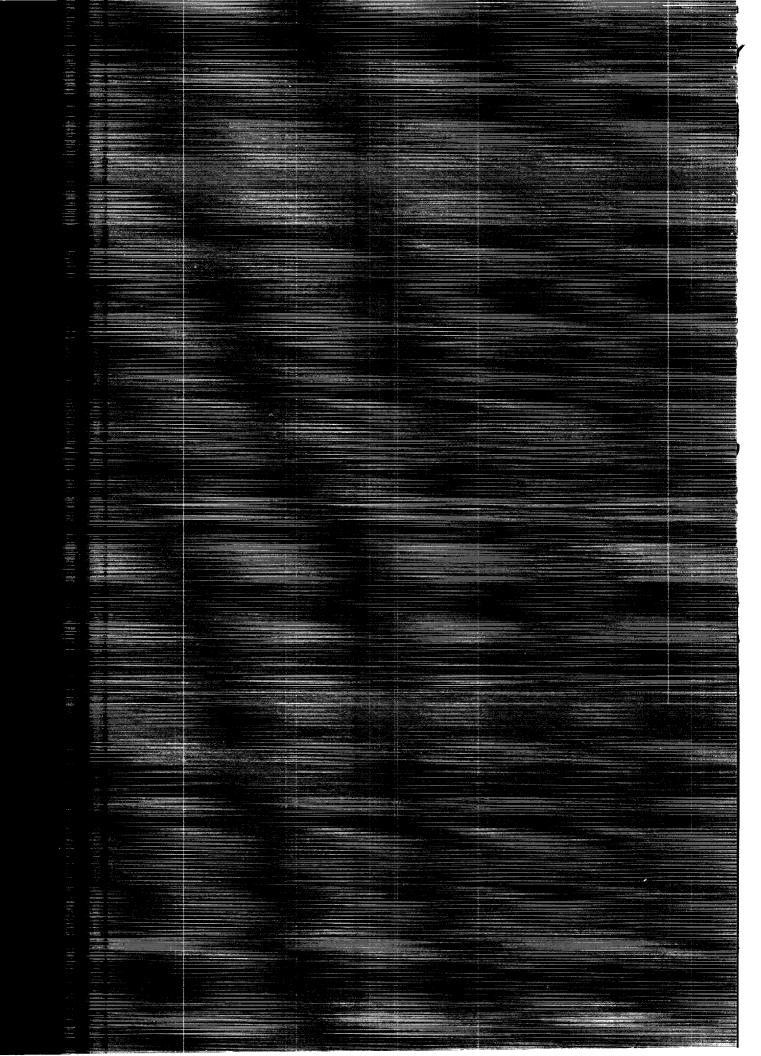

- DEVELOP UNDERSTANDING OF GRAVITY EFFECTS ON GROUND TESTING
 - Direct Gravity Effects: stiffness, modal coupling, damping
 - Indirect Gravity Effects via Suspension system dynamics: pendulous modes, local attachment loads, large angle articulation limitations, etc.
- QUANTIFY ACCURACY OF PREDICTIONS OF ON-ORBIT PERFORMANCE
- DEMONSTRATE NEW FLIGHT QUALIFICATION PROCEDURE
 - Dependent on on-orbit dynamic testing
 - Subsequent adjustment of controller parameters

CSIO FLIGHT EXPERIMENTS


- JITTER SUPPRESSION EXPERIMENT (JSX)
 - McDonnell Douglas Prime Contractor
 - Funded by OAET's In-Space Technology Experiments Program (In-STEP)
- MIDDECK ACTIVE CONTROL EXPERIMENT (MACE)
 - MIT Prime Contractor
 - Funded by In-STEP
- ADVANCED FREE-FLYER EXPERIMENT
 - LaRC/MSFC/JPL Conceptual Definition in Progress

MASA DAST IN SPACE TICKNOCOCT E INFORMATION JITTER SUPPRESSION FOR PRECISION SPACE STRUCTURES CONTRACT MAST MARK




0016 16

SUMMARY

- CONTROLS-STRUCTURES INTERACTION (CSI) IS A KEY ENABLING TECHNOLOGY FOR FUTURE NASA SPACECRAFT
- PROPER IMPLEMENTATION OF CSI TECHNOLOGY OFFERS THE POTENTIAL FOR SIGNIFICANT IMPROVEMENTS IN CAPABILITY
- CSI IS EFFECTIVELY A NEW DISCIPLINE WHICH ENCOMPASSES AND INTEGRALLY MERGES STRUCTURES AND CONTROLS
- NASA HAS EMBARKED ON A MAJOR MULTI-CENTER EFFORT TO DEVELOP THIS TECHNOLOGY FOR PRACTICAL APPLICATION TO SPACECRAFT

