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Abstract: Over the past decades, Colombia has suffered complex social problems related to illicit
crops, including forced displacement, violence, and environmental damage, among other conse-
quences for vulnerable populations. Considerable effort has been made in the regulation of illicit
crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis
and its derivatives, the improvement of crops, and leaving an open window to the development of
scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approx-
imately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer
properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils,
flavonoids, and phenolic compounds. However, despite the increase in scientific research on the
subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key
pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic re-
construction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained
from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse
conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314
metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids,
along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were
identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic
acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into
the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high
anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma
cells (A549), combined with negligible impact against healthy human skin cells.
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1. Introduction

Over the past decades, Colombia has suffered from complex social problems related to
illicit crops, including forced displacement, violence, and environmental damage, among
other consequences for vulnerable populations [1]. Considerable effort has been made
in Colombia to address this issue by creating a regulatory framework for import, export,
cultivation, extraction, and research activities, especially of Cannabis sativa [2,3]. When the
contingency caused by the coronavirus began, the former Minister of Health authorized
Resolution 315 of 2020, which updates the lists of precursor drugs subject to state control
and gives free access to the sale of master formulations (preparations made for medical
indications) in order to eliminate some access barriers for research, medical, and scientific
use [4]. In addition, two years later, Resolution 227 of 2022 was approved, regulating the
use of medicinal C. sativa (non-psychoactive components) in food, beverages, and dietary
supplements. Furthermore, since the beginning of this year, the national government,
through Resolution 2808 of 2022, decided to include magistral preparations of C. sativa
medicines within the health benefits plan for patients with pathologies such as refractory
epilepsy, fibromyalgia, sleep and appetite disorder, cachexia due to cancer, insomnia,
chronic pain, neuropathic pain, and pain associated with cancer, in order to address
those public health concerns [5]. These laws laid the groundwork for the cultivation of C.
sativa plants, the emergence of the medical cannabis industry, and safe access to medical
and scientific use, among other developments. Hence, the current regulatory framework
promotes scientific knowledge of C. sativa and allows for the exploration of potential
markets for its alternative uses [6].

The field of research related to C. sativa has been expanding at an accelerated rate [7]
thanks to the biotechnological capacity hidden in the plant. It is estimated that C. sativa
can produce approximately 750 specialized secondary metabolites [8–10]. Some of the
most relevant are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids,
phenolic compounds (known as polyphenols [7]), lignans, stilbenoid derivatives, alkaloids,
amino acids, spiro-indans, steroids, and glycoproteins, mainly due to their anticancer
properties [8,11–14]. Previous studies have shown a synergy among the metabolic com-
pounds of the plant that, as a whole, show different behavior compared to the individual
performance of each metabolite due to the “entourage effect” [15,16]. It is established
that C. sativa chemotypes’ rich cannabinoid and terpenoid content offer better pharma-
cological activities that are able to broaden clinical applications and improve therapeutic
issues [17–19]. In the same way, remarkable anticancerogenic activity has been demon-
strated for C. sativa extracts against different carcinoma cell lines such as melanoma [20],
ovarian [21], prostate [22], breast [23], and pancreatic cancer [16]. These studies have
revealed a reduction in tumor growth and promotion of apoptosis and autophagy in
carcinoma cells [15,23–25]. At the taxonomic level, chemotypes are grouped in terms
of the relative amounts of their main compounds, the cannabinoids. Drug-type plants
(chemotype I) contain high concentrations of the most prevalent cannabinoid known for its
psychotropic capacity, (-)-trans-∆9-tetrahydrocannabinol, or D9-THC. When the cannabi-
noid content corresponds mostly to the second most abundant cannabinoid in the C. sativa
plant, cannabidiol, CBD, it corresponds to chemotype III [26]. Finally, chemotype II, which
is very scarce, is defined as a balanced content of the two main cannabinoids [27].

For all these reasons, it is critical to understand plant metabolism on a system-wide
level to identify metabolic pathways involved in the production of key metabolites, char-
acterize specific phenotypes influenced by environmental factors, and explore alternative
uses of the leaf, such as nutraceuticals.
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In the last two decades, Genome-Scale Metabolic (GEM) reconstructions have become
a fundamental tool taking advantage of the development of high throughput data of omics
technologies to study and understand the complex interactions of organisms [28]. Regard-
ing the development of omics technologies in C. sativa, the first sequenced and assembled
genome was produced in 2011 by Grassa et al. [29] and since then, publications based
on whole-genome sequencing and population studies [30–32], transcriptomics [33], pro-
teomics [34], and metabolomics have resolved compelling questions about the chemotype
of the plant and its relationship with geography or characteristic markers [9]. Addition-
ally, studies of C. sativa on the metabolic response of the plant under different degrees
of stress [35], its potential uses in different industries [14,16], and particularly nutraceuti-
cals [36,37], such as evaluation of anti-malarial activity [38], observation of in vivo antioxi-
dant effects [39], and pathogen resistance [30], among others, stand out.

Meanwhile, in plant systems biology, genome-scale modeling has advanced consid-
erably thanks to the reconstruction of Arabidopsis thaliana, Zea mays, Oryza sativa, and
Saccharum officinarum, among others [40], which have proven accurate predictions focused
on specific aspects of central carbon metabolism. For Arabidopsis thaliana, GEM modeling
has evolved from the production of biomass components observed in experimental data
to the inclusion of compartments (cytosol, plastid, mitochondrion, peroxisome, and vac-
uole), calculation of cell maintenance energy costs, description of photosynthetic processes,
integration of secondary metabolism pathways, gene expression, proteomic data, and
multi-tissue models [41]; as an example, Scheunemann et al. used the Plant SEED scheme
to obtain reconstructions and subsequently integrate transcriptomics data extracted from
different plant tissues [42].

Here we present a Genome-Scale Metabolic (GEM) reconstruction of C. sativa with
an analysis of non-targeted LC-QTOF-MS (Liquid Chromatography-Quadrupole Time-of-
Flight Mass Spectrometry)-based metabolomics data and evaluation of cytotoxicity and
anticancer activity of leaf extracts, which could help to pave the way for the development
of alternative uses of the leaf with potential applications in the food, cosmetic, textile,
and agrochemical industries and also to enhance exploration of anticancer, analgesic, and
anti-inflammatory compounds [11]. To our knowledge, this is the first attempt to compre-
hensively describe the metabolic capacities of C. sativa leaf (including both primary and
secondary metabolism) based on a Genome-Scale Metabolic reconstruction; the contextual-
ization of the reconstruction was carried out via LC-QTOF-MS to favor the identification
of metabolites with known (anticancer, due to cannabinoids) and alternative properties
(nutraceuticals, due to flavonoids and amino acids) [43].

2. Materials and Methods
2.1. Metabolic Reconstruction

A description of the metabolic reconstruction workflow is shown in Figure 1. First,
the reference genome reported by Grassa was downloaded from NCBI [44]. The size of the
genome is reported to be 875.7 Mb, along with a level of assembly up to the chromosomes.
The annotation reports 31,170 genes, 25,296 of which are protein-coding genes [44].

Two processes were carried out with the data: functional annotation and automatic
reconstruction of the metabolite network (Figure 1).
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Figure 1. Iterative workflow from the bottom-up process in C. sativa reconstruction.

2.1.1. Functional Annotation and Automated Reconstruction

Starting from the updated version of the C. sativa reference genome annotation [44],
functional annotation and automated draft reconstruction were conducted based on the
Plant SEED workflow for GEM [45,46]. The Plant SEED database (licensed under a Creative
Commons Attribution 4.0 International License) describes the core metabolism of the plants
and includes several refinement reconstruction steps such as embodiment of reaction stoi-
chiometry and directionality, compartmentalization, transport reactions, charged molecules,
and proton balancing on reactions, among others [28,46].

Next, the conversion of reconstructed data into a computable format was performed
using the COBRA toolbox (GNU General Public License) and loading the reconstruction
into MATLAB (Licence number 40902167) [47,48]; the topological metrics were obtained to
evaluate the stoichiometric matrix, and an objective function was set based on the biomass
composition of the plant cell [49].

2.1.2. Refinement of Reconstruction

After the first draft model was obtained, a great deal of work was required until the
model represented the phenotypic states of the organism [50]. Gap-find was utilized to
identify network pathologies which include root no-consumption, root no-production,
downstream no-production, and upstream no-consumption and blocked reactions [28,51].
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Identify Candidate Reactions to Fill Gaps

An exhaustive review of the literature was carried out to identify reactions related to the
secondary metabolism of the plant that could fill the gaps and facilitate integrating diverse
metabolic pathways taking place in the different cellular compartments [6,11,14,16,52–55].
Furthermore, KEGG tools were used to complement the metabolic information of the
reconstruction through a second functional annotation carried out based on BlastKOALA
(KEGG Orthology and Links Annotation) [56]. This was aided by the updated annotation
release of the C. sativa reference genome [44].

Add Gap Reactions to Reconstruction

Regarding the manual curation of models, one of the most complex problems re-
searchers face is the diversity of terminology in reference databases. The present model
relies on the Model SEED repository [57], which involves several databases (KEGG, Meta-
Cyc, AraGEM, BiGG, Maize_C4GEM, PlantCyc, and TS_Athaliana, among others) and
adds a unique identifier to them [12].

An iterative workflow was carried out to add reactions identified previously to the
reconstruction. First, reactions were transformed to the ModelSEED nomenclature taking
into account reference ModelSEED database information. Next, renamed reactions were
integrated into the reconstruction, considering each compartment of the reconstruction.
Finally, a network evaluation was carried out, looking for additional gaps that could be
generated for new reactions (Figure 1).

Once the reconstruction was obtained, successive flux balance analyses (FBAs) were
carried out. FBA is a mathematical approach that calculates the flow of metabolites through
metabolic reconstruction, making it possible to predict the growth rate of an organism [58].
This is done by taking advantage of the constraints imposed by the stoichiometric coeffi-
cients of each reaction in the metabolic fluxes. FBAs of C. sativa are based on the biomass
composition of the plant cell [49] as the objective function of the model (Supplementary
Table S1) and then evaluating the flow distribution within the system.

2.2. Chromatographic Analysis of C. sativa Leaf: LC-PDA and RP-LC-QTOF-MS
2.2.1. Plant Material and Extraction

The sample material was obtained from plants grown in the region of Pesca-Boyaca,
Colombia, under greenhouse conditions at the Clever Leaves facility, in a legal operation
and under controlled growing conditions, following the guidelines for good agricultural
and collection practices (GACP) for starting materials of herbal origin.

The drying process of the plant material was carried out in rooms with controlled
conditions for this purpose. The extraction process was carried out from fresh leaf tissue
that was ground to a particle size of 1.4 mm, at a 5:1 ratio of ethanol to dry leaves by
weight. Constant agitation was performed in a Heidolph shaker at 2000 rpm for 4 h. The
supernatant was transferred to a new vial.

Subsequently, the extract obtained was used for LC-PDA and LC-QTOF-MS analysis
under the conditions described below.

2.2.2. LC-PDA

The chromatographic analysis was carried out using a methodology validated by
Clever Leaves, a company dedicated to pharmaceutical grade cannabis-based products.

The liquid chromatography method with PDA (photodiode array) detection was
employed, using the following conditions. Mobile phase A involved a solution of 0.1%
trifluoroacetic acid in water, while mobile phase B involved a solution of acetonitrile. A total
injection volume of 2 µL was used for the analysis. UV detection was set at a wavelength of
220 nm. Chromatographic separation was carried out on a CORTECS® UPLC® Shield RP18
column (Milford, USA) with dimensions of 2.1 × 100 mm and a particle size of 1.6 µm. The
autosampler and column temperatures were maintained at 8 ◦C and 35 ◦C, respectively.
The total run time for the analysis was 11 min. Acetonitrile HPLC was used as the solvent
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for dilutions, while a mixture of acetonitrile and water (70:30) was employed as solvent.
The purge solvent consisted of a water–acetonitrile mixture (90:10). The flow rate was set
at 0.7 mL/min, and the mobile phase composition was kept isocratic at 41% mobile phase
A and 59% mobile phase B. The system suitability test required a resolution between peaks
to be greater than 1.5 for proper analysis.

2.2.3. Analysis by RP-LC-QTOF-MS

For metabolic analysis, 5 mg of the crude extract of C. sativa, which contains a high
cannabidiol (CBD) content (>85% of the total phytocannabinoids extracted) [18], was
dissolved in methanol to a final concentration of 250 mg/L for subsequent analysis via
reverse-phase liquid chromatography coupled with mass spectrometry (RP-LC-QTOF-MS).

Samples were analyzed in a liquid chromatography system (Agilent Technologies 1260)
coupled with a quadrupole time-of-flight (Q-TOF) mass analyzer (Agilent Technologies
6545B) with an electrospray ionization source (ESI). Separation was conducted in a C18
column (InfinityLab Poroshell 120 EC-C18 (100 × 3.0 mm, 2.7 µm) at 30 ◦C with a gradient
elution consisting of 0.1% (v/v) formic acid in Milli-Q water (Phase A) and 0.1% (v/v) formic
acid in acetonitrile (Phase B) at a constant flow rate of 0.4 mL/min. Mass spectrometric
detection was performed initially in positive mode, followed by a subsequent analysis in
negative mode using the same set of acquired data at full scan from 70 to 1100 m/z. The
QTOF instrument was operated in 4 GHz (high resolution) mode. The data acquisition
parameters were configured as follows: ion source temperature of 325 ◦C, gas flow of 8
L/min, nebulizer gas pressure at 50 psi, and capillary voltage of 2800 V. MS/MS acquisition
mode was performed in data-dependent acquisition (DDA) mode in the range of m/z 50 to
1100 with a scan sweep rate of 3 spectra/s and under chromatographic and spectrometric
conditions identical to those employed in the initial analysis. For each sample, analysis
was performed at different collision energies 20 eV, 40 eV, and equation mode was used
(CE = 3.6 × (m/z)/100 + 4.8) [59,60], using 3 precursors per cycle. During the analysis,
several reference masses were used for mass correction: m/z 121.0509 (C5H4N4), m/z
922.0098 (C18H18O6N3P3F24) in positive mode and m/z 112.9856 [C2O2F3 (NH4)], and m/z
1033.9881 (C18H18O6N3P3F24) in negative mode.

2.2.4. Data Processing

Data processing was performed with the Agilent MassHunter Profinder 10.0 software
program for deconvolution, alignment, and integration, using the recursive feature ex-
traction (RFE) algorithm. This algorithm performs a deconvolution of the chromatogram
and integration of the molecular characteristics present in the samples according to mass
and retention time. The data obtained from the deconvolution and integration were
filtered by area by calculating the total area for the sample and then the area of each
molecular feature. The annotation of the more abundant molecular features obtained
was carried out using the CEU MASS MEDIATOR tool (https://ceumass.eps.uspceu.es/
(accessed on 1 October 2021)) [47], including the Metlin, Kegg, HDMB, and LipidMaps
platforms as parameters, and with a tolerance of 10 ppm. Then, MS/MS analyses were
performed in order to confirm the identity of the metabolites using MS-DIAL 4.8 (http:
//prime.psc.riken.jp/compms/msdial/main.html (accessed on 1 October 2021)), in in
silico mass spectral fragmentation through CFM-ID 4.0 (https://cfmid.wishartlab.com/
(accessed on October 2021)) and manual MS/MS spectral interpretation using the Agilent
MassHunter Qualitative Analysis program (version 10.0, USA).

2.2.5. Cell Cytotoxicity and Anticancer Activity of C. sativa Leaf Extract

Cytotoxicity and anticancer activity were determined by analyzing the impact of C.
sativa leaf extract on the metabolic activity of three different human carcinoma cell lines,
namely gastric adenocarcinoma (AGS, ATCC® CRL-1739), lung carcinoma (A549, ATCC®

CCL-185), and skin melanoma (A375, ATCC® CRL-1619). Additionally, two healthy cell

https://ceumass.eps.uspceu.es/
http://prime.psc.riken.jp/compms/msdial/main.html
http://prime.psc.riken.jp/compms/msdial/main.html
https://cfmid.wishartlab.com/
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lines were employed, i.e., Vero (ATCC® CCL-81) and human skin fibroblasts (HFF, ATCC®

SCRC-1041).
Cell viability was determined via a MTT metabolic activity assay (3-(4,5-Dimethylthiazol-

2-yl)-2,5-Diphenyltetrazolium Bromide)) following the manufacturer’s instructions. For
this, cells (7000–10,000 cells/well depending on the cell line) were seeded on 96-well
microplates with supplemented culture medium (10% FBS) and then incubated at 37 ◦C, in
a 5% CO2

, and humidified atmosphere (humidity above 90%) for 24 h. Next, the culture
medium was extracted and replaced by a non-supplemented medium containing the C.
sativa leaf extract at concentrations ranging from 0.05 to 0.0004 mg/mL (serial dilutions
were performed). Cells were incubated at 37 ◦C, in a 5% CO2 and humidified atmosphere
for 24 and 72 h. After the incubation time, 10 µL of the MTT reagent (5 mg/mL) was added
to each well, and the microplates were incubated for 2 h under the same conditions. Finally,
supernatants were extracted and replaced by 100 µL of DMSO to dissolve formazan crystals.
Absorbance was recorded at 595 nm in a microplate reader (Multiskan™ FC Microplate
Photometer, ThermoFisher Scientific, Waltham, MA, USA).

Cell viability was calculated using the following equation:

Cellviability(%) = 100 ∗ Abs(C−)− Abs(sample)
Abs(C−)

where Abs (C−) corresponds to the absorbance of the negative control (non-supplemented
medium) at 595 nm and Abs (sample) corresponds to the absorbance of the sample at 595 nm.
In addition, Cytotoxicity (%) was calculated as 100 − Cell viability (%).

3. Results
3.1. Genome-Scale C. sativa Metabolic Reconstruction

The PlantSEED semi-automatic reconstruction strategy was performed and curated
with an exhaustive review of the literature and BLASTKOALA, to obtain the first C. sativa
GEM reported in the literature (Figure 1). Results were analyzed considering the challenges
involved in modeling eukaryotic cells (large size, compartmentalization of metabolic
processes, and variation in tissue-specific metabolic activity [61]) and also by considering
topological characteristics of the network that can be analyzed from the stoichiometric
matrix [62]. Features of the initially reconstructed network and topological analysis of the
stoichiometric matrix through the sparsity pattern are shown in Tables 1 and 2 and Figure 2.

Table 1. Network characteristics of the reconstructed metabolic network: Comparison among C.
sativa metabolic reconstruction and AraGEM. c cytosol, d stroma, g Golgi, v vacuole, w cell wall,
x peroxisome, m mitochondria, n nucleus, r endoplasmic reticule, u unknown, GPR gene-protein
reaction. Supplementary Material Figures S4 and S5.

Strategy—Plant Seed AraGEM

Reactions 2101 1567
Metabolites 1314 1748

GPR 1462 5253
Transport Reactions 143 148

Compartments c, d, g, v, w, x, m, n, r, e, j c, m, p, x, plastid, v

Table 2. Curation statistics of the models, using gapfind algorithm with Cobra Toolbox [47].

Strategy II—Plant Seed

allGaps 228
rootGaps 100

downstreamGaps 128
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Metabolic pathways with the highest number of reactions and compounds were
associated with the biosynthesis of fatty acids, steroids, arginine, and tyrosine, along with
the metabolism of purine, pyrimidine, glucose, starch, and sucrose (Figure 3).

3.1.1. Functional Annotation

The initial genome annotation reported by Grassa contains 31,170 genes, of which
25,296 are protein-coding genes (81%). A PlantSEED functional annotation was performed
and complemented via BLASTKOALA to describe the metabolic capacity of C. sativa leaves
(Figure 4). A total of 10,636 C. sativa genes were related to KO numbers. Most orthologous
groups were observed in metabolic pathways related to primary plant metabolism (amino
acid, carbohydrate, energy, cofactors and vitamins, and lipid metabolism). C. sativa leaf
metabolism reveals the complexity behind the biochemical reactions that occur in plant
eukaryotic cells. A closer look at each of the modules (Figure 4) shows that energy acquisi-
tion, storage, and the utilization of stored energy are central processes in the overall control
of plant metabolism [35]. Additionally, 6% of KO numbers were related to the biosynthesis
of secondary cannabinoid and non-cannabinoid metabolites. These were important results
that will be used to strengthen secondary metabolism in metabolic reconstruction.

Some of the metabolic modules manually added are biosynthesis of flavanone, flavonoids,
tryptophane, catecholamine, phenylalanine, proline, arginine, valine, leucine, cholesterol,
cannabinoids, and fatty acids, among others.

3.1.2. Secondary Metabolites Biosynthesis of C. sativa

Figures 5 and 6 allow the visualization of complex interactions involving different
pathways in the metabolic network [56]. While terpenoids and cannabinoids share the
metabolite geranyl pyrophosphate as a common precursor, coumarins and toxins originate
from tryptophan and phenylalanine biosynthesis. Metabolic modules of phenylpropanoid
biosynthesis, essential and non-essential amino acids such as tryptophan and tyrosine,
biosynthesis of monoterpenes, terpenes, and sesquiterpenes could be responsible for the
observed synergistic effects that enhance the bioactivities of cannabinoids (entourage effect).
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Figure 3. Reactions and compounds of the C. sativa metabolic reconstruction grouped by pathways
according to PlantSEED.
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Figure 6. Secondary metabolism of C. sativa, classified by five major metabolite types: terpenes (green),
fatty acids (pink), phenolic compounds (red), N-compounds (blue), and cannabinoids (yellow).

After the reconstruction of the metabolic model, consecutive FBAs were conducted.
The calculations are based on the constraints imposed by the stoichiometric coefficients
of each reaction in the metabolic fluxes. The flux balance analysis approach is used to
assess the ability of the model to predict the metabolic phenotypes of an organism under
different conditions. A preliminary overview of FBA simulations of photosynthesis and
photorespiration for the C. sativa model is evidenced in Supplementary Material Figure S2.
Thus far, 89.72% of the metabolic fluxes are active and 10.28% are blocked.

3.2. Non-Targeted LC-QTOF-MS Based Metabolomics Data

Characterization of the compounds present in the C. sativa leaf sample was performed
using a non-targeted metabolomics approach. This approach has the advantage for the
present study of analyzing the sample in general, without focusing on a particular set of
metabolites, allowing for a more descriptive metabolomic characterization of the sample.
Table 3 summarizes the identification of 41 molecules in negative ionization mode and
38 molecules in positive ionization mode. The metabolites obtained were clustered into
four main clusters [64] of plant secondary metabolites (Figure 7).

Table 3. Compounds identification of LC-MS metabolomic data from a C. sativa leaf sample cultivated
in a licit operation in Colombia. Analytical platform LC-QTOF-MS.

Compound Formula Mass RT
(min)

Mass
Error
(ppm)

Adduct DET ID
Confidence a

Area
(%) b

Alkaloids and derivatives

Neurine C5H13NO 103.0997 1.09 7 [M+H]+ ESI + Level 3 0.86

Cannabisativine C21H39N3O3 381.2991 5.66 4 [M+H]+ ESI + Level 3 0.31
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Table 3. Cont.

Compound Formula Mass RT
(min)

Mass
Error
(ppm)

Adduct DET ID
Confidence a

Area
(%) b

Benzenoids

Phenylacetaldehyde C8H8O 120.0575 3.33 5 [M+H-H2O]+ ESI + Level 3 0.43

Methylstyrene C9H10 118.0783 14.59 6 [M+H]+ ESI + Level 3 2.31

Phenylpropanal C9H10O 134.0732 14.59 5 [M+H]+ ESI + Level 3 0.65

Cyclointegrin C21H20O6 368.1260 14.87 0 [M-H]− ESI − Level 3 0.61

Cresol C7H8O 108.0575 16.46 4 [M-H]− ESI − Level 3 1.25

Levomethadyl Acetate C23H31NO2 353.2355 16.99 6 [M+H]+ ESI + Level 3 1.17

Hydroxy-(pentadecatrienyl)benzoic
acid C22H30O3 342.2195 17.33 4 [M-H]− ESI − Level 3 0.30

Fatty Acyls

Corchoionol C glucoside C19H30O8 386.1941 6.17 0 [M-H]− ESI − Level 2 0.46

Trihydroxy-octadecadienoic acid C18H32O5 328.2250 11.14 1 [M-H]− ESI − Level 2 0.42

Octadecatetraenoic acid C18H28O2 276.2089 15.23 1 [M-H]− ESI − Level 3 0.37

Hydroxyoctadecatrienic acid C18H30O3 294.2195 15.32 1 [M-H-H2O]− ESI − Level 3 1.40

Palmitoleic acid C16H30O2 254.2246 16.89 5 [M+H-H2O]+ ESI + Level 3 0.79

Glycerolipids

Gingerglycolipid A C33H56O14 676.3670 14.50 1 [M-H]− ESI
−/+ Level 3 0.72

Glycerophospholipids

LPC 16:0 C24H50NO7P 495.3325 15.94 6 [M+H]+ ESI + Level 2 0.43

LPC 8:0 C16H32NO8P 397.1866 16.21 2 [M+HC
OOH-H]− ESI − Level 3 0.98

PI 41:7 C50H83O13P 922.5571 16.03 7 [M+HC
OOH-H]− ESI − Level 3 0.39

PS O-37:2 C43H82NO9P 787.5727 16.51 2 [M+Na]+ ESI + Level 3 0.39

PE 38:5 C43H76NO8P 765.5309 16.56 3 [M+H]+ ESI + Level 3 0.49

PA O-36:4 C39H71O7P 682.4937 16.59 4 [M+Na]+ ESI + Level 3 0.72

PA O-36:6 C39H67O7P 678.4624 16.64 6 [M+H-H2O]+ ESI + Level 3 0.78

LPG 16:0 C22H45O9P 484.2801 16.96 10 [M+H]+ ESI + Level 3 0.62

PG 25:3;O3 C31H55O13P 666.3380 16.67 9 [M+H]+ ESI + Level 3 0.37

Organic acids and derivatives

Alloisoleucine C6H13NO2 131.0946 1.89 3 [M-H]− ESI − Level 3 0.35

Dilauryl 3.3′-thiodipropionate C30H58O4S2 546.3777 16.74 3 [M+H-H2O]+ ESI + Level 3 0.60

Gly-Tyr-Tyr-Pro-Thr C29H38N5O9 600.2670 16.99 6 [M+Na]+ ESI + Level 3 0.61

Organoheterocyclic compounds

delta-9-THC C21H30O2 314.2246 15.76 5 [M+H]+ ESI + Level 2 3.71

delta-9-THC C21H30O2 314.2246 16.47 5 [M+H]+ ESI + Level 2 5.67

Geranylhydroquinone C16H22O2 246.1620 16.46 0 [M-H-H2O]− ESI − Level 3 13.35

methyl-(4-methylpent-3-en-1-yl)-2H-
chromen-ol C16H20O2 244.1463 16.46 2 [M-H]- ESI − Level 3 3.10

Dimethyl-prenylchromene -carboxylic
acid C17H20O3 272.1413 16.46 2 [M-H]− ESI − Level 2 2.09

Phaeophorbide b C35H34N4O6 606.2478 17.19 4 [M+H]+ ESI + Level 3 0.55

Organonitrogen compounds

Tetradecylamine C14H31N 213.2457 14.11 6 [M+H]+ ESI + Level 3 0.79

Palmitoleoyl-EA C18H35NO2 297.2668 16.31 8 [M+Na]+ ESI + Level 3 0.34
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Table 3. Cont.

Compound Formula Mass RT
(min)

Mass
Error
(ppm)

Adduct DET ID
Confidence a

Area
(%) b

Organooxygen compounds

Trehalose C12H22O11 342.1162 1.13 0 [M-H]− ESI − Level 2 0.93

Kobusone C14H22O2 222.1620 15.83 3 [M-H]− ESI − Level 2 0.51

Methyl-pentenone C6H10O 98.0732 16.46 1 [M-H-H2O]− ESI − Level 3 0.75

Methylpicraquassioside A C19H24O10 412.1369 16.61 10 [M+Cl]− ESI − Level 3 0.68

(carboxymethoxy)-
trihydroxyoxane-carboxylic acid C8H12O9 252.0481 16.81 1 [M+HCOOH-

H]− ESI − Level 3 0.61

Epoxyprogesterone C21H28O3 328.2038 17.39 2 [M-H]− ESI − Level 3 0.59

Phenylpropanoids

Clausarinol C24H30O6 414.2042 14.59 4 [M+H]+ ESI + Level 3 4.45

6-{[2-(dihydroxyphenyl)-3-
(dimethylocta-dien-yl)-hydroxy-(3-

methylbut-2-en-yl)-4-oxo-4H-
chromen-6-yl]oxy}-trihydroxyoxane-

carboxylic
acid

C36H42O12 666.2676 15.58 1 [M-H]− ESI − Level 3 0.33

Nevskin C24H32O5 400.2250 16.27 1 [M+H]+ ESI + Level 3 0.60

Methoxy-abietatrienolide C21H28O3 328.2038 16.48 1 [M-H]− ESI − Level 3 0.47

Nordihydroguaiaretic acid C18H22O4 302.1518 16.65 2 [M-H]− ESI − Level 3 0.32

Piperidines

Pipercitine C23H43NO 349.3345 15.91 5 [M+H-H2O]+ ESI + Level 3 4.88

Polyketides

Cannabidiolic acid C22H30O4 358.2144 16.26 4 [M+H-H2O]+ ESI + Level 3 7.15

Cannflavin A C26H28O6 436.1886 16.34 4 [M+H]+ ESI + Level 3 1.84

Betavulgarin C17H12O6 312.0634 16.34 3 [M+H]+ ESI + Level 3 1.18

Cannflavin A C26H28O6 436.1886 16.41 4 [M+H]+ ESI − Level 3 2.55

Chlorophorin C24H28O4 380.1988 16.46 8 [M+HCOOH-H]− ESI − Level 3 0.53

Quercetol B C23H28O4 368.1988 16.51 3 [M-H]− ESI − Level 3 0.67

Prenol lipids

Icariside B8 C19H32O8 388.2097 6.19 2 [M-H]− ESI − Level 3 0.34

Capsularone C27H38O8 490.2567 11.77 1 [M+HCOOH-H]− ESI − Level 3 0.66

Diterpenoid EF-D C27H38O7 474.2618 13.60 1 [M+HCOOH-H]− ESI − Level 3 1.13

Persicachrome C25H36O3 384.2664 14.33 4 [M+H-H2O]+ ESI + Level 3 0.72

Nigellic acid C15H20O5 280.1311 14.59 3 [M+H]+ ESI + Level 3 0.37

Yucalexin C20H26O4 330.1831 15.67 4 [M-H]− ESI − Level 3 0.49

2-(Hydroxy-methylphenyl)-5-methyl-
4-hexen-3-one C14H18O2 218.1307 15.67 7 [M-H]− ESI − Level 3 0.38

Tintinnadiol C21H32O3 332.2351 15.76 1 [M-H]− ESI − Level 3 1.21

Hydroxymethylphenyl pentanone C12H16O2 192.1150 15.76 5 [M+H]+ ESI + Level 2 0.32

Dimethylrosmanol C22H30O5 374.2093 16.00 1 [M-H]− ESI − Level 2 0.64

hydroxy-methoxy-(3-methylbut-2-en-
1-yl)benzoic acid C13H16O4 236.1049 16.26 4 [M+H-H2O]+ ESI + Level 2 0.77

Lucidone B C24H32O5 400.2250 16.28 1 [M-H]− ESI − Level 2 1.53

Pentylresorcinol C11H16O2 180.1150 16.46 3 [M-H]− ESI − Level 2 2.06

Hyperforin C35H52O4 536.3866 16.46 1 [M-H-H2O]− ESI − Level 3 0.30

Hydroxymethylphenyl)pentanone C12H16O2 192.1150 16.47 5 [M+H]+ ESI
+/- Level 2 0.76

Curzerenone C15H18O2 230.1307 16.48 3 [M-H]− ESI − Level 3 0.54
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Table 3. Cont.

Compound Formula Mass RT
(min)

Mass
Error
(ppm)

Adduct DET ID
Confidence a

Area
(%) b

Geranyl benzoate C17H22O2 258.1620 16.49 6 [M+H]+ ESI + Level 3 0.33

Hydroxy- Caroten-3′-one C40H54O 550.4175 16.71 9 [M+Na]+ ESI + Level 3 0.73

Trimethyl-pentadecatrien-2-one C18H30O 262.2297 17.16 6 [M+H]+ ESI + Level 2 0.82

Grifolin C22H32O2 328.2402 17.66 3 [M-H]− ESI − Level 3 0.32

Pyrazoles

Glyceryl lactopalmitate C20H16N6O2S 404.1055 16.23 8 [M+HCOOH-
H]− ESI − Level 3 1.38

Steroids and steroid derivatives

Pregnadienedione C21H28O2 312.2089 16.48 0 [M-H]− ESI − Level 3 2.24

Neriantogenin C23H32O4 372.2301 17.66 2 [M-H]− ESI − Level 3 2.89

Sterol Lipids

Rhodexin A C29H44O9 536.2985 15.43 1 [M+H]+ ESI + Level 3 0.45

ST 27:0;O7 C27H48O7 484.3400 16.77 4 [M+H]+ ESI + Level 3 0.35

Dihomocholic acid C26H44O5 436.3189 17.30 8 [M+Na]+ ESI + Level 3 0.53

RT: retention time; LC: liquid chromatography; QTOF-MS: quadrupole time-of-flight mass spectrometer. a: Identifi-
cation confidence levels: Level 1: Confirmed structure, Level 2: Probable structure, Level 3: Tentative candidates(s),
Level 4: Unequivocal molecular formula, Level 5: Exact mass. b: The data obtained from the deconvolution and
integration were filtered by area by calculating, total area for the sample and then area of each molecular feature.
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Figure 7. Bar diagram with the number of compounds identified in C. sativa leaf extract obtained
from legal cultivation from Clever Leaves, via LC–QTOF MS/MS. In blue: electrospray negative
ionization mode; in orange: electrospray switching polarity mode; in gray, electrospray positive
ionization mode; in yellow, electrospray switching polarity mode.
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The molecules with the highest intensity in the abundance peaks were mostly cannabi-
noids (delta-9-THC, Cannabidiolic acid, Cannabichromene), and terpenoids (Geranyl-
hydroquinone). However, high-intensity peaks were found for coumarins (clausarinol),
phenylflavonoids (cannflavin A), and steroids (pregna-4,9(11)-diene-3,20-dione, Nerianto-
genin) (Table 3). Prenol lipids and glycerophospholipids were identified as the subgroups
contributing to the greatest diversity of metabolites in the sample. The metabolic profile
of the sample is illustrated in Supplementary Material Figure S3. The main precursors in
their biosynthesis were identified and integrated into the reconstruction (Table 4) and will
be key to studying and understand the metabolic transition from primary to secondary
metabolism and the relationship between chemical synergy and C. sativa valuable charac-
teristics. Taking advantage of the reconstruction, it is possible to study the biosynthesis
of various value-added compounds. From here, various approaches such as bio-organic
synthesis can be used to obtain these valuable compounds in a more economical way.

Table 4. Validation of the metabolic reconstruction using precursors of metabolites detected in
LC-QTOF-MS data.

Precursor EC Number Is It Included in
CannGEM?

A
nt

ho
cy

an
in

bi
os

yn
th

es
is

BZ1; anthocyanidin 3-O-glucosyltransferase 2.4.1.115 No

3MaT1; anthocyanin 3-O-glucoside-6′′-O-malonyltransferase 2.3.1.171 No

3MaT2; anthocyanidin 3-O-glucoside-3′′,6′′-O-dimalonyltransferase 2.3.1.- No

3GGT; anthocyanidin 3-O-glucoside 2′′-O-glucosyltransferase 2.4.1.297 No

5GT; cyanidin 3-O-rutinoside 5-O-glucosyltransferase 2.4.1.116 No

AA7GT; cyanidin 3-O-glucoside 7-O-glucosyltransferase (acyl-glucose) 2.4.1.300 No

UGT79B1; anthocyanidin 3-O-glucoside 2′ ′′-O-xylosyltransferase 2.4.2.51 No

3AT; anthocyanidin 3-O-glucoside 6′′-O-acyltransferase 2.3.1.215 No

5MaT1; anthocyanin 5-O-glucoside-6′ ′′-O-malonyltransferase 2.3.1.172 No

5MaT2; anthocyanin 5-O-glucoside-4′ ′′-O-malonyltransferase 2.3.1.214 No

UGT75C1; anthocyanidin 3-O-glucoside 5-O-glucosyltransferase 2.4.1.298 No

AA5GT; cyanidin 3-O-glucoside 5-O-glucosyltransferase (acyl-glucose) 2.4.1.299 No

5AT; anthocyanin 5-aromatic acyltransferase 2.3.1.153 No

UGAT; cyanidin-3-O-glucoside 2′′-O-glucuronosyltransferase 2.4.1.254 No

GT1; anthocyanidin 5,3-O-glucosyltransferase 2.4.1.- Yes

3GT; anthocyanin 3′-O-beta-glucosyltransferase 2.4.1.238 No

Fa
tt

y
ac

id
bi

os
yn

th
es

is

ACACA; acetyl-CoA carboxylase 6.4.1.2 Yes

ACSF3; malonyl-CoA/methylmalonyl-CoA synthetase 6.2.1.- Yes

FASN; fatty acid synthase, animal type 2.3.1.85 Yes

FAS1; fatty acid synthase subunit beta, fungi type 2.3.1.86 Yes

fas; fatty acid synthase, bacteria type 2.3.1.- No

HT2; 3-hydroxyacyl-thioester dehydratase, animal type 4.2.1.- No

FATB; fatty acyl-ACP thioesterase B 3.1.2.14 Yes

FATA; fatty acyl-ACP thioesterase A 3.1.2.14 Yes

ACSL, fad; long-chain acyl-CoA synthetase 6.2.1.3 Yes
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Table 4. Cont.

Precursor EC Number Is It Included in
CannGEM?

Fa
tt

y
ac

id
de

gr
ad

at
io

n

ACAT, atoB; acetyl-CoA C-acetyltransferase 2.3.1.9 Yes

fadA, fadI; acetyl-CoA acyltransferase 2.3.1.16 Yes

fadB; 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase/3-hydroxybutyryl-CoA
epimerase/enoyl-CoA isomerase 1.1.1.35 Yes

fadJ; 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase/3-hydroxybutyryl-CoA
epimerase 1.1.1.35 Yes

HAH; 3-hydroxyacyl-CoA dehydrogenase 1.1.1.35 Yes

HAHA; enoyl-CoA hydratase/long-chain 3-hydroxyacyl-CoA dehydrogenase 4.2.1.17 No

E1.3.3.6, ACOX1, ACOX3; acyl-CoA oxidase 1.3.3.6 No

ACAS, bcd; butyryl-CoA dehydrogenase 1.3.8.1 No

ACAM, acd; acyl-CoA dehydrogenase 1.3.8.7 No

ACAL; long-chain-acyl-CoA dehydrogenase 1.3.8.8 No

fadE; acyl-CoA dehydrogenase 1.3.99.- No

ACASB; short-chain 2-methylacyl-CoA dehydrogenase 1.3.8.5 No

ACAVL; very long chain acyl-CoA dehydrogenase 1.3.8.9 No

GCH, gcdH; glutaryl-CoA dehydrogenase 1.3.8.6 No

ACSL, fad; long-chain acyl-CoA synthetase 6.2.1.3 Yes

CPT1A; carnitine O-palmitoyltransferase 1, liver isoform 2.3.1.21 No

ECI1, CI; elta3-elta2-enoyl-CoA isomerase 5.3.3.8 No

alkB1_2, alkM; alkane 1-monooxygenase 1.14.15.3 No

hca; 3-phenylpropionate/trans-cinnamate dioxygenase ferredoxin reductase component 1.18.1.3 No

rubB, alkT; rubredoxin---NA+ reductase 1.18.1.1 No

AH1_7; alcohol dehydrogenase 1/7 1.1.1.1 Yes

frmA, AH5, adhC; S-(hydroxymethyl)glutathione dehydrogenase/alcohol dehydrogenase 1.1.1.284 No

AH6; alcohol dehydrogenase 6 1.1.1.1 Yes

adhE; acetaldehyde dehydrogenase/alcohol dehydrogenase 1.2.1.10 No

ALH; aldehyde dehydrogenase (NA+) 1.2.1.3 Yes

ALH7A1; aldehyde dehydrogenase family 7 member A1 1.2.1.31 No

ALH9A1; aldehyde dehydrogenase family 9 member A1 1.2.1.47 No

cyp_E, CYP102A, CYP505; cytochrome P450/NAPH-cytochrome P450 reductase 1.14.14.1 No

Fa
tt

y
ac

id
el

on
ga

ti
on

HAHB; acetyl-CoA acyltransferase 2.3.1.16 Yes

HAH; 3-hydroxyacyl-CoA dehydrogenase 1.1.1.35 Yes

ECHS1; enoyl-CoA hydratase 4.2.1.17 No

PPT; palmitoyl-protein thioesterase 3.1.2.22 Yes

ELOVL1; elongation of very long chain fatty acids protein 1 2.3.1.199 No

HS17B12, KAR, IFA38; 17beta-estradiol 17-dehydrogenase/very-long-chain 3-oxoacyl-CoA
reductase 1.1.1.62 No

HAC, PHS1, PAS2; very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 4.2.1.134 No

TER, TSC13, CER10; very-long-chain enoyl-CoA reductase 1.3.1.93 No

ACOT1_2_4; acyl-coenzyme A thioesterase 1/2/4 3.1.2.2 Yes
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E2.5.1.54, aroF, aroG, aroH; 3-deoxy-7-phosphoheptulonate synthase 2.5.1.54 Yes

ARO1; pentafunctional AROM polypeptide 4.2.3.4 Yes

aroKB; shikimate kinase/3-dehydroquinate synthase 2.7.1.71 Yes

K16305; fructose-bisphosphate aldolase/6-deoxy-5-ketofructose 1-phosphate synthase 4.1.2.13 Yes

K11646; 3-dehydroquinate synthase II 1.4.1.24 No

aro; 3-dehydroquinate dehydratase I 4.2.1.10 Yes

QUIB, qa-3; quinate dehydrogenase 1.1.1.24 No

aroE; shikimate dehydrogenase 1.1.1.25 Yes

quiA; quinate dehydrogenase (quinone) 1.1.5.8 No

ydiB; quinate/shikimate dehydrogenase 1.1.1.282 Yes

aroK, aroL; shikimate kinase 2.7.1.71 Yes

aroA; 3-phosphoshikimate 1-carboxyvinyltransferase 2.5.1.19 Yes

K24018; cyclohexadieny/prephenate dehydrogenase/3-phosphoshikimate
1-carboxyvinyltransferase 1.3.1.43 No

aroC; chorismate synthase 4.2.3.5 Yes

TRP3; anthranilate synthase/indole-3-glycerol phosphate synthase 4.1.3.27 Yes

trp; anthranilate phosphoribosyltransferase 2.4.2.18 Yes

trpF; phosphoribosylanthranilate isomerase 5.3.1.24 Yes

priA; phosphoribosyl isomerase A 5.3.1.16 Yes

trpC; indole-3-glycerol phosphate synthase 4.1.1.48 Yes

TRP; tryptophan synthase 4.2.1.20 Yes

E5.4.99.5; chorismate mutase 5.4.99.5 Yes

tyrA1; chorismate mutase 5.4.99.5 Yes

tyrA; chorismate mutase/prephenate dehydrogenase 5.4.99.5 Yes

pheA1; chorismate mutase 5.4.99.5 Yes

pheA; chorismate mutase/prephenate dehydratase 5.4.99.5 Yes

AROA1, aroA; chorismate mutase 5.4.99.5 Yes

aroH; chorismate mutase 5.4.99.5 Yes

pheB; chorismate mutase 5.4.99.5 Yes

tyrA2; prephenate dehydrogenase 1.3.1.12 No

TYR1; prephenate dehydrogenase (NAP+) 1.3.1.13 No

tyrC; cyclohexadieny/prephenate dehydrogenase 1.3.1.43 No

tyrAa; arogenate dehydrogenase (NAP+) 1.3.1.78 Yes

pheC; cyclohexadienyl dehydratase 4.2.1.51 Yes

AT, PT; arogenate/prephenate dehydratase 4.2.1.91 Yes

GOT1; aspartate aminotransferase, cytoplasmic 2.6.1.1 Yes

TAT; tyrosine aminotransferase 2.6.1.5 Yes

hisC; histidinol-phosphate aminotransferase 2.6.1.9 Yes

tyrB; aromatic-amino-acid transaminase 2.6.1.57 Yes

ARO8; aromatic amino acid aminotransferase I/2-aminoadipate transaminase 2.6.1.57 Yes

ARO9; aromatic amino acid aminotransferase II 2.6.1.58 Yes

pdh; phenylalanine dehydrogenase 1.4.1.20 No

IL4I1; L-amino-acid oxidase 1.4.3.2 No

phhA, PAH; phenylalanine-4-hydroxylase 1.14.16.1 No

hphA; benzylmalate synthase 2.3.3.- No
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hphC; 3-benzylmalate isomerase 4.2.1.- No

hphB; 3-benzylmalate dehydrogenase 1.1.1.- Yes

xanB2; chorismate lyase/3-hydroxybenzoate synthase 4.1.3.40 No

fkbO, rapK; chorismatase 3.3.2.13 No
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dxs; 1-deoxy--xylulose-5-phosphate synthase 2.2.1.7 Yes

dxr; 1-deoxy--xylulose-5-phosphate reductoisomerase 1.1.1.267 Yes

isp; 2-C-methyl--erythritol 4-phosphate cytidylyltransferase 2.7.7.60 Yes

ispE; 4-diphosphocytidyl-2-C-methyl--erythritol kinase 2.7.1.148 Yes

ispF; 2-C-methyl--erythritol 2,4-cyclodiphosphate synthase 4.6.1.12 Yes

gcpE, ispG; (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase 1.17.7.1 Yes

ispH, lytB; 4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase 1.17.7.4 No

ACAT, atoB; acetyl-CoA C-acetyltransferase 2.3.1.9 Yes

HMGCS; hydroxymethylglutaryl-CoA synthase 2.3.3.10 Yes

HMGCR; hydroxymethylglutaryl-CoA reductase (NAPH) 1.1.1.34 Yes

mvaA; hydroxymethylglutaryl-CoA reductase 1.1.1.88 No

MVK, mvaK1; mevalonate kinase 2.7.1.36 Yes

E2.7.4.2, mvaK2; phosphomevalonate kinase 2.7.4.2 Yes

PMVK; phosphomevalonate kinase 2.7.4.2 Yes

MV, mva; diphosphomevalonate decarboxylase 4.1.1.33 Yes

pmd; phosphomevalonate decarboxylase 4.1.1.99 No

ipk; isopentenyl phosphate kinase 2.7.4.26 No

acnX1; mevalonate 5-phosphate dehydratase large subunit 4.2.1.- No

K25518; trans-anhydromevalonate 5-phosphate decarboxylase 4.1.1.- Yes

ubiX, bsdB, PA1; flavin prenyltransferase 2.5.1.129 No

E2.7.1.185; mevalonate-3-kinase 2.7.1.185 No

E2.7.1.186; mevalonate-3-phosphate-5-kinase 2.7.1.186 No

E4.1.1.110; bisphosphomevalonate decarboxylase 4.1.1.110 No

idi, II; isopentenyl-diphosphate elta-isomerase 5.3.3.2 Yes

FPS; farnesyl diphosphate synthase 2.5.1.1 Yes

E2.5.1.68; short-chain Z-isoprenyl diphosphate synthase 2.5.1.68 No

ZFPS; (2Z,6Z)-farnesyl diphosphate synthase 2.5.1.92 No

E2.5.1.86; trans, polycis-decaprenyl diphosphate synthase 2.5.1.86 No

E2.5.1.88; trans, polycis-polyprenyl diphosphate synthase 2.5.1.88 No

hexPS, COQ1; hexaprenyl-diphosphate synthase 2.5.1.82 No

hexs-a; hexaprenyl-diphosphate synthase small subunit 2.5.1.83 No

hepS; heptaprenyl diphosphate synthase component 1 2.5.1.30 Yes

ispB; octaprenyl-diphosphate synthase 2.5.1.90 No

SPS, sds; all-trans-nonaprenyl-diphosphate synthase 2.5.1.84 Yes

PSS1; decaprenyl-diphosphate synthase subunit 1 2.5.1.91 No

uppS; undecaprenyl diphosphate synthase 2.5.1.31 No

NUS1; dehydrodolichyl diphosphate syntase complex subunit NUS1 2.5.1.87 No

uppS, cpdS; tritrans, polycis-undecaprenyl-diphosphate synthase [geranylgeranyl-diphosphate specific Yes

chlP, bchP; geranylgeranyl diphosphate/geranylgeranyl-bacteriochlorophyllide a reductase 1.3.1.83 No

ispS; isoprene synthase 4.2.3.27 No
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FNTA; protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha 2.5.1.58 No

RCE1, FACE2; prenyl protein peptidase 3.4.22.- No

STE24; STE24 endopeptidase 3.4.24.84 No

ICMT, STE14; protein-S-isoprenylcysteine O-methyltransferase 2.1.1.100 No

PCME; prenylcysteine alpha-carboxyl methylesterase 3.1.1.- No

PCYOX1, FCLY; prenylcysteine oxidase/farnesylcysteine lyase 1.8.3.5 No

FOHSR; NAP+-dependent farnesol dehydrogenase 1.1.1.216 No

FLH; NA+-dependent farnesol dehydrogenase 1.1.1.354 No

FOLK; farnesol kinase 2.7.1.216 No

K15793; acyclic sesquiterpene synthase 4.2.3.49 No

3.3. Cytotoxicity and Anticancer Activity of C. sativa Leaf Extracts

The cytotoxicity of the C. sativa extract was clearly affected by different factors such as
concentration, exposure time, and cell line. Results showed high anticancer activity against
gastric adenocarcinoma (AGS) and melanoma cells (A375) (Figure 8).
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Figure 8. Cytotoxicity analysis of the C. sativa leaf extract on different carcinoma and healthy cell
lines. Results for carcinoma cell lines (A549, AGS and A375) after 24 (A) and 72 h of exposure (B).
Results for healthy cell lines (Vero and HFF) after 24 (C) and 72 h of exposure (D).
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Cytotoxicity levels ranging from 50 to 90% for concentrations between 0.0125 and
0.05 mg/mL were observed in both cell lines. In contrast, for Vero and lung carcinoma
cells (A549), these cytotoxicity levels were observed in concentrations between 0.025 and
0.05 mg/mL. This confirms less activity against A549 and significant toxicity against Vero
cells. Surprisingly, results obtained for healthy skin fibroblasts (HFF) showed negligible
toxicity in concentrations between 0.0004 and 0.025 mg/mL (below 10%).

4. Discussion
4.1. GEM Reconstruction, Functional Annotation and Secondary Metabolism of C. sativa

The whole-genome assembly of C. sativa (CBDRx:18:580) obtained by Grassa et al. [44]
serves as the main input for the GEM reconstruction. CBDRx:18:580 was obtained from
the leaf of a female plant grown indoors at 20–25 ◦C [44]. The plant belongs to chemotype
III, which is associated with a high content of cannabidiol-CBD [26]. While this plant
chemotype is widely recognized for its applications in the textile and paper industry, there
exist other significant avenues that present potential opportunities to diversify and enhance
its value chain [6]. Some of these potential uses are in the food industry (thanks to its
nutraceutical value), medicine (thanks to the unique properties of cannabinodiol), and
cosmetics (thanks to the possible effects of cannabinoids in synergy with terpenes) [17].

As for the reconstruction, analysis of the corresponding stoichiometric matrix enables
the identification of topological features of the network. The sparsity pattern is illustrated
in Figure 2. The stoichiometric matrix consists of 1314 rows (metabolites) and 2101 columns
(reactions). Out of a total of 2760714 entries, 8361 (0.302%) are non-zero (nz). Generally,
fewer than 1% of the elements in a genome-scale stoichiometric matrix are non-zero. This
value is particularly useful for comparing models based on the number of metabolites
involved in each reaction. The double upper diagonal appearance observed in the stoi-
chiometric matrix is primarily a result of the ordering of reactions, rather than an intrinsic
feature [62,65]. GEM reconstruction of C. sativa incorporates various compartments, in-
cluding the cytosol, stroma, Golgi, vacuole, cell wall, peroxisome, mitochondria, nucleus,
and endoplasmic reticulum (Supplementary Figure S1). Notably, around 50% of the model
reactions specifically pertain to compartments that play crucial roles in primary metabolism,
such as the cytosol, mitochondria, and plastids. Numerous studies have demonstrated the
relationship between primary and secondary metabolisms in plants and how despite the
great variety of secondary metabolites, only some basic pathways of primary metabolism
function as their precursors [66]. Glycolysis is the precursor of fatty acid biosynthesis,
the mevalonate pathway, and the DXP-MEP pathways, which give rise to a variety of
important terpenes and phenolic compounds such as cannabinoids, flavonoids, and fatty
acids. On the other hand, the Krebs cycle is a primary precursor in the biosynthesis of
glutamate and aspartate, while the shikimate pathway is a precursor in the biosynthesis of
phenylalanine, tyrosine, and tryptophan. This part of the relationship between primary and
secondary metabolism is native to N-containing compounds. Thus, it is possible to affirm
that glycolysis, Krebs cycle and shikimate pathways are the most important precursors in
the reconstruction of the secondary metabolism of C. sativa when researching its potential
as a cosmeceutical, cosmetic, or additive in the food industry (thanks to its properties
derived from terpenes), therapeutic and nutraceutical (thanks to its properties derived
from phenolic compounds such as flavonoids, cannabinoids, alkaloids and N-containing
compounds), potential phytonutrient (thanks to its properties derived from fatty acids), and
many other applications previously mentioned. A significant number of transport reactions
were evidenced in the reconstruction, corresponding to the high flux of metabolites passing
from one compartment to another. These reactions are linked to alkaloids, furanocoumarins,
terpenes, and carotenoids formed in the chloroplast; similarly, sesquiterpenes, sterols, and
hydroxylation steps together with fatty acid synthesis take place in a constant exchange
between the cytosol and the endoplasmic reticulum. Most hydrophilic compounds origi-
nate in the cytosol, whereas the site of alkaloids, non-protein amino acids, glucosinolates,
flavonoids, and carotenoids originate in the vacuole compartment [66].
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4.2. Non-Targeted LC-QTOF-MS Based Metabolomics Data Analysis

In the present study, C. sativa chemotype III (with a phytocannabinoid content con-
sisting of 12.78% CBD, 3.21% CBDA, and 0.54% THC as determined by LC-PDA) was
chosen for the integration of metabolomics data into the reconstruction. The polar extract
used in LC-QTOF-MS facilitates the identification of polar and low volatility compounds,
mainly cannabinoids, some terpenes, and flavonoids [43]. In addition, the LC-QTOF-MS
data show a complementarity between the positive and negative ionization modes. The
positive ionization mode possibly reveals a higher quantity of CBD when compared to the
quantity of THC. However, some THC isomers may play a role in peak discrimination. The
metabolic profile obtained tentatively agrees with the initial chemotype III of the plant and
also corresponds to the chemotype exposed by Grassa [44,67] in obtaining the reference
genome of C. sativa.

LC-QTOF-MS data described high levels of secondary metabolites modules such as
cannabinoids, terpenoids, coumarins, phenylpropanoids, and steroids and notable single
metabolites such as delta-9-THC, cannabidiolic acid, cannabichromene, geranylhydro-
quinone, cannflavin A, pregna-4,9(11)-diene-3,20-dione, and neriantogenin.

The metabolites obtained from the analysis were found to exhibit a diverse range of
chemical structures and functionalities. For the organization and classification of these
metabolites, they were grouped into four distinct clusters. These clusters represent the
main categories of plant secondary metabolites, highlighting the chemical diversity present
in the sample [64] (Figure 7). This clustering approach provides valuable insights into the
composition and distribution of secondary metabolites in the studied plant system [64].

4.2.1. N-Containing Products

Approximately 24,000 known metabolites are considered part of the group of N-
containing compounds [66,68]. These include alkaloids (21,000 known metabolites), amines,
non-protein amino acids, cyanogenic glycosides, glucosinolates, alkamides, lectins, pep-
tides, and polypeptides.

Alkaloids can be defined as nitrogen-containing compounds derived from secondary,
or specialized, metabolism. Their nitrogen compound is derived from an amino acid, and
they are part of a complex ring structure [69]. Although there is an immense diversity of
alkaloids, they all share a biosynthetic origin, derived from the formation and reactivity
of the iminium cation. Its transition from primary to secondary metabolism is considered
the most important as it opens the door to a new chemical space [54]. The first of the four
stages found in alkaloid biosynthesis consists of the accumulation of an amino precursor
from amino acid metabolism; these amino precursors can be divided into two categories:
polyamines derived from lysine, arginine, and ornithine or aromatic amines derived from
tryptophan and tyrosine. In the first case, polyamides are produced through the Krebs
cycle pathway, which generates aspartate as a precursor of lysine and pyrimidines, as
well as glutamate, which functions as a precursor of ornithine, arginine, and non-protein
amino acids [66]. In the second case, the aromatic amines come from the shikimate path-
way, which produces chorismate as a precursor, on one hand from arogenate to produce
tyrosine and phenylalanine and on the other hand from anthranilate to produce trypto-
phan [66] (Figure 6). Tyrosine is the precursor to multiple alkaloid families, including the
benzylisoquinolines, the amaryllidaceae alkaloids, and the betalains.

LC-QTOF-MS data revealed that neurine and cannabisativine are two alkaloids present
in the leaves of the plant, in addition to their previously reported presence in the root of sam-
ples collected in Mexico [12,70]. These cannabis alkaloids have demonstrated antiparasitic,
antipyretic, antiemetic, antitumor, diuretic, and analgesic properties [11,71]. Neurine can be
biosynthesized from choline [72], which has been classified as an essential nutrient for hu-
mans, and additionally, it is a precursor of the osmoprotectant glycine betaine, an enhancer
of osmotic resistance in the plant against drought and salinity [73]. Choline biosynthesis is
thus a potential nutraceutical pathway by which 3 methylation reactions occur, catalyzed in
parallel by the cytosolic enzyme phosphoethanolamine N-methyltransferase (EC 2.1.1.103)
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and mediating the next 2 methylations to produce phosphocholine [73]. Other N-containing
compounds obtained in the LC-QTOF-MS data were glyceryl lactopalmitate, which is used
in the food industry as an emulsifier [74] and belongs to the pyrazole-type alkaloids from
ornithine. Another compound identified was pipercitine, which has proven insecticidal
activity [75] and can be obtained from lysine.

In plants, between 20 and 30% of fixed carbon is invested in the synthesis of pheny-
lalanine and then converted into lignin, which fulfills different roles in structural function
as the most abundant compound in the cell wall, ultraviolet protection, signaling, and
reproduction thanks to volatile anthocyanins and phenylpropanoid/benzenoid [76]. The
latter is the second largest group of volatiles in plants, and they are divided into three
classes according to their carbon backbone: benzenoids (C6–C1), phenylpropanoids (C6–
C3), and phenylpropanoid-related compounds (C6–C2) [77]. Their biosynthesis is based
on the amino acid-derivative pathways of shikimic acid (E.C. 1.1.1.25), which consists of
seven reactions catalyzed by six enzymes and transforms phosphoenolpyruvate (PEP) with
erythrose 4-phosphate (E4P) to chorismite (Figure 6).

4.2.2. Phenolic Compounds: Polyphenols, Phenylpropanoids, Flavonoids

More than 10,000 different structures related to phenolic compounds have been iden-
tified [7]. Forty-two phenolic compounds have been identified in C. sativa [78], of which
twenty-six different flavonoids have been identified [8,16], belonging mainly to two classes,
favonols and favones [79]. The seven chemical structures of the flavonoid aglycones are
orientin, vitexin, isovitexin, apigenin, luteolin, kaempferol, and quercetin.

These phenolic compounds share precursors with compounds derived from the ni-
trogenous pathways and include enzymes such as phenylalanine-ammonia-lyase (PAL),
cinnamate 4-hydroxylase (C4H, a cytochrome P450) and 4-coumarate-CoA ligase (4CL)
(Figure 6). These enzymes transform the aromatic amino acids phenylalanine and tyro-
sine into coenzyme A-activated 4-coumaric acid via the phenyl-propanoid pathway [53].
4-Coumaroyl-CoA gives rise to many different natural products. These include flavones,
aglycones in the form of O- and C-glycosides such as apigenin-8-C-glucoside [80], cann-
flavin A produced by enzymatic precursors such as caffeoyl CoA and feruloyl CoA, and
ligands such as secoisolariciresinol, cannabisin D.

Data extracted from LC-QTOF-MS described some of the unique metabolites of the
species, such as cannflavin A (Table 3). Cannaflavins come from the condensation of three
malonyl molecules to form naringenin chalcone. When the ring is closed, it forms narin-
genin and thanks to the action of flavone synthase, it is possible to produce apigenin, which
is a derivative of luteonyl [16]. Among the reported benefits of flavonoids and particularly
cannabiflavins are their antioxidant and anti-inflammatory activity, and cardioprotective,
neuroprotective, hepatoprotective, and immunomodulatory effects [80]. Other properties
of flavonoids are their flavor, color, and aroma, as well as anti-diabetic and neuroprotective
activities thanks to the modulation of the number of cellular cascade signals [11].

However, there are gaps in our knowledge of the biosynthesis of flavonoids and
therefore the means by which some esters, lignins, flavonoids, and coumarins are formed is
unknown [7].

4.2.3. Fatty Acids Derivates

Fatty acids are often esterified in form of phospholipids, glycerolipids, or sterol back-
bones. Their structure consists of a long chain of hydrogen-bonded carbons, with a terminal
carboxyl group (-COOH) [11]. This functional group is key in their function as energy
reservoirs. In this regard, they provide structure to and energy for cells in the absence
of glucose and participate in the response to low-temperature tolerance. Finally, they are
involved in the production of cholesterol as precursor for the biosynthesis of hormones
such as estrogen, testosterone, vitamin D hormone, steroids, and prostaglandins [55]. These
functions also explain their high nutritional value and pharmaceutical potential.
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Fatty acids are synthesized in plastids and assembled by glycerolipids or triacyl-
glycerols in the endoplasmic reticulum [81]. Fatty acid synthesis is a complex process
involving three main phases: de novo synthesis of fatty acids in the plastidial compartment
from acetyl CoA, desaturation in the chloroplast and elongases, modified reactions such
as hydroxylation, and epoxidation, which take place in the endoplasmic reticulum [82].
Figures 5 and 6 describe in general terms the metabolism of fatty acid biosynthesis.

About 22% of metabolites detected in this non-targeted LC-QTOF-MS metabolomic
analysis of a C. sativa sample are involved in different reactions related to the fatty acid
biosynthesis. As products of de novo fatty acid synthesis, palmitoleic acid and other
linolenic acids (13-Hydroxyoctadecatrienic acid, octadecatetraenoic acid, and trihydroxy-
octadecadienoic acid) were identified. It has been reported that increasing the dietary
intake of these fatty acids reduces the risk of coronary heart disease [83] due to inhibition
of coagulation, improvement of glucose homeostasis, and attenuation of inflammation. On
the other hand, fatty acids metabolized via modifiable reactions increase the production
of vitamin E, prostacyclin, prostaglandins, leukotrienes, and hydroxy and hydroperoxy
fatty acids, which have been reported to be involved in the modulation of cell growth,
angiogenesis, inflammation, thrombosis, immune response, inhibition of carcinogenesis
and tumor growth, and stimulation of cancer cells apoptosis, among others [84,85].

4.2.4. Terpenes

Terpenes are hydrocarbon compounds made up of 5C units called isoprenes. They
are classified according to these units’ size. Their biosynthesis is mediated by the cytosolic
mevalonate (MVA) pathway, which provides farnesyl diphosphate (FPP) for sesquiter-
penoids (C15) and squalene as precursors for triterpenoids (C30) and sterols. Alternatively,
they might come from the patricidal DOXP/MEP pathway, which provides GPP to form
monoterpenoids [8] (Figure 6). Almost 30% of the data obtained via LC-QTOF-MS are
related to various terpenes and terpenoids. These compounds have shown multiple ther-
apeutic benefits, including suppressing the immune system response against COVID-19,
and inhibition in many species of bacteria and fungi [11]. Additionally, they have been
reported to exhibit antimicrobial, repellant, antiallergy, anticancer, antifungal, antibacte-
rial, antioxidant, anti-inflammatory, antidepressant, sedative, anticonvulsant, analgesic,
gastroprotective, and antispasmoic properties [11].

The main precursors of the metabolites identified from LC-QTOF-MS metabolomics
data were described and used for integration in the metabolic reconstruction (Table 4).
The integrated data are mainly primary precursors for metabolic modules of interest: an-
thocyanin biosynthetic pathway which is an extension of flavonoid pathway; fatty acid
biosynthesis, degradation, and elongation; phenylalanine, tyrosine, and tryptophan biosyn-
thesis; and terpenoid backbone biosynthesis. After data integration, the reconstruction
increased by 297 active reactions and 118 metabolites.

4.3. Cytotoxicity and Anticancer Activity of C. sativa Leaf Extracts

The obtained results confirmed the remarkable anticancer activity of the C. Sativa
extracts against different carcinoma cell lines (AGS, A375 and A549). This agreed well
with previous works that studied the anticancer activity of C. sativa on different cell lines
such as melanoma [20], ovarian cancer [21], prostate cancer [22], and breast and pancreatic
cancer [16], among others. The results are also in agreement with the biological activities
based on both the chemotype and the extraction taken from the leaves of the plant. Manosroi
et al. [86] demonstrated that the ethanolic extract of the leaves and seeds of the C. sativa
plant chemotype III, exhibited cytotoxicity activity against B16F10 melanoma cells in a
concentration dependent manner (cytotoxicity of 46% at 1 mg/mL and total inhibition
at 10 mg/mL). Additionally, both leaf and seed extracts demonstrated negligible toxicity
against human skin fibroblast (viability above 80% for concentration below 0.5 mg/mL)
confirming high biocompatibility.
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The notable activity against melanoma cells combined with the negligible impact on
healthy human skin cells confirms the great pharmacological potential that makes them
suitable candidates for the development of new-generation topical treatments with reduced
side effects, especially for melanoma, the most common and aggressive type of skin cancer.
These findings have been confirmed in several works presenting promising results, both
in vitro [87] and in vivo [20].

On the other hand, the potential selective toxicity of C. sativa leaf extracts has been
widely studied in order to develop novel therapies with reduced negative side effects.
Janatová and colleagues [15] evaluated selectivity by comparing the toxicity of six different
genotypes of medical cannabis against three cancer cell lines (Ht-29, Caco-2, and Hep-
G2) and two healthy cell lines (FHs 74 Int: healthy intestinal cells and MRC-5: healthy
lung fibroblast). They demonstrated that the compound content of the different geno-
types strongly affects selectivity. Highlighting specific compounds such as myrcene, β-
elemene, β-selinene, and α-bisabolol oxid as enhancers of selectivity and β-ocimene and
β-caryophyllene oxide as cytotoxicity-associated molecules. Selectivity is therefore deter-
mined by the plant genotype (chemical profile and content) and by the specific cell line.

In consequence, these findings can explain the selectivity differences between all
the different evaluated cell lines, especially, the significant increase of cytotoxicity ob-
served in Vero cells. Furthermore, the obtained toxicity profiles against Vero cells agree
strongly with previously reported articles. For example, Lamdabsri and coworkers [88]
showed that the toxicity of cannabis extracts against Vero cells is highly influenced by
compound content, reporting high toxicity in the crude and CBN extracts (IC50 of 13.4 and
10.6 µg/mL, respectively) and lower toxicity in the CBG, CBD, and THC (IC50 699.7, 39.77
and 67.2 µg/mL, respectively).

5. Conclusions

GEM reconstruction of C. sativa contributes to better understanding of cellular pheno-
types and metabolic behavior [41,89] in terms of the identification of different biosynthetic
pathways by integrating omics data and experimental anticancer results. Using the cur-
rent model, it is possible to explore different biosynthetic pathways for many valuable
compounds, especially those of major interest to the scientific community and which
represent a significant opportunity to improve the value chain for C. sativa. The high
number of reactions observed in the cytosol, plastids, and mitochondria compartments
confirms the significance of primary metabolic pathways such as glycolysis, the Krebs cycle,
and the shikimate pathway. These pathways play a crucial role as principal precursors
for secondary metabolites, including cannabinoids, flavonoids, fatty acids, and nitrogen-
containing compounds. Transport reactions have a crucial role in facilitating the exchange
of metabolites between different cellular compartments. This is especially important in
compartments such as the chloroplast, cytosol, endoplasmic reticulum, and vacuole, which
are related to the synthesis of various metabolites, including alkaloids, terpenes, sterols,
and hydrophilic compounds.

On the other hand, the LC-QTOF-MS metabolomics analysis provided insights into the
diverse chemical composition and distribution of secondary metabolites in C. sativa. The
LC-QTOF-MS data revealed a high abundance of secondary metabolite modules such as
cannabinoids, terpenoids, coumarins, phenylpropanoids, and steroids. Specific metabolites
identified included delta-9-THC, cannabidiolic acid, cannabichromene, geranylhydro-
quinone, cannflavin A, pregna-4,9(11)-diene-3,20-dione, and neriantogenin. These metabo-
lites exhibit a range of biological activities and potential therapeutic benefits. Additionally,
these metabolites contributed to the integration of the reconstruction, demonstrating that
the use of omics contributes to the activation of a greater number of reactions that are
required for the synthesis of metabolites in the reconstruction.

Finally, regarding to the cytotoxicity and anticancer activity of C. sativa, it can be con-
cluded that although extracts demonstrated low selectivity in Vero cells, their remarkable
selectivity against melanoma cells compared to the healthy skin fibroblast leaves an open
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window for continuing studies on C. sativa leaf extract as a potential candidate for the
development of new-generation treatments for skin cancer with reduced side effects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13070788/s1, Figure S1: Number of reactions per compart-
ment in metabolic reconstruction. Figure S2: Glycolysis in GEM reconstruction of C. sativa; Figure S3:
Chromatogram of the main ions extracted from C. sativa. (A) ESI (+) detection mode. (B) ESI (−)
detection mode; Figure S4: Fluxer nodes and edge representation of metabolic reconstruction of C.
sativa model; Figure S5: Fluxer nodes and edge representation of metabolic reconstruction of AraGEM
model; Table S1: Biomass compounds in the objective function; Spreadsheet S1: CannGEM.xls.
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