Skip to main content

Advertisement

Log in

Chytrid in the clouds: an alternative passive transport of a lethal pathogen for amphibians

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fog is an important water input in ecosystems and a carrier of microorganisms, including unicellular pathogens. The aquatic amphibian-killing fungus, Batrachochytrium dendrobatidis (Bd), has a complex transport dynamic. Understanding how the exposure of amphibians to Bd can occur is important for the development of control measurements and for preventing die-offs. Therefore, we tested if the fog water may transport Bd. We collected fog and rainwater in Brazil’s Atlantic Forest and experimentally tested if Bd from artificial and natural fog exposures would infect amphibians. We report the first evidence of Bd DNA in fog and corroborate previous data documenting Bd DNA in rainwater. Furthermore, our results indicate that susceptible hosts can be infected and develop lethal chytridiomycosis through the passive transport of Bd live zoospores by the artificial fog. Our results extend the current knowledge about Bd transport pathways between environmental reservoirs. A new short- to medium-range dispersal pathway through fog may explain patterns of pathogen occurrence and opens new avenues of investigation to elucidate exposure mechanisms of direct-developing amphibians to aquatic pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Aylor, D., 1999. Biophysical scaling and the passive dispersal of fungus spores: relationship to integrated pest management strategies. Agricultural and Forest Meteorology 97: 275–292.

    Article  Google Scholar 

  • Aylor, D. E., 2003. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology 84: 1989–1997. https://doi.org/10.1890/01-0619.

    Article  Google Scholar 

  • Becker, C. G., C. R. Fonseca, C. F. B. Haddad, R. F. Batista & P. I. Prado, 2007. Habitat split and the global decline of amphibians. Science 318: 1775–1777. https://doi.org/10.1126/science.1149374.

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt, P. R. L., F. de V. Barros, C. B. Eller, C. S. Müller & R. S. Oliveira, 2019. The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate. Agricultural and Forest Meteorology 265: 359–369.

    Article  Google Scholar 

  • Boyle, D., D. Boyle, V. Olsen, J. Morgan & A. Hyatt, 2004. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60: 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Bruijnzeel, L. A., 2001. Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research 1: 1–1.

    Google Scholar 

  • Burns, T. J., B. C. Scheele, L. A. Brannelly, N. Clemann, D. Gilbert & D. A. Driscoll, 2021. Indirect terrestrial transmission of amphibian chytrid fungus from reservoir to susceptible host species leads to fatal chytridiomycosis. Animal Conservation 24: 602–612. https://doi.org/10.1111/acv.12665.

    Article  Google Scholar 

  • Butterworth, J. & H. A. McCartney, 1991. The dispersal of bacteria from leaf surfaces by water splash. Journal of Applied Bacteriology 71: 484–496. https://doi.org/10.1111/j.1365-2672.1991.tb03822.x.

    Article  Google Scholar 

  • Carmichael, M. J., J. C. White, S. T. Cory, Z. C. Berry & W. K. Smith, 2020. Foliar water uptake of fog confers ecophysiological benefits to four common tree species of southeastern freshwater forested wetlands. Ecohydrology. https://doi.org/10.1002/eco.2240.

    Article  Google Scholar 

  • Castello, J. D., 1995. Detection of infectious tomato mosaic tobamovirus in fog and clouds. Phytopathology 85: 1409.

    Article  Google Scholar 

  • Douwes, J., P. Thorne, N. Pearce & D. Heederik, 2003. Bioaerosol health effects and exposure assessment: progress and prospects. The Annals of Occupational Hygiene 47: 187–200.

    CAS  PubMed  Google Scholar 

  • Dueker, M. E., G. D. O’Mullan, K. C. Weathers, A. R. Juhl & M. Uriarte, 2012. Coupling of fog and marine microbial content in the near-shore coastal environment. Biogeosciences 9: 803–813.

    Article  Google Scholar 

  • Evans, S. E., M. E. Dueker, J. R. Logan & K. C. Weathers, 2019. The biology of fog: results from coastal Maine and Namib Desert reveal common drivers of fog microbial composition. Science of the Total Environment 647: 1547–1556.

    Article  CAS  PubMed  Google Scholar 

  • Frost, D. R, 2023. Amphibian Species of the World: an Online Reference. Version 6.1 (Date of access). Electronic Database accessible at https://amphibiansoftheworld.amnh.org/index.php. American Museum of Natural History, New York, USA. https://doi.org/10.5531/db.vz.0001

  • Fuzzi, S., P. Mandrioli & A. Perfetto, 1997. Fog droplets—an atmospheric source of secondary biological aerosol particles. Atmospheric Environment 31: 287–290.

    Article  CAS  Google Scholar 

  • Gleason, F. H., M. Kagami, E. Lefevre & T. Sime-Ngando, 2008. The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biology Reviews 22: 17–25.

    Article  Google Scholar 

  • Greenspan, S. E., C. Lambertini, T. Carvalho, T. Y. James, L. F. Toledo, C. F. B. Haddad & C. G. Becker, 2018. Hybrids of amphibian chytrid show high virulence in native hosts. Scientific Reports 8: 9600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gultepe, I., R. Tardif, S. C. Michaelides, J. Cermak, A. Bott, J. Bendix, M. D. Müller, M. Pagowski, B. Hansen, G. Ellrod, W. Jacobs, G. Toth & S. G. Cober, 2007. Fog research: a review of past achievements and future perspectives. Pure and Applied Geophysics 164: 1121–1159. https://doi.org/10.1007/s00024-007-0211-x.

    Article  Google Scholar 

  • Huffman, J. A., A. J. Prenni, P. J. DeMott, C. Pöhlker, R. H. Mason, N. H. Robinson, J. Fröhlich-Nowoisky, Y. Tobo, V. R. Després, E. Garcia, D. J. Gochis, E. Harris, I. Müller-Germann, C. Ruzene, B. Schmer, B. Sinha, D. A. Day, M. O. Andreae, J. L. Jimenez, M. Gallagher, S. M. Kreidenweis, A. K. Bertram & U. Pöschl, 2013. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric Chemistry and Physics 13: 6151–6164.

    Article  Google Scholar 

  • IPCC, 2021: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, https://doi.org/10.1017/9781009157896.

  • Johnson, M. L. & R. Speare, 2003. Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerging Infectious Diseases 9: 915–921.

    Article  Google Scholar 

  • Johnson, M. & R. Speare, 2005. Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Diseases of Aquatic Organisms 65: 181–186.

    Article  PubMed  Google Scholar 

  • Joung, Y. S. & C. R. Buie, 2015. Aerosol generation by raindrop impact on soil. Nature Communications 6: 6083.

    Article  PubMed  Google Scholar 

  • Joung, Y. S., Z. Ge & C. R. Buie, 2017. Bioaerosol generation by raindrops on soil. Nature Communications 8: 14668.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirshtein, J., C. Anderson, J. Wood, J. Longcore & M. Voytek, 2007. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Diseases of Aquatic Organisms 77: 11–15.

    Article  CAS  PubMed  Google Scholar 

  • Kolby, J. E., S. D. Ramirez, L. Berger, D. W. Griffin, M. Jocque & L. F. Skerratt, 2015a. Presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) in rainwater suggests aerial dispersal is possible. Aerobiologia 31: 411–419. https://doi.org/10.1007/s10453-015-9374-6.

    Article  Google Scholar 

  • Kolby, J. E., S. D. Ramirez, L. Berger, K. L. Richards-Hrdlicka, M. Jocque & L. F. Skerratt, 2015b. Terrestrial dispersal and potential environmental transmission of the amphibian chytrid fungus (Batrachochytrium dendrobatidis). PLoS One 10: e0125386. https://doi.org/10.1371/journal.pone.0125386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriger, K., J. Hero & K. Ashton, 2006. Cost efficiency in the detection of chytridiomycosis using PCR assay. Diseases of Aquatic Organisms 71: 149–154.

    Article  CAS  PubMed  Google Scholar 

  • Lambertini, C., D. Rodriguez, F. B. Brito, S. Leite & L. F. Toledo, 2013. Diagnóstico do fungo quitrídio: Batrachochytrium dendrobatidis. Herpetologia Brasileira 2: 12–17.

    Google Scholar 

  • Lambertini, C., C. G. Becker, T. S. Jenkinson, D. Rodriguez, D. da Silva Leite, T. Y. James, K. R. Zamudio & L. F. Toledo, 2016. Local phenotypic variation in amphibian-killing fungus predicts infection dynamics. Fungal Ecology 20: 15–21.

    Article  Google Scholar 

  • Liew, N., M. J. Mazon Moya, C. J. Wierzbicki, M. Hollinshead, M. J. Dillon, C. R. Thornton, A. Ellison, J. Cable, M. C. Fisher & S. Mostowy, 2017. Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nature Communications 8: 15048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longcore, J. E., A. P. Pessier & D. K. Nichols, 1999. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91: 219.

    Article  Google Scholar 

  • Longo, A. V. & P. A. Burrowes, 2010. Persistence with chytridiomycosis does not assure survival of direct-developing frogs. EcoHealth 7: 185–195. https://doi.org/10.1007/s10393-010-0327-9.

    Article  PubMed  Google Scholar 

  • Luisetto, M., B. A. Nili, K. Edbey, G. R. Mashori, A. Y. Rafa & O. Y. Latishev, 2021. Bioaerosols and corona virus diffusion, transmission, carriers, viral size, surfaces properties and other factor involved. International Journal of Medicine and Healthcare Reports 1: 1004.

    Google Scholar 

  • Magyar, D., M. Vass & D. W. Li, 2016. Dispersal strategies of microfungi. In Li, D. W. (ed), Biology of microfungi Springer, Cham: 315–371. https://doi.org/10.1007/978-3-319-29137-6_14.

    Chapter  Google Scholar 

  • Maldonado-Ramirez, S. L., D. G. Schmale, E. J. Shields & G. C. Bergstrom, 2005. The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology 132: 20–27.

    Article  Google Scholar 

  • Mesquita, A. F. C., C. Lambertini, M. Lyra, L. R. Malagoli, T. Y. James, L. F. Toledo, C. F. B. Haddad & C. G. Becker, 2017. Low resistance to chytridiomycosis in direct-developing amphibians. Scientific Reports 7: 16605.

    Article  PubMed  PubMed Central  Google Scholar 

  • Money, N. P., 2016. Spore production, discharge, and dispersal. In Money, N. P. (ed), The fungi Academic Press, Cambridge: 67–97.

    Chapter  Google Scholar 

  • Montero, A., M. E. Dueker & G. D. O’Mullan, 2016. Culturable bioaerosols along an urban waterfront are primarily associated with coarse particles. PeerJ 4: e2827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moura-Campos, D., S. E. Greenspan, G. V. DiRenzo, W. J. Neely, L. F. Toledo & C. G. Becker, 2021. Fungal disease cluster in tropical terrestrial frogs predicted by low rainfall. Biological Conservation 261: 109246.

    Article  Google Scholar 

  • Muletz-Wolz, C. R., S. E. Barnett, G. V. DiRenzo, K. R. Zamudio, L. F. Toledo, T. Y. James & K. R. Lips, 2019. Diverse genotypes of the amphibian-killing fungus produce distinct phenotypes through plastic responses to temperature. Journal of Evolutionary Biology 32: 287–298. https://doi.org/10.1111/jeb.13413.

    Article  PubMed  Google Scholar 

  • Nilsson, M., H. De Maeyer & M. Allen, 2022. Evaluation of different cleaning strategies for removal of contaminating DNA molecules. Genes 13: 162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Oceanic & Atmospheric Administration, 1995. Surface weather observations and reports. Federal Meteorological Handbook, 1: 94

  • Piotrowski, J. S., S. L. Annis & J. E. Longcore, 2004. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96: 9.

    Article  PubMed  Google Scholar 

  • Pontes, M., G. Augusto-Alves, C. Lambertini & L. F. Toledo, 2018. A lizard acting as carrier of the amphibian-killing chytrid Batrachochytrium dendrobatidis in southern Brazil. Acta Herpetologica 13: 201–205.

    Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Rachowicz, L. & V. Vredenburg, 2004. Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Diseases of Aquatic Organisms 61: 75–83.

    Article  PubMed  Google Scholar 

  • Rees, H. C., B. C. Maddison, D. J. Middleditch, J. R. M. Patmore & K. C. Gough, 2014. REVIEW: The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51: 1450–1459. https://doi.org/10.1111/1365-2664.12306.

    Article  CAS  Google Scholar 

  • Ribeiro, L. P., T. Carvalho, C. G. Becker, T. S. Jenkinson, D. da S. Leite, T. Y. James, S. E. Greenspan & L. F. Toledo, 2019. Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Scientific Reports 9: 13422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritter, A., C. M. Regalado & J. C. Guerra, 2019. The impact of climate change on water fluxes in a Macaronesian cloud forest. Hydrological Processes 33: 2828–2846. https://doi.org/10.1002/hyp.13523.

    Article  Google Scholar 

  • Scheele, B. C., F. Pasmans, L. F. Skerratt, L. Berger, A. Martel, W. Beukema, A. A. Acevedo, P. A. Burrowes, T. Carvalho, A. Catenazzi, I. De la Riva, M. C. Fisher, S. V. Flechas, C. N. Foster, P. Frías-Álvarez, T. W. J. Garner, B. Gratwicke, J. M. Guayasamin, M. Hirschfeld, J. E. Kolby, T. A. Kosch, E. La Marca, D. B. Lindenmayer, K. R. Lips, A. V. Longo, R. Maneyro, C. A. McDonald, J. Mendelson, P. Palacios-Rodriguez, G. Parra-Olea, C. L. Richards-Zawacki, M.-O. Rödel, S. M. Rovito, C. Soto-Azat, L. F. Toledo, J. Voyles, C. Weldon, S. M. Whitfield, M. Wilkinson, K. R. Zamudio & S. Canessa, 2019. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363: 1459–1463. https://doi.org/10.1126/science.aav0379.

    Article  CAS  PubMed  Google Scholar 

  • Stetzenbach, L. D., 2009. Airborne infectious microorganisms. Encyclopedia of Microbiology. https://doi.org/10.1016/B978-012373944-5.00177-2.

    Article  PubMed Central  Google Scholar 

  • Toledo, L. F., J. Ruggeri, L. L. de Campos, M. Martins, S. Neckel-Oliveira & C. P. B. Breviglieri, 2021. Midges not only sucks, but may carry lethal pathogens to wild amphibians. Biotropica 53: 722–725. https://doi.org/10.1111/btp.12928.

    Article  Google Scholar 

  • Torregrosa, A., T. A. O’Brien & I. C. Faloona, 2014. Coastal fog, climate change, and the environment. Eos, Transactions American Geophysical Union 95: 473–474. https://doi.org/10.1002/2014EO500001.

    Article  Google Scholar 

  • Van Rooij, P., A. Martel, F. Haesebrouck & F. Pasmans, 2015. Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Veterinary Research 46: 137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voyles, J., L. R. Johnson, J. Rohr, R. Kelly, C. Barron, D. Miller, J. Minster & E. B. Rosenblum, 2017. Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima. Oecologia 184: 363–373. https://doi.org/10.1007/s00442-017-3866-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, S., M. Baldi Salas, D. Jenkins, T. Garner, A. Cunningham, A. Hyatt, J. Bosch & M. Fisher, 2007. Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Diseases of Aquatic Organisms 77: 105–112.

    Article  PubMed  Google Scholar 

  • Wang, L., K. F. Kaseke & M. K. Seely, 2017. Effects of non-rainfall water inputs on ecosystem functions. Wires Water. https://doi.org/10.1002/wat2.1179.

    Article  Google Scholar 

  • Wei, M., C. Xu, J. Chen, C. Zhu, J. Li, & G. Lv, 2016. Characteristics of bacterial community in fog water at Mt. Tai: similarity and disparity under polluted and non-polluted fog episodes. Clouds and Precipitation/Field Measurements/Troposphere/Physics (physical properties and processes), https://acp.copernicus.org/preprints/acp-2016-776/acp-2016-776.pdf.

  • Woodhams, D., C. Geiger, L. Reinert, L. Rollins-Smith, B. Lam, R. Harris, C. Briggs, V. Vredenburg & J. Voyles, 2012. Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Diseases of Aquatic Organisms 98: 11–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank João P. Bovolon and Joice Ruggeri for support in the field; Ana Clara F. Barbosa for assistance in the laboratory; László K. Nagy for contributing with samples from PECJ and Luisa P. Ribeiro for filtering and carrying out the DNA extraction and qPCR of some rainwater samples; Domingos S. Leite, Raul C. Pereira, Paulo S. M. C. Oliveira, Rafael S. Oliveira, Carla M. Lopes, Carol Lambertini, Marcelo Sturaro, and Martin Pareja for previous discussions about the project. We thank the anonymous reviewers for their helpful comments on an earlier draft of this paper. Grants and fellowships were provided by São Paulo Research Foundation (FAPESP #2016/25358-3; #2019/18335-5; #2020/00099-0; #2020/02991-8; #2020/02994-7), the National Council for Scientific and Technological Development (CNPq #300896/2016-6; #302834/2020-6), and by the Coordination for the Improvement of Higher Education Personnel (CAPES—Finance Code 001).

Funding

This work was supported by São Paulo Research Foundation (FAPESP #2016/25358-3; #2019/18335-5; #2020/02991-8; #2020/00099-0), the National Council for Scientific and Technological Development (CNPq #300896/2016–6; #302834/2020-6), and by the Coordination for the Improvement of Higher Education Personnel (CAPES—Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joelma S. Prado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado, J.S., Ernetti, J.R., Pontes, M.R. et al. Chytrid in the clouds: an alternative passive transport of a lethal pathogen for amphibians. Hydrobiologia 850, 2061–2073 (2023). https://doi.org/10.1007/s10750-023-05218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05218-2

Keywords

Navigation