Skip to main content

Advertisement

Log in

Conservation genomics reveals low connectivity among populations of threatened roseate terns (Sterna dougallii) in the Atlantic Basin

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

While the effects of barriers to dispersal such as population declines, habitat fragmentation, and geographic distance have been well-documented in terrestrial wildlife, factors impeding the dispersal of highly vagile taxa such as seabirds are less well understood. The roseate tern (Sterna dougallii) is a globally distributed seabird species, but populations tend to be both fragmented and small, and the species is declining across most of its range. We evaluated structuring of roseate tern populations in the Northwestern Atlantic, the Caribbean, and the Azores using both microsatellite markers and single-nucleotide polymorphisms generated through targeted sequencing of Ultra-conserved Elements. For both marker types, we found significant genetic differentiation among all 3 populations and evidence for moderate contemporary unidirectional gene flow from the Caribbean to the Azores, but not between other populations. Within the Caribbean population, we found high rates of unidirectional migration from the Virgin Islands to Florida, potentially indicative of movement from source population to sink or an artifact of dispersal among other unsampled populations in the Caribbean region. These observations have significance for species persistence in the Atlantic, as our results indicate that loss of genetic diversity within populations is unlikely to be buffered by inflow of new alleles from other breeding populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Raw sequence data were deposited in the NCBI Sequence Read Archive (PRJNA847596). Genetic data for this paper are also available through USGS ScienceBase at https://doi.org/10.5066/P9MTXDCH (Byerly et al. 2022). Related metadata, including individual sample identifiers with sampling region and corresponding SNP and microsatellite loci, as well as all code used to generate data, can be found at https://github.com/pabyerly/RoseateTern_PopulationGenetics.

References

  • Barbraud C, Delord K (2020) Selection against immigrants in wild seabird populations. Ecol Lett. https://doi.org/10.1111/ele.13624

    Article  PubMed  Google Scholar 

  • Beerli P (2004) Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol Ecol 13:827–836

    Article  PubMed  Google Scholar 

  • Bensch S, Hasselquist D, Bo N, Hansson B (1998) Higher fitness for philopatric than for immigrant males in a semi-isolated population of great reed warblers. Evolution 52:877–883

    Article  PubMed  Google Scholar 

  • Bicknell AWJ, Knight ME, Bilton D, Reid JB, Burke T, Votier SC (2012) Population genetic structure and long-distance dispersal among seabird populations: implications for colony persistence. Mol Ecol 21:2863–2876

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics btu170

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Byerly PA, Chesser RT, Fleischer RC, McInerney N, Przelomska NAS, Leberg PL (2022) Museum genomics provide evidence for persistent genetic differentiation in a threatened seabird species in the western Atlantic. Integr Comp Biol. https://doi.org/10.1093/icb/icac107

    Article  PubMed  Google Scholar 

  • Byerly PA, Chesser RT, Fleischer RC, McInerney N, Przelomska N, Leberg PL (2022) Conservation genomics reveals low connectivity among populations of threatened roseate terns (Sterna dougallii) in the Atlantic Basin. USGS. https://doi.org/10.5066/P93VPW1V

  • Carøe C, Gopalakrishnan S, Vinner L, Mak SST, Sinding MHS, Samaniego JA, Wales N, Sicheritz-Pontén T, Gilbert MTP (2018) Single-tube library preparation for degraded DNA. Methods Ecol Evol 9:410–419

    Article  Google Scholar 

  • Chapuis M, Estoup A (2007) FreeNA manual. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chen KY, Marschall EA, Sovic MG, Fries AC, Gibbs HL, Ludsin SA (2018) assignPOP: an R package for population assignment using genetic, non-genetic, or integrated data in a machine-learning framework. Methods Ecol Evol 9:439–446

    Article  Google Scholar 

  • Chesser RK (1991) Influence of gene flow and breeding tactics on gene diversity within populations. Genetics 129:573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connan M, Teske PR, Tree AJ, Whittington PA, Mcquaid CD (2015) Subspecies assessment of Antarctic terns (Sterna vittata) overwintering on the South African coast: evidence from morphology, genetics and stable isotopes. Emu 115:223–236

    Article  Google Scholar 

  • Cornuet J-M, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristofari R, Plaza P, Fernández CE, Trucchi E, Gouin N, Le Bohec C, Zavalaga C, Alfaro-Shigueto J, Luna-Jorquera G (2019) Unexpected population fragmentation in an endangered seabird: the case of the Peruvian diving-petrel. Sci Rep 9:2021

    Article  PubMed  PubMed Central  Google Scholar 

  • Danckwerts DK, Humeau L, Pinet P, McQuaid CD, Le Corre M (2021) Extreme philopatry and genetic diversification at unprecedented scales in a seabird. Sci Rep 11:1–12

    Article  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daunt F, Mitchell I (2013). Impacts of climate change on seabirds. MCCIP Sci Rev 125–133

  • Dayton J, Szczys P (2021) Metapopulation connectivity retains genetic diversity following a historical bottleneck in a federally endangered seabird. Ornithol Appl 123:duab037. https://doi.org/10.1093/ornithapp/duab037

    Article  Google Scholar 

  • DeSaix MG, Bulluck LP, Eckert AJ, Viverette CB, Boves TJ, Reese JA, Tonra CM, Dyer RJ (2019) Population assignment reveals low migratory connectivity in a weakly structured songbird. Mol Ecol 28:2122–2135

    Article  PubMed  Google Scholar 

  • Dias MP, Martin R, Pearmain EJ, Burfield IJ, Small C, Phillips RA, Yates O, Lascelles B, Borboroglu PG, Croxall JP (2019) Threats to seabirds: a global assessment. Biol Cons 237:525–537

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • England PR, Cornuet JM, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv Genet 7:303–308

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Everson KM, McLaughlin JF, Cato IA, Evans MM, Gastaldi AR, Mills KK, Shink KG, Wilbur SM, Winker K (2019) Speciation, gene flow, and seasonal migration in Catharus thrushes (Aves: Turdidae). Mol Phylogenet Evol 139:106564

    Article  PubMed  Google Scholar 

  • Faircloth BC (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32:786–788

    Article  CAS  PubMed  Google Scholar 

  • Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 61:717–726

    Article  PubMed  Google Scholar 

  • Faria PJ, Baus E, Morgante JS, Bruford MW (2007) Challenges and prospects of population genetic studies in terns (Charadriiformes, Aves). Genet Mol Biol 30:681–689

    Article  CAS  Google Scholar 

  • Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166

    Article  PubMed  Google Scholar 

  • Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, Holderegger R, Widmer A (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:1–15

    Article  Google Scholar 

  • Fogelqvist J, Niittyvuopio A, Ågren J, Savolainen O, Lascoux M (2010) Cryptic population genetic structure: the number of inferred clusters depends on sample size. Mol Ecol Resour 10:314–323

    Article  PubMed  Google Scholar 

  • Francis RM (2016) POPHELPER: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32

  • Funk WC, Forester BR, Converse SJ, Darst C, Morey S (2018) Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act: decisions for conservation practitioners and geneticists. Conserv Genet 20:115–134

    Article  Google Scholar 

  • García-Quismondo M, Nisbet ICT, Mostello C, Reed JM (2018) Modeling population dynamics of roseate terns (Sterna dougallii) in the Northwest Atlantic Ocean. Ecol Model 368:298–311

    Article  Google Scholar 

  • Genovart M, Oro D, Bonhomme F (2003) Genetic and morphological differentiation between the two largest breeding colonies of Audouin’s gull Larus audouinii. Ibis 145:448–456

    Article  Google Scholar 

  • Gochfeld M, Burger J (2020) Roseate Tern (Sterna dougallii), version 1.0. In: Billerman SM (ed) Birds of the world. Cornell Lab of Ornithology, Ithaca. https://doi.org/10.2173/bow.roster.01

  • Gómez-Díaz E, González-Solís J, Peinado MA (2009) Population structure in a highly pelagic seabird, the Cory’s shearwater Calonectris diomedea: an examination of genetics, morphology and ecology. Mar Ecol Prog Ser 382:197–209

    Article  Google Scholar 

  • Gore JA, Hovis JA, Sprandel GL, Douglass NJ (2007) Distribution and abundance of breeding seabirds along the coast of Florida, 1998–2000. Final Performance Report. Florida Fish and Wildlife Conservation Commission, Tallahassee

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson KD, Vickers TW, Boyce WM, Ernest HB (2017) A single migrant enhances the genetic diversity of an inbred puma population. R Soc Open Sci 4:170115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hailer F, Schreiber EA, Miller JM, Levin II, Parker PG, Chesser RT, Fleischer RC (2011) Long-term isolation of a highly mobile seabird on the Galapagos. Proc Biol Sci R Soc 278:817–825

    Article  Google Scholar 

  • Hays H, Lima PC, Monteiro L, DiCostanzo J, Cormons GD, Nisbet ICT, Saliva JE, Spendelow JA, Burger J, Pierce J, Gochfeld M (1999) A nonbreeding concentration of roseate and common terns in Bahia, Brazil. J Field Ornithol 70:455–464

    Google Scholar 

  • Hays H, Neves VC, Lima P (2002) Banded roseate terns from different continents trapped in the Azores. J Field Ornithol 73:180–184

    Article  Google Scholar 

  • Herman RW, Winger BM, Dittmann DL, Harvey MG (2022) Fine-scale population genetic structure and barriers to gene flow in a widespread seabird (Ardenna pacifica). Biol J Linnean Soc 1–12

  • Hess GR (1996) Linking extinction to connectivity and habitat destruction in metapopulation. Am Nat 148:226–236

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hoban S, Bruford M, D’Urban Jackson J, Lopes-Fernandes M, Heuertz M, Hohenlohe PA, Paz-Vinas I, Sjögren-Gulve P, Segelbacher G, Vernesi C, Aitken S, Bertola LD, Bloomer P, Breed M, Rodríguez-Correa H, Funk WC, Grueber CE, Hunter ME, Jaffe R, Liggins L, Mergeay J, Moharrek F, O’Brien D, Ogden R, Palma-Silva C, Pierson J, Ramakrishnan U, Simo-Droissart M, Tani N, Waits L, Laikre L (2020) Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Cons 248:108654

    Article  Google Scholar 

  • Janes JK, MillerDupuis JMJR, Malenfant RM, Gorrell JC, Cullingham CI, Andrew RL (2017) The K = 2 conundrum. Mol Ecol 26:3594–3602

    Article  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632

    Article  CAS  PubMed  Google Scholar 

  • Keenan K, Mcginnity P, Cross TF, Crozier WW, Prodöhl PA (2013) DiveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Kersten O, Star B, Leigh DM, Anker-Nilssen T, Strøm H, Danielsen J, Descamps S, Erikstad KE, Fitzsimmons MG, Fort J, Hansen ES, Harris MP, Irestedt M, Kleven O, Mallory ML, Jakobsen KS, Boessenkool S (2021) Complex population structure of the Atlantic puffin revealed by whole genome analyses. Commun Biol 4:1–12

    Article  Google Scholar 

  • Lashko A (2004) Population genetic relationships in the roseate tern: globally, regionally and locally. PhD thesis, James Cook University, Australia

  • Leberg P (2005) Genetic approaches for estimating the effective size of populations. J Wildl Manag 69:1385–1399

    Article  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombal AJ, Wenner TJ, Lavers JL, Austin JJ, Woehler EJ, Hutton I, Burridge CP (2017) Genetic divergence between colonies of flesh-footed shearwater Ardenna carneipes exhibiting different foraging strategies. Conserv Genet 19:27–41

    Article  Google Scholar 

  • Lombal AJ, O’dwyer JE, Friesen V, Woehler EJ, Burridge CP (2020) Identifying mechanisms of genetic differentiation among populations in vagile species: historical factors dominate genetic differentiation in seabirds. Biol Rev 95:625–651

    Article  PubMed  Google Scholar 

  • Lou RN, Therkildsen NO (2021) Batch effects in population genomic studies with low-coverage whole genome sequencing data: causes, detection and mitigation. Mol Ecol Resour 22:1678–1692

    Article  PubMed  Google Scholar 

  • Lovette IJ, Clegg SM, Smith TB (2004) Limited utility of mtDNA markers for determining connectivity among breeding and overwintering locations in three Neotropical migrant birds. Conserv Biol 18:156–166

    Article  Google Scholar 

  • Mariano-Jelicich R, Madrid E (2014) Microsatellite variability among black skimmer (Rynchops niger intercedens) populations in Southern South America. Waterbirds 37:175–182

    Article  Google Scholar 

  • McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR (2015) Marine defaunation: animal loss in the global ocean. Science 347:1255641

    Article  PubMed  Google Scholar 

  • Moritz C (1994) Defining ‘Evolutionarily Significant Units’ for conservation. Tree 9:373–375

    CAS  PubMed  Google Scholar 

  • Mostello CS, Nisbet ICT, Oswald SA, Fox JW (2014) Non-breeding season movements of six North American roseate terns Sterna dougallii tracked with geolocators. Seabird 27:1–21

    Google Scholar 

  • Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol Evol 10:1808–1813

    Article  Google Scholar 

  • Neves V (2006) Towards a conservation strategy of the roseate tern Sterna dougallii in the Azores Archipelago. PhD thesis, University of Glasgow, Scotland

  • Nisbet ICT, Cabot D (1995) Transatlantic recovery of a ringed roseate tern Sterna dougallii. Ringing Migr 16:14–15

    Article  Google Scholar 

  • Nisbet ICT, Ratcliffe N (2008) Comparative demographics of tropical and temperate roseate terns. Waterbirds 31:346–356

    Article  Google Scholar 

  • Nunes GT, Bugoni L (2018) Local adaptation drives population isolation in a tropical seabird. J Biogeogr 45:332–341

    Article  Google Scholar 

  • Nuss A, Carlos CJ, Moreno IB, Fagundes NJR (2016) Population genetic structure of the magnificent frigatebird Fregata magnificens (Aves, Suliformes) breeding colonies in the Western Atlantic ocean. PLoS ONE 11:1–15

    Article  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Parker L, Hawkins M, Camacho-Sanchez M, Campana M, West-Roberts JA, Wilbert T, Lim HC, Rockwood L, Leonard J (2020) Little genetic structure in a Bornean endemic small mammal across a steep ecological gradient. Mol Ecol 29:4074–4090

    Article  PubMed  Google Scholar 

  • Paton PWC, Loring PH, Cormons GD, Meyer KD, Williams S, Welch LJ (2021) Fate of common (Sterna hirundo) and roseate terns (S. dougallii) with satellite transmitters attached with backpack harnesses. Waterbirds 43:342–347

    Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    Article  PubMed  Google Scholar 

  • Peery MZ, Hall LA, Sellas A, Beissinger SR, Moritz C, Bérubé M, Raphael MG, Nelson SK, Golightly RT, Mcfarlane-Tranquilla L, Newman S, Palsbøll PJ (2010) Genetic analyses of historic and modern marbled murrelets suggest decoupling of migration and gene flow after habitat fragmentation. Proc R Soc B 277:697–706

    Article  CAS  PubMed  Google Scholar 

  • Perez GS, Goodenough KS, Horn MH, Patton RT, Ruiz EA, Velarde E, Aguilar A (2020) High connectivity among breeding populations of the elegant tern (Thalasseus elegans) in Mexico and Southern California revealed through population genomic analysis. Waterbirds 43:17–27

    Article  Google Scholar 

  • Peterson DA, Hilborn R, Hauser L (2014) Local adaptation limits lifetime reproductive success of dispersers in a wild salmon metapopulation. Nat Commun 5:3696

    Article  CAS  PubMed  Google Scholar 

  • Pierce J (2009) United States Virgin Islands. In: Bradley PE, Norton RL (eds) An inventory of breeding seabirds in the Caribbean. University Press of Florida, Gainsville, pp 99–111

    Google Scholar 

  • Pierson JC, Coates DJ, Oostermeijer JGB, Beissinger SR, Bragg JG, Sunnucks P, Schumaker NH, Young AG (2016) Genetic factors in threatened species recovery plans on three continents. Front Ecol Environ 14:433–440

    Article  Google Scholar 

  • Pritchard JK (2000) Inference of population structure using multi-locus genotypes. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puechmaille SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16:608–627

    Article  PubMed  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Quillfeldt P, Moodley Y, Weimerskirch H, Cherel Y, Delord K, Phillips RA, Navarro J, Calderón L, Masello JF (2017) Does genetic structure reflect differences in non-breeding movements? A case study in small, highly mobile seabirds. BMC Evol Biol 17:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC, Sunnucks P, Frankham R (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:1–6

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Samarasin P, Shuter BJ, Wright SI, Rodd FH (2017) The problem of estimating recent genetic connectivity in a changing world. Conserv Biol 31:126–135

    Article  PubMed  Google Scholar 

  • Shealer DA, Saliva JE (1992) Northeastern roseate terns seen at Puerto Rican colony during breeding season. Colon Waterbirds 15:152–154

    Article  Google Scholar 

  • Shealer DA, Saliva JE, Pierce J (2005) Annual survival and movement patterns of roseate terns breeding in Puerto Rico and the U.S., Virgin Islands. Waterbirds 28:79–86

    Article  Google Scholar 

  • Spendelow JA, Mostello CS, Nisbet ICT, Hall CS, Welch L (2010) Interregional breeding dispersal of adult roseate terns. Waterbirds 33:242–245

    Article  Google Scholar 

  • Sruoga A, Butkauskas D (2006) Evaluation of the genetic structure of the breeding common tern (Sterna hirundo) population by means of microsatellite markers. Biologija 1:47–52

    Google Scholar 

  • Szczys P, Hughes CR, Kesseli RV (2005) Novel microsatellite markers used to determine the population genetic structure of the endangered roseate tern, Sterna dougallii, in Northwest Atlantic and Western Australia. Conserv Genet 6:461–466

    Article  CAS  Google Scholar 

  • Szczys P, Oswald SA, Arnold JM (2017) Conservation implications of long-distance migration routes: regional metapopulation structure, asymmetrical dispersal, and population declines. Biol Conserv 209:263–272

    Article  Google Scholar 

  • Tigano A, Damus M, Birt TP, Morris-Pocock JA, Artukhin YB, Friesen VL (2015) The Arctic: glacial refugium or area of secondary contact? Inference from the population genetic structure of the thick-billed murre (Uria lomvia), with implications for management. J Hered 106:238–246

    Article  CAS  PubMed  Google Scholar 

  • Tree AJ (2005) The known history and movements of the roseate tern Sterna dougalii in South Africa and the Western Indian Ocean. Mar Ornithol 33:41–47

    Google Scholar 

  • Tsai WLE, Mota-Vargas C, Rojas-Soto O, Bhowmik R, Liang EY, Maley JM, Zarza E, McCormack JE (2019) Museum genomics reveals the speciation history of dendrortyx wood-partridges in the Mesoamerican highlands. Mol Phylogenet Evol 136:29–34

    Article  PubMed  Google Scholar 

  • U.S. Fish and Wildlife Service (2010) Caribbean roseate tern and North Atlantic roseate tern (Sterna dougallii dougallii), 5-year review: summary and evaluation. U.S. Fish and Wildlife Service, Boquerón, PR, and Concord, NH

  • U.S. Fish and Wildlife Service (2020) Roseate tern northeastern North American population (Sterna dougallii dougallii), 5-year review: summary and evaluation. U.S. Fish and Wildlife Service, Concord

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358

    CAS  PubMed  Google Scholar 

  • Welch AJ, Fleischer RC, James HF, Wiley AE, Ostrom PH, Adams J, Duvall F, Holmes N, Hu D, Penniman J, Swindle KA (2012) Population divergence and gene flow in an endangered and highly mobile seabird. Heredity 109:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • Winker K, Glenn TC, Faircloth BC (2018) Ultraconserved elements (UCEs) illuminate the population genomics of a recent, high-latitude avian speciation event. PeerJ 6:e5735–e5735

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojczulanis-Jakubas K, Kilikowska A, Fort J, Gavrilo M, Jakubas D, Friesen V (2015) No evidence of divergence at neutral genetic markers between the two morphologically different subspecies of the most numerous Arctic seabird. Ibis 157:787–797

    Article  Google Scholar 

  • Yannic G, Yearsley JM, Sermier R, Dufresnes C, Gilg O, Aebischer A, Gavrilo MV, Strøm H, Mallory ML, Guy Morrison RI, Gilchrist HG, Broquet T (2016) High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biol 39:221–236

    Article  Google Scholar 

  • Zambrano R (2007) Reproductive success and nestling growth at a roof and ground colony of roseate terns (Sterna dougallii) in Florida. Masters Thesis, Florida Atlantic University, Boca Raton, Florida

  • Zambrano R, Smith HT, Robson M (2000) Summary of breeding roseate terns in the Florida Keys: 1974–1998. Florida Field Nat 28:64–68

    Google Scholar 

Download references

Acknowledgements

Logistical support was provided by the U.S. Virgin Islands Division of Fish and Wildlife, the Florida Fish and Wildlife Conservation Commission, and the National Parks Service. We thank P. Szczys, C. Mostello, R. Zambrano, N. Warraich, C. Pavlik, D. Nellis, K. Kalasz, and V. Rodrigues Costa Neves for assisting with sampling and/or providing samples. We also thank Dr. Szczys and J. Dayton for their invaluable input for the microsatellite analysis and S. Hauser and N. Woodman for providing comments on the manuscript. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1650114. Additional funding was provided by a Smithsonian short-term visitor award, the Ecosystems Mission Area of the U.S. Geological Survey, the David S. Lee Fund for the Conservation of Caribbean Birds, and United States Virgin Islands Division of Fish & Wildlife Cays Restoration & Research Grant VI-W-F17AF01314. Samples were collected and/or imported under appropriate United States Fish and Wildlife Service, United States Department of Agriculture, and region-specific permits. All protocols were approved by the University of Louisiana at Lafayette Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Contributions

PAB conceived and designed the study, collected samples, conducted laboratory work and data analysis, interpreted the data, and wrote the paper. RTC and RCF participated in study design, interpreting the data, and drafting the manuscript. NM participated in laboratory work. NASP participated in study design and data analysis. PLL participated in conceiving and designing the study, data analysis, interpretation of the data, and drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paige A. Byerly.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 872 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byerly, P.A., Chesser, R.T., Fleischer, R.C. et al. Conservation genomics reveals low connectivity among populations of threatened roseate terns (Sterna dougallii) in the Atlantic Basin. Conserv Genet 24, 331–345 (2023). https://doi.org/10.1007/s10592-023-01505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-023-01505-6

Keywords

Navigation