Geometry of Human Form: Art and Science of Charles Henry

Geometry of Human Form: Art and Science of Charles Henry

Key Terms

  • Sacred Geometry
  • Sphere Packing
  • Light
  • Geometry
  • Optics
  • Pyramids
  • Vesica Piscis
  • Limestone
  • Close-packed reflective spheres
  • Golden Mean
  • Pi
  • Computer Imaging
  • Photography
  • Animation
  • Graphic Art
  • Sculpture

Meeting Prof. Charles Henry

I met Prof. Charles Henry in August of 2010. He was resident of Richmand, Virginia where I also live.

We met for lunch at one of the restaurant. He was kind to bring a CDROM with images and animations of his work for me.

We talked about Fractals and Packed Spheres.

He had a book with him on Pyramids by Christopher Dunn – The Giza Power Plant.

I kept in touch with him for next few days, We exchanged few emails.

Geometry of Human Form

Source: http://www.people.vcu.edu/~chenry/

SACRED GEOMETRY

 

New Discoveries

Linking The Great Pyramid to the Human Form

 

Copyright 1997 – 2000   CHARLES R. HENRY

All Rights Reserved

Professor, Department of Sculpture

Virginia Commonwealth University

Richmond, Virginia

———————————————————————————

This site is best viewed on Microsoft Internet Explorer 4.0 or higher

with screen set to 1024 X 768 pixels, 24 bit …16 million colors.

Set … View/Text Size … to Meduim

Click on thumbnails to view larger images.

——————————————————————————–

 

For more than twenty years, I have been studying the image generating properties of reflective spheres stacked in 52 degree angle pyramids. The 52 (51.827) degree angle slope of the sides of The Great Pyramid in Cairo, Egypt embodies the Golden Mean which is the ratio that is used in Nature to generate growth patterns in space. Sacred Geometry studies such primal systems which reveal the unity of the cosmos by representing the relationships between numbers geometrically. The Vesica Piscis is one of the most fundamental geometrical forms of this ancient discipline and it reveals the relationship between the The Great Pyramid and the 2 dimensional expansion of a circle of one unit radius R as shown in Figure 1. This relationship is more completely described in The New View Over Atlantis by John Michell published by Thames and Hudson.

Figure1.gif (5952 bytes)

Figure 1         Vesica Piscis in 2 Dimensions

 

In the early 1970s, I became very interested in the three dimensional representation of this geometry and I visualized this as a three dimensional pyramid inside two intersecting spheres shown in Figure 2.

figure2.jpg (14868 bytes)

Figure 2          Vesica Piscis in 3 Dimensions

 

In an effort to visualize these 3D relationships in yet another way, I stacked reflective Christmas Tree balls in an inverted pyramid shell. I discovered that the patterns of multiple reflections created on the interior surfaces of reflective spheres stacked at this angle produce images that relate to the human form as photographed and shown in Figure 3 and Figure 4.

 

figure3.jpg (16443 bytes)Figure 3

 

figure4.jpg (27044 bytes)Figure 4

I made many pyramidal configurations of reflective spheres with different light sources and I photographed the patterns on the interior surfaces from many points of view. Another is shown here in Figure 5.

figure5.jpg (18367 bytes)Figure 5

 

 

Then in 1977, I discovered one stacking structure and viewpoint that produced a very convincing image of an archetypal human face. This structure of 10 spheres (2 5-ball pyramids) forming a cluster is shown in Figure 6.

figure6.jpg (8183 bytes)Figure 6

 

 

The face image is shown in the lower third of the pattern on one sphere inside this 10 sphere cluster and is shown in Figure 7.

figure7.jpg (34593 bytes)Figure 7   When I made this photograph, the structure was enclosed in a mirrored pyramid.

 

 

Later, I realized that the most natural structure for enclosing would be another 10 sphere, 2 pyramid structure that would totally enclose a smaller but similar cluster.  I worked out the math to find that by multiplying the inner sphere’s diameters by Pi gives the dimension for the outer sphere’s diameters as shown in Figure 8.

figure8.jpg (14227 bytes)Figure 8        One sphere is removed from the outer cluster to reveal the inner cluster. However, the inner cluster must be upside down with respect to the outer cluster to fit inside.

 

The expansion by Pi reinforced my suspicion that this 10 sphere cluster is a fundamental unit that is linked to the properties of three dimensional space.

Close-packed reflective spheres clustered in this concentric shell structure produce an optical distribution network that links the Golden Mean and Pi. The Golden Mean is expressed in the 52 degree angle pyramid structure and Pi is expressed in the ratio of the diameter to the circumference of each sphere of course; but it is also expressed in the ratio of the sizes of spheres in the 10 spheres within 10 spheres concentric shell structure that I discovered. This concentric shell structure could continue to expand with many shells and still retain the same ratio between shells. It was not until 1991 that I was able to build and photograph the images inside a ten-within-ten (2 shell) structure. I used 10 – 6″ diameter spheres and 10 – 19″ diameter hemispheres. The structure is shown here in Figure 9.

figure9.jpg (19664 bytes)Figure 9

 

 

Figure 10 and Figure 11 are photographs of the interior of the 10 spheres within 10 spheres cluster shown in Figure 9.

figure10.jpg (17924 bytes)Figure 10

figure11.jpg (13114 bytes)Figure 11

The photographs that I made from this 10-within-10 sphere structure revealed the inherent limitations of photography for this work. The final images were not what I was seeing with my eyes while directly viewing the interior of the structure. But this approach did reveal a more complete face form and I also realized that I would need at least 10 more spheres (about 60″ in diameter at $1500 each) to complete the enclosure and remove the remaining gaps in the images. Also, the lighting system was limited to the exterior and it was very difficult to control the positioning, color and brightness. So, in 1992, I purchased a computer to model these structures with ray-tracing software which enabled me to investigate more thoroughly the relationship between this cluster geometry and the archetypal images generated therein. During this tour into cyberspace, I could take a camera into the sacred chamber central to the concentric shells of reflective spheres which are simulated by a computer program (Real 3D by Realsoft Oy, Finland) that most accurately renders the effects of real-world light sources and records the patterns generated by multiple reflections on metal surfaces. With this method of investigation, I am able to more conveniently control the many variables which led to these discoveries and conclusions:

1.) At least 40 spheres (4-10 ball shells) are necessary to enclose the central area and fill in the gaps in the images.

2.) Most of the lights should be point sources placed at the points of contact between the innermost spheres of the structure; although additional symmetrically-paired, point-lights are necessary in the central area.

3.) Some of the innermost spheres are reduced in size and they can float within certain areas in the central space. Figure 12 shows typical positions and sizes.

4.) The camera position and field of view as shown in Figure 12 produces the most convincing image of the human form.

fig12.jpg (12536 bytes)Figure 12


5.) The image of this artificial anthropoid that is produced in these structures can be animated when the positions and sizes of certain spheres are modulated as shown in the three animations listed below. 

animation 1            .8 MB … estimated download time at 56k … 3.5 min.

animation 2           2.4 MB …  estimated download time at 56k … 10 min.

 

fig13.jpg (94727 bytes)

Figure 13       Human Form From Sacred Geometry

The computer image in Figure 13 was made from the camera position and field of view shown in Figure 12.

 

Figure 14   is from the same camera position (shown in Figure 12) but the lens set at a very wide angle.

fig14.jpg (110837 bytes)Figure 14

 

 

Figure 15 is from the same camera position (shown in Figure 12) with the camera lens set to zoom in.

fig15.jpg (92100 bytes)Figure 15  

 

 

Figure 16   is a stereo image and it shows the interior of the cluster in 3D. Stare through the images with your eyes focused at a distant point and the two images will turn into three images and the center image will appear in 3D.

fig16.jpg (42554 bytes)Figure 16    

In 1996, I produced an animation Sacred Spaces (6 minutes) which has been screened in many national and international film festivals and it has won some awards (see resume). I have also produced Flesh Tones (5.5 Minutes) another animation completed in 1997 and I have produced many high resolution images for prints/slides (some examples are shown in Figures 13 through 36) which I have presented with the video animations at lecture presentations. These images are stills from the animations and they demonstrate the variety of image generating that is inherent in this system. I have concentrated on exhibiting the videotape documentation of my work thus far because it is the most portable presentation format that describes this research most completely.

fig17.jpg (24384 bytes)Figure 17

fig18.jpg (27816 bytes)Figure 18

fig19.jpg (34590 bytes)Figure 19

fig20.jpg (27735 bytes)Figure 20

fig21.jpg (44628 bytes)Figure 21

Conclusion

This interdisciplinary research has taken me into many related areas of study.   Geometry, Optics, Ancient History of Art and Religion, Computer Imaging, Photography, Animation, Graphic Art and of course Sculpture are the major connecting disciplines that have contributed to this work.

I feel that I have rediscovered some of what was a highly developed understanding of Mankind’s relationship to the Universe and this knowledge was utilized and documented in the geometry of ancient structures. Sacred Geometry, the study of the unity of the cosmos, demonstrates relationships between Number and Space and the Human Form. It was used in the construction of ancient glyphs and monuments thereby preserving the knowledge of these principles of Natural Law for future generations.   This construction of reflective spheres may embody the technology that produced the animated images of the deities in the temples of antiquity. The Tree of Life which is a graphic representation of the interaction between cosmic forces is shown in Figure 22. It is found in many ancient texts of the Kabbalah.

fig22.jpg (11450 bytes)Figure 22.


I realized that The Tree of Life graphic can also represent the 10 sphere cluster made with 2 5-ball pyramids as shown in Figure 23.

fig23.jpg (7127 bytes)Figure 23

The construction of this structure of clustered metal reflective spheres (offering bowls) is well within the capability of many ancient cultures and with the addition of a few glass lenses, these images could be projected onto walls or into smoke. Perhaps there is some Truth behind the smoke and mirrors of Ancient Religion … perhaps it is geometry … Sacred Geometry.

This research which is documented in four computer animations Sacred Spaces, Flesh Tones, Our Mothers and Sacred Spaces 2, in color computer prints, and in color slides has given me new insight into the motives that may have inspired the construction of The Great Pyramid.


1998 – 2000 update

The images shown in Figures 24 – 35 were made with 50 spheres and 144 point-light sources.  Each of these images was made with unique brightness, color and value settings for various groupings of lights. 

fig24.jpg (49005 bytes)Figure24

fig25.jpg (61843 bytes)Figure25

fig26.jpg (45712 bytes)Figure26

fig27.jpg (30806 bytes)Figure27

fig28h.jpg (95562 bytes)Figure28 horizontal

fig28v.jpg (34955 bytes)Figure28 vertical

fig29.jpg (59673 bytes)Figure29

fig30.jpg (42660 bytes)Figure30

fig31.jpg (53032 bytes)Figure31

fig32.jpg (36716 bytes)Figure32

InFigure32,   the camera is aimed at the sphere opposite the face shown inFigure 31.Figure 12 shows the camera position for Figure 31.  The image in Figure 32 was formed when the camera position was rotated 180 degrees around the vertical axis  shown in Figurre 12    and  zoomed in.   The face image (a child?) in Figure 32 is much smaller  than the face (mother?) in  Figure 31.  

fig33h.jpg (72697 bytes)Figure33horizontal

fig33v.jpg (81648 bytes)Figure33vertical

figure34.jpg (54241 bytes)

Figure 34

 

Figure35This is a stereo 3D image that requires shutter glasses to view and your monitor must be set to interlace mode.

 

 

fig36.jpg (170331 bytes)

Figure 36            Stereo Image for Cross-Eyed Viewing

With your monitor at arm’s length away, focus on a point 6 inches in front of your nose (put your index finger 6 inches in front of your nose and focus on it). You will see a third image in 3D between the two images on the monitor (at the tip of your finger). Shift your attention from your finger to this third/middle image which will appear in 3D.

———————————————————————————

 

The cross-eyed viewing method is perhaps the most effective way to put the viewer inside the cluster to see the human image as it would exist in 3D from the cameras position as seen in Figure 12. There are many more identifiable images in this clustering geometry viewed from this position and from other camera positions and even more images with other color settings for the point lights.

fig36l.jpg (158045 bytes)Figure 36 Large

fig36zi.jpg (39939 bytes)Figure 36 Zoom-in  This is the image on the forehead of the face in Figure 36 Large.                     

fig36zob.jpg (162376 bytes)Figure 36 Wide-angle Large

fig36zod.jpg (148518 bytes)Figure 36 Very wide-angle Large

fig37.jpg (53779 bytes)

Figure 37          Rods connecting centers of nearest neighbors in 3 shells

 

 

I’m now very curious about the relationship between Sacred Geometry and Sacred Music and the Human Form. Number relates to all that science measures by virtue of the way that 3D Space is defined. Number is also used to measure Time … and, as Pythagoras observed, Music is a manifestation of Number in Time. The distribution of sounds i.e. amplitude and frequency, may well find an idealized model in the 10 within 10 sphere, space-filling, close-packing geometric system. The representation of this geometry with sticks or strings or rods as shown in Figure 37 (in which the centers of nearest neighbor spheres in three shells are joined) may represent the ideal space-filling matrix of linear oscillating elements. It may also be used to define spatially distributed, hierarchical, cellular arrays.

————————————————————————

 

The camera positions on the symmetric planes within the cluster produce a bilateral symmetry that we identify with animal and human form. Naturally, we would expect this symmetry in the idealized images of higher life forms. The multiplicity of idealized beings in this cluster of reflective spheres suggests the presence of The Company of the Gods as described in many ancient Egyptian texts. It seems that the face images occur on a vertical plane linking the centers of spheres. There seem to be faces facing faces and faces within faces throughout this reflective environment. My guess is that the sacred part of what I have discovered is a result of the way the deity put the higher life forms in three dimensions.

This cluster geometry may have other properties that would be useful for spatial organization. The nesting of 10 reflective spheres within 10 reflective spheres geometry produces a distribution system that could be used for processing of optical information between the interior to the exterior of the structure. Because of the spatial distribution of the reflective spheres in two concentric shells of ten each, optical information must be reflected and diverged in order to enter or exit the system with the exception of a few radially arrayed directions. The system becomes a more selective filter of optical information as more shells are added to the structure. This inside-to-outside transformation/translation should have many practical applications in pattern recognition tasks. For example, any point source of coherent light (laser light) anywhere outside the two-shell cluster will produce a unique light distribution pattern on the inside as viewed from the center area of the cluster. This pattern could be recorded in a holographic medium and the exterior point source could then be reconstructed using conventional holographic means.

Is Number (Geometry and Time) the link between Art, Science and Religious experience? The language of number is perhaps the most convincing form of expression between humans and between humans and the Gods. We think and imagine in visual forms. Einstein constructed his mathematics based on mental images. He said that he would first try to visualize a space/time image and then mathematize it. We use mental images to construct possible scenarios of the future so that we don’t have to live out each one in “reality”. Words and pictures and mathematical formulas are ways to document, test, realize, and communicate these visions. Although there is seldom a need to mathematize images, we sense that it would be possible. We know that we could count and number the grains of sand on the beach. The geometry of our visions is what makes them real to us and it allows us to mentally work on them and to integrate them convincingly into our life here in 3D.

I’m not quite sure how the physical human form fits into the grand scheme of things but it does seem to be a result of the space-filling, spherical, close-packing geometric system that I’ve discovered and it is indeed “Sacred Geometry” by virtue of the definition God gave to three dimensions. I don’t think this geometric system is the matrix for all life systems but I think it can serve as a model for the interactions between the various dimensional realities in which we are immersed. It may also guide us in our attempt to develop new sciences and technologies that utilize the forces that operate in the regions that we now call consider paranormal.

According to contemporary Superstring Theory as described by Dr. Michio Kaku in his many recent writings, the mathematics that most appropriately describes the forces of nature requires an expression in ten dimensions. Einstein tried to describe the forces of nature in the mathematics of 3D and Time and found that the formulas were not broad enough to include all of the forces. We can perceive 3D and Time. The other 6D in Superstrings are hidden from our normal senses due to their incredibly small size according to Dr. Kaku. Our instincts inform us that there are more than 3 Dimensions and Time in the universe and the possiblity that something else exists mathematically beyond our perceptual horizon drives my curiosities about our possible links to these worlds. The new science of parapsychology has discovered many ways that humans can perceive by means beyond the physical senses and it has found that there are some people that are more capable of extrasensory perception than others. It may well be that our only contacts with this duality of nature are through numbers and mathematics on one hand or through dreams, remote viewing, telepathy, Ouija boards and tarot cards on the other. This would certainly confirm the existence of a God with a sense of humor

 

 

 


I am interested in any information relating this technology to ancient religious traditions.  Any references that you send will certainly be appreciated and I will certainly credit any references in future publications.

A more detailed version of this research is now available on CD-ROM and it includes the 10 minute animation Sacred Spaces 2 in streaming format.

I am also making available unlimited editions of selected images on this website which will be printed in very high resolution on archival paper with archival inks.


For more specific information about the availability, formats, sizes and pricing of the prints and CD relating to this work you may contact me at:

<crhenry1@verizon.net>    

Related Material

RESUME

LINKS

 

snowlionaward(1).jpg (13934 bytes)


 


This page does not reflect the official position of Virginia Commonwealth University

vcubar.gif (2206 bytes)

This site was last updated on 07/23/02

My Related Posts

Platonic and Archimedean Solids

The Great Chain of Being

Indira’s Pearls: Apollonian Gasket, Circle and Sphere Packing

Sapta Matrikas (Seven Mothers) and Cosmology

Chausath (64) Yogini Hindu Temples Architecture

Dasa (Ten) Maha Vidyas

On Holons and Holarchy

Fractal and Multifractal Structures in Cosmology

Fractal Geometry and Hindu Temple Architecture

Interconnected Pythagorean Triples using Central Squares Theory

Key Sources of Research

Charles Henry

VCU, Richmond, VA

http://www.people.vcu.edu/~chenry/

Code Biology, Bio-Semiotics, and Relational Biology

Code Biology, Bio-Semiotics, and Relational Biology

Key Terms

  • Biosemiotics
  • Anticipatory Systems
  • Code biology
  • Relational biology
  • C.S. Peirce
  • T. Sebeok
  • Jesper Hoffmeyer
  • Marcello Barbieri
  • Robert Rosen
  • Rom Harré
  • F Schelling
  • Habits
  • Pratibha
  • Innate Ability
  • Archetypes
  • Talent
  • Character
  • Virtues
  • Caste System
  • Astrology
  • Invariance
  • Regularities
  • Periodicities
  • Sapta Rishis
  • Evolution
  • Development
  • Biology
  • Codes
  • Meaning
  • Culture
  • Nature

Archetypes and Code Biology

Source: Archetypes and code biology

As a clinical psychologist, I observe stereotyped formulas of behavior in action every day in the consulting room, despite differences in age, race, or culture; they present themselves as codified rules or typical modes of behavior in archetypical situations. Such circumstances coincide with what C.G. Jung defended: the existence of archetypes stored in an inherited/phylogenetic repository, which he called the collective unconscious – somewhat similar to the notion of an ethogram, as shown by ethology. Psychologists can use a perspective to facilitate understanding the phenomenon: the code biology perspective (Barbieri 2014). This approach can help us recognize how these phenomenological events have an ontological reality based not only on the existence of organic information but also on the existence of organic meaning.

We are not a tabula rasa (Wilson 2000): despite the explosive diversification of the brain and the emergence of conscience and intentionality, we observe the conservation of basic instincts and emotions (Ekman 2004Damasio 2010) not only in humans but in all mammals and other living beings; we refer to the neural activity on which the discrimination behavior is based, i.e., the neural codes. The conservation of these fundamental set-of-rules or conventions suggests that one or more neural codes have been highly conserved and serves as an interpretive basis for what happens to the living being who owns them (Barbieri 2003). Thus, archetypes’ phenomenological reality can be understood not as something metaphorical but as an ontological (phylogenetic) fact (Goodwyn 2019).

Furthermore, epigenetic regulation theories present the possibility that the biomolecular process incorporates elements of the context where it takes place; something fundamental to understand our concept – the archetype presents itself as the mnesic remnant of the behavioral history of individuals who preceded us on the evolutionary scale. In short: brains are optimized for processing ethologically relevant sensory signals (Clemens et al., 2015).

From the perspective of the corporeal mind (Searle 2002), in this paper, we will show the parallels between code biology and the concept of the archetype, as Jung defended it and as it appears in clinical practice.

Source: Code Biology 3: the study of all Codes of Life

Editorial
Overview of the third special issue in code biology

  1. Introduction
    This third special issue in Code Biology is a collection of highly different papers and their differences have two main causes. The first, the most obvious, is that Code Biology is the study of all codes that exist in living systems and the diversity of the papers is a direct consequence of the diversity of the codes. The second source of diversity is the existence of different theories. More precisely, the original theory that gave origin to Code Biology has been followed by a number of extended theories that now coexist with the original one. In Code Biology, in other words, there is pluralism but there has also been a beginning, and it is important to be clear about this starting point. The original theory of Code Biology is characterized by ideas that make it different from four major theoretical frameworks:
    1. [1] The original theory of Code Biology is different from the Modern Synthesis for two reasons. The first is the idea that evolution took place by natural selection and by natural conventions and these mechanisms are fundamentally different because natural selection is based on copying and natural conventions are based on coding. The second is the idea that the cell is not a biological computer made of genotype and phenotype but a trinity of genotype, phenotype and ribotype, where the ribotype is the ribo nucleoprotein system of the cell that functions as the codemaker of the genetic code (Barbieri 1981, 1985, 2003).
    2. [2] The original theory of Code Biology maintains that the fundamental process of life is not autopoiesis but codepoiesis (Barbieri 2012). Autopoiesis requires biological specificity and specificity comes from the genetic code, so the ancestral systems that came before that code could not have been autopoietic systems. Those ancestral systems, on the other hand, were engaged in the evolution of the genetic code and were therefore codepoietic systems. Autopoiesis, furthermore, is most evident in bacteria and bacteria have not increased their complexity and have not evolved new codes for billions of years after their appearance on Earth. It was the eukaryotes that became increasingly complex and that evolved new codes, which suggests a deep link between codes and complexity, and in particular between the origin of new codes and the origin of the great novelties of macroevolution (Barbieri 2015, 2016, 2017, 2020). Codepoiesis, on the other hand, is necessarily implemented by mechanisms, and according to the original theory of Code Biology the major mechanism that fuelled the evolution of the genetic code was the process of ambiguity reduction (Barbieri 2019a).
    3. [3] The original theory of Code Biology is different from Biosemiotics because it claims that the Peircean processes of interpretation and abduction take place in the brain but not in the cell (Barbieri 2014,2018).
    4. [4] The original theory of Code Biology is different from the Relational Biology of Robert Rosen because it assumes that the process of anticipation takes place in the brain but not in the cell (Barbieri 2019b).
  2. There are, in conclusion, four key ideas in the original theory of Code Biology:
    1. [a] Evolution took place by natural selection and by natural conventions.
      [b] The cell is a trinity of genotype, phenotype and ribotype.
      [c] The fundamental process of life is codepoiesis, not autopoiesis.
      [d] Ambiguity reduction was the major evolutionary mechanism of the genetic code.
  3. The extended theories of Code Biology differ from the original theory either because they introduce new concepts or because they reformulate some of the original concepts.
    1. [1] The first extended theory appeared when Stefan Kühn and Jan-Hendrik Hofmeyr (2014) proposed an extended definition of code, a definition where signs and meanings can be not only molecules but also biological processes. More precisely, Kühn and Hofmeyr showed that the histone code is a mapping where the signs are the marks produced on histones by acetylation or methylation processes and their meanings are the activation or the repression of particular genes.
    2. [2] A second extended theory of Code Biology has been proposed in this issue by Julie Heng and Henry Heng with the idea that the adaptors of a biological code can be “information flows”. More precisely, Heng and Heng point out that in addition to the codes that produce the components of a system there are also codes that organize those components into a working whole. The code that is used to make bricks, for example, is different from the code that is used to construct a building from those bricks. The genetic code is a code that makes bricks, i.e., proteins, but in order to arrange proteins into a living system we need an architectural code that Heng and Heng call “karyotype code”.
    3. [3] A third extended theory is presented in this issue by Omar Paredes and colleagues on the grounds that the original theory of Code Biology “raises the illusion that information has only an upward direction … whereas the current overview of cellular dynamics … illustrates that information flows freely upward and downward”. In order to overcome this limitation, the authors propose “a novel category of organic codes, the metacode”, which is defined as “an informational structure that handles the continuum of the information flow in biological systems”.

The extended theories, in short, are a reality and their existence is a testimony that there is genuine pluralism in Code Biology. The goal of this special issue, on the other hand, is to give a bird’s-eye view of the present status of Code Biology and to this purpose it has been divided into four parts, each of which is going to be illustrated in the rest of this editorial with brief presentations of its papers

My Related Posts

Semiotics, Bio-Semiotics and Cyber Semiotics

What is Code Biology?

Autocatalysis, Autopoiesis and Relational Biology

Systems Biology: Biological Networks, Network Motifs, Switches and Oscillators

Hierarchy Theory in Biology, Ecology and Evolution

System Archetypes: Stories that Repeat

On Classical Virtues

Key Sources of Research

Code Biology, Peircean Biosemiotics, and Rosen’s Relational Biology

Marcello Barbieri

Biological Theory 14 (1):21-29 (2019)

https://philpapers.org/rec/BARCBP-2

Code biology: A bird’s-eye view

Author(s): Marcello Barbieri

Gatherings in Biosemiotics XX.
(Tartu Semiotics Library 20.) Tartu: University of Tartu Press.

Issue Year: 2020 Issue No: 20 Page Range: 72-91

Lacková, Ľudmila; Rodríguez H., Claudio J.; Kull, Kalevi (eds.) 2020. 

BIOSEMIOSIS AND CAUSATION:
DEFENDING BIOSEMIOTICS THROUGH ROSEN’S THEORETICAL BIOLOGY
OR
INTEGRATING BIOSEMIOTICS AND ANTICIPATORY SYSTEMS THEORY1

Arran Gare

Cosmos and History: The Journal of Natural and Social Philosophy, vol. 15, no. 1, 2019

https://philarchive.org/archive/GARBAC-4

A Critique of Barbieri’s Code Biology Through Rosen’s Relational Biology: Reconciling Barbieri’s Biosemiotics with Peircean Biosemiotics. 

Vega, F.

Biol Theory 13, 261–279 (2018).

https://doi.org/10.1007/s13752-018-0302-1

https://link.springer.com/article/10.1007/s13752-018-0302-1

Click to access VEGA_CUESTA_Federico_Tesis.pdf

An Integrated Account of Rosen’s Relational Biology and Peirce’s Semiosis. Part I: Components and Signs, Final Cause and Interpretation

Federico Vega

Biosemiotics (2021) 14:697–716

https://doi.org/10.1007/s12304-021-09441-z

https://link.springer.com/article/10.1007/s12304-021-09441-z

Click to access VEGA_CUESTA_Federico_Tesis.pdf

An Integrated Account of Rosen’s Relational Biology and Peirce’s Semiosis. Part II: Analysis of Protein Synthesis. 

Vega, F.

Biosemiotics 14, 717–741 (2021).

https://doi.org/10.1007/s12304-021-09438-8

https://link.springer.com/article/10.1007/s12304-021-09438-8

Click to access VEGA_CUESTA_Federico_Tesis.pdf

Peircean habits and the life of symbols

Thirty-fifth Meeting of the Semiotic Society of America October 21-24, 2010, Louisville, Kentucky

Eliseo Fernández
Linda Hall Library of Science and Technology

fernande@lindahall.org

BIOSEMIOTICS AND SELF-REFERENCE FROM PEIRCE TO ROSEN

Eliseo Fernández

Linda Hall Library of Science and Technology5109 Cherry St.Kansas City, MO 64110, USA

fernande@lindahall.org

Eighth Annual International Gatherings in Biosemiotics

University of the Aegean, Syros, Greece, June 23-28, 2008

Functional Information: Towards Synthesis of Biosemiotics and Cybernetics

Alexei A. Sharov

National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224, USA Alexei A. Sharov: sharoval@mail.nih.gov

Entropy (Basel). 2010 Apr 27; 12(5): 1050–1070. 

doi: 10.3390/e12051050

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285384/

Codes: Necessary, but not sufficient for meaning-making.

Kull K. (2020)

Constructivist Foundations 15(2): 137–139.

https://constructivist.info/15/2/137

Organic Codes: A Unifying Concept for Life.

de Farias, S.T., Prosdocimi, F. & Caponi, G.

Acta Biotheor 69, 769–782 (2021).

https://doi.org/10.1007/s10441-021-09422-2

https://link.springer.com/article/10.1007/s10441-021-09422-2

A critique of Barbieri’s code Biology

Alexander V. Kravchenko
Baikal State University

https://www.researchgate.net/publication/344896397_A_critique_of_Barbieri%27s_code_Biology

Origin and evolution of the genetic code: the universal enigma

Eugene V. Koonin* and Artem S. Novozhilov
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894

IUBMB Life. 2009 February ; 61(2): 99–111. doi:10.1002/iub.146.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293468/

Code biology and the problem of emergence

Arran Gare 

Bio Systems 2021 Oct; 208:104487.

doi: 10.1016/j.biosystems.2021.104487.

https://pubmed.ncbi.nlm.nih.gov/34273444/

https://www.sciencedirect.com/science/article/abs/pii/S0303264721001349?via%3Dihub

Archetypes and code biology

J.C.Major

International Academy of Analytical Psychology, Portugal

Biosystems
Volume 208, October 2021, 104501

https://www.sciencedirect.com/science/article/abs/pii/S0303264721001489

The major evolutionary transitions and codes of life

Adam Kun

Bio Systems 210 2021

https://doi.org/10.1016/j.biosystems.2021.104548

Code Biology 3: the study of all Codes of Life

Edited by Marcello Barbieri

Last update 22 September 2021

3rd Special Issue in Code Biology

Bio Systems December 2021

https://doi.org/10.1016/j.biosystems.2021.104553

https://www.sciencedirect.com/journal/biosystems/special-issue/10S60V7SHC6

Code Biology 2: the study of all Codes of Life

Edited by Marcello Barbieri, Jan-Hendrik Hofmeyr

Last update 30 June 2021

Bio Systems Feb 2018

2nd Special Issue on Code Biology

https://doi.org/10.1016/j.biosystems.2019.104050

https://www.sciencedirect.com/journal/biosystems/special-issue/10Q35Z29R86

The first Special Issue on code biology – A bird’s-eye view

Jan-Hendrik S Hofmeyr 

Bio Systems 2018 Feb; 164:11-15.

doi: 10.1016/j.biosystems.2017.12.007.

Epub 2017 Dec 16.

https://pubmed.ncbi.nlm.nih.gov/29258888/

https://www.sciencedirect.com/science/article/abs/pii/S030326471730463X?via%3Dihub

https://www.sciencedirect.com/journal/biosystems/vol/164/suppl/C

GATHERINGS IN BIOSEMIOTICS

Edited by
Silver Rattasepp Tyler Bennett

TARTU SEMIOTICS LIBRARY 11

2012

Series editors: Kalevi Kull Silvi Salupere Peeter Torop

Department of Semiotics

University of Tartu
Jakobi St. 2

Tartu 51014, Estonia

Gatherings in Biosemiotics XX

Edited by
Ľudmila Lacková Claudio J. Rodríguez H. Kalevi Kull

2020

TARTU SEMIOTICS LIBRARY 20

http://www.flfi.ut.ee/en/department-semiotics/tartu-semiotics-library

Tartu: University of Tartu Press.

Semiotic Agency: Science Beyond Mechanism

By Alexei Sharov, Morten Tønnessen

A BRIEF INTRODUCTION TO PEIRCE IN BIOSEMIOTICS

CLAUDIO J. RODR ́IGUEZ H. CLAUDIOJRODRIGUEZH@GMAIL.COM

Chapter One
Peirce in contemporary semiotics

Paul Cobley

In: The Bloomsbury Companion to Contemporary Peircean Semiotics. Jappy, Tony, ed. Bloomsbury Companions . Bloomsbury Academic, London, pp. 31-72.

2019

doi:10.5040/9781350076143.ch-001

https://eprints.mdx.ac.uk/25834/1/Chapter%201%20%20Peirce%20in%20contemporary%20semiotics%20pre-print%20.docx

Consciousness, Mind and Spirit. 

Gare, A. (2019).

Cosmos and History: The Journal of Natural and Social Philosophy15(2), 236–264.

Retrieved from https://mail.cosmosandhistory.org/index.php/journal/article/view/833

FROM KANT TO SCHELLING TO PROCESS METAPHYSICS: ON THE WAY TO ECOLOGICAL CIVILIZATION

Arran Gare

Cosmos and History: The Journal of Natural and Social Philosophy, vol. 7, no. 2, 2011

https://philarchive.org/archive/GARFKT-6

Toward an Ecological Civilization: The Science, Ethics, and Politics of Eco-Poiesis*

Arran Gare

PROCESS STUDIES 39.1 (2010)

Beyond Descartes and Newton: Recovering Life and Humanity

Stuart A. Kauffman and Arran Gare

Stu modification 3/11/15 Arran modification 5/17/15

Published in Progress in Biophysics and Molecular Biology, 119(3), 2017: 219-244.

Language and the Self-Reference Paradox

Julio Michael Stern

Cybernetics And Human Knowing. Vol. 14, no. 4, pp.71-92

Overcoming the Newtonian paradigm: The unfinished project of theoretical biology from a Schellingian perspective

Arran Gare*
Philosophy, Faculty of Life and Social Sciences, Swinburne University, Melbourne, Australia

Published in Progress in Biophysics and Molecular Biology, 113, (2013): 5-24.

Color Change: In Biology and Smart Pigments Technology

  • Color change due to Pigment
  • Color change due to Structure

This post is on color change due to pigments.

In a future post, I will research structural colors.

Key Words

  • Color Change in Biology
  • Color Change using Technology
  • Smart Pigments
  • Thermochromic property
  • Photochromic property
  • Piezochromic property
  • Solvatochromic property
  • Chimiochromic property
  • Electrochromism
  • Smart Textiles
  • Smart Plastics
  • Smart Paper
  • Smart Inks
  • Smart Food Packaging
  • Color Science
  • Material Science
  • Color Fading
  • Color Fastness
  • Color Metamerism
  • Chromatophores
  • Iridophores
  • Leucophores
  • Chlorophyll
  • Anthrocyanins
  • Flavonols
  • Flavonoids

Color Change and Technology

Chromic phenomena in dyes and pigments

Some of the major companies are

  • LCR Hallcrest LLC
  • Hali Pigment Co. Ltd
  • Chromatic Technologies Inc.
  • QCR Solutions Corp.
  • OliKrom
  • SFXC
  • MICI
  • RPM International Inc.
  • Good Life Innovations Ltd
  • FX Pigments Pvt. Ltd
  • Smarol Industry Co. Ltd
  • Kolortek Co. Ltd
  • Kolorjet Chemicals Pvt. Ltd
  • Colourchange

Source: OliKrom

Smart Hybrid Pigments

The solutions developed by OliKrom involve a new generation of hybrid pigments that combines the proven strength of the metal ions and the flexibility of the molecular material. The change in the structure allow to control the color change as a function of :

  • Temperature (thermochromic property),
  • Light (photochromic property),
  • Pressure (piezochromic property),
  • A solvent (solvatochromic property),
  • A gas (chimiochromic property),

The expertise of OliKrom allows for each of these properties:

  • To adjust the request colors,
  • To obtain reversible and/or irreversible color-shifting,
  • To modulate the speed of the color change,
  • To control the issues of fatigability.
  • To insert these adaptive pigments in a formulation (paint, ink, masterbatch, …) without altering the properties!
  • To produce on an industrial scale paintings, inks, master batches, …

Applications

SAFETY
  • Threshold temperature indicators / industrial pipes, thermal mapping.
  • Display: visual aid in the detection of ice.
  • Indicator of “health matter”, gauge effort, shock detection (Aeronautic & Navy).
  • Control: Temperature Indicator for monitoring sensitive products: cold chain, transport & medical vaccines or blood products.
  • Sterilization indicator: labels or inks.
  • Adhesives: indicator of adhesion, optimum drying.
  • Food Packaging: temperature indicator for the consumption of a product: beer, wine, vodka, champagne, cans and bottles, hot and cold drinks, baby food.
TRACEABILITY / INFRINGEMENT
  • Irreversible overheat indicator of industrial processes.
  • Security inks: offset ink for ticketing, games, secure access badges.
  • Infringement Indicator: branded article, banknote.
DECORATION / MARKETING / ADVERTISING
  • Plastic toys: decor with changing color, labels, packaging, paper / plastic promotional, “dynamic” advertising inserts.
  • Cosmetics: Bottles & Jars of cosmetic or perfume.
  • Smart Textiles: comfort indicator, clarification of the textile with temperature.

Fluorescent Pigments and Phosphorescent Pigments

Source: PHOTOLUMINESCENTS: FLUORESCENT AND PHOSPHORESCENT INKS AND PAINTS / OliKrom

Photochromic Pigments

Piezochromic Pigments

Thermochromic

Type

  • Reversible Thermochromic Material
  • Irreversible Thermochromic Material

Material

  • Liquid Crystal
  • Leuco Dyes
  • Pigment
  • Other Materials

Application

  • Roof Coatings
  • Printing
  • Food Packaging
  • Cosmetics
  • Other Applications

Solvachromes and Chemochromes

Color Change in Biology

Animals
  • Chameleon
  • Golden Tortoise Beetle
  • Mimic Octopus
  • Pacific Tree Frog
  • Sea Horses
  • Flounders
  • Cuttlefish
  • Crab Spiders
  • Squid
  • Cyanea Octopus

Mechanisms for Color Change

  • Chromatophores
  • Leucophores
  • Iridophores

Source: Adaptive camouflage helps blend into the environment 

Cephalopods such as cuttlefish often use use adaptive camouflage to blend in with their surroundings. They are able to match colors and surface textures of their surrounding environments by adjusting the pigment and iridescence of their skin.

On the skin surface, chromatophores (tiny sacs filled with red, yellow, or brown pigment) ab­sorb light of various wavelengths. Once vis­ual input is processed, the cephalopod sends a signal to a nerve fiber, which is connected to a muscle. That muscle relaxes and contracts to change the size and shape of the chromato­phore. Each color chromatophore is controlled by a different nerve, and when the attached muscle contracts, it flattens and stretches the pigment sack outward, expanding the color on the skin. When that muscle relaxes, the chro­matophore closes back up, and the color dis­appears. As many as two hundred of these may fill a patch of skin the size of a pencil eraser, like a shimmering pixel display.

The innermost layer of skin, composed of leuc­ophores, reflects ambient light. These broadband light reflectors give the cephalopods a ‘base coat’ that helps them match their surroundings.

Between the colorful chromatophores and the light-scattering leucophores is a reflective lay­er of skin made up of iridophores. These reflect light to create pink, yellow, green, blue, or silver coloration, while the reflector cells (found only in octopuses) reflect blue or green.

Source: https://www.worldatlas.com/articles/10-animals-that-can-change-colors.html

10 Animals That Can Change Colors

The mimic octopus changes their skin tone and body shape to copy other sea creatures.
The mimic octopus changes their skin tone and body shape to copy other sea creatures. 

There are a few animals that have the unique ability to change colors. The ability to change colors can help animals protect themselves against their predators because it allows them to blend into their natural environment. Here is a list of 10 color changing animals.

10. Chameleon

A chameleon is a unique species of lizard famous for changing its skin color. It does so to camouflage with its surrounding. Sometimes chameleons change their color when they are angry or fearful. To change its color, the chameleon adjusts a layer of specialized cells underlying its skin. Others change color in response to humidity, light, and temperature. Chameleons never stop growing. They keep shedding their skin from time to time. Furthermore, chameleons have excellent eyesight characterized by a 360-degree arc vision. Although chameleons do not hear, their bodies detect sound within the surrounding.

9. Golden Tortoise Beetle

The golden tortoise beetle is an insect that can change its color. The species with this ability include Charidotella sexpunctata and Charidotella egregia. The tortoise beetles change color due to particular events that occur in their environment. Such events include meeting a willing mate and being touched by a curious human being. Hence, when they are mating or agitated, the tortoise beetles change their color from gold to a bright red color. The change of color occurs due to a process referred to as optical illusion.

8. Mimic Octopus

Mimic octopus, scientifically known as Thaumoctopus mimicus, change their color and they can also mimic other sea creatures such as a lionfish, jellyfish, stingrays, and sea snakes. The mimic octopus can pick the color of the sea creature that they intend to mimic. The mimic octopuses change their body shape to avoid potential predators. The change of skin color helps them to adapt to their surrounding. Mimic octopuses can change color and mimic shapes due to their skin which is very responsive to the environment.

7. Pacific Tree Frog

The Pacific Tree Frog inhabits North America. One of its common features is the sticky toe pads. The sticky toe pads enable them to climb trees and plants. The Pacific Tree Frog changes its color to blend in with its surroundings. The change of color is a defense mechanism against predators such as raccoons, bullfrogs, snakes, heron, and many others. Pacific Tree Frogs also change their color based on the seasons and temperature. When the temperatures are high, they turn into a shade of yellow. An example of Pacific Tree Frog species that changes color is Hyla regilla. The process of color change in Pacific Tree Frogs takes 1-2 minutes.

6. Seahorses

Seahorses, such as the thorny seahorse, are among the marine animals that have mastered changing their color. The purpose of changing their skin color is to camouflage, frighten predators, communicate their emotions, and for courtship. Complex interactions between the brain, nervous system, hormones, and organelles make it possible for the seahorses to change their color. The organelles responsible for these color changes are known as chromatophores. Regarding the speed at which the skin color changes, this depends on the stimulus. For instance, in a life or death situation such as involving a predator, the color changes quickly. But whenever the seahorse is courting a mate, the change takes place slowly.

5. Flounders

Flounders are naturally brown. However, they can change color to suit their surroundings. A flounder uses its vision and specialized cells inside the skin to change color. The cells, in turn, have color pigments and are linked to the eyes of the flounders. When a flounder moves to a new environment, the retina in the eyes captures the new color. Consequently, the color seen by the eyes are transmitted to the cells. The cells adjust the pigmentation to match the surface color. Scientists have discovered that flounders depend entirely on their vision to change color. When their eyes are damaged, then they have difficulties in camouflaging to their surrounding. An example of flounder species that changes color is the peacock flounder.

4. Cuttlefish

Cuttlefish are cephalopods that change color to feed on prey and avoid predators craftily. They have three mechanisms by which they can change color. Firstly, the cuttlefish skin contains papillae that alter the tone of the fish. The papillae cause the skin to become smooth or rough depending on the environment. Secondly, camouflaging is possible because of the chromatophores in their skin. The chromatophores are sacs of color pigments. To change color, these sacs receive color-changing instructions from the brain and act accordingly. Lastly, cuttlefish have reflecting plates called leucophores and iridophores. The plates enable the fish to change its color.

3. Crab Spiders

Spiders called flower spiders (or crab spiders) change their color. They usually change color to hide from their prey. Consequently, the spiders change color to resemble the flower surface on which they sit through the reflection of light. Some spiders release a yellow pigment that enhances their color changing process. An example of a species of spider with such color changing features is Misumenoides formosipes and Misumena vatia. The color change from white to yellow takes 10-25 days. Hence, the flower spiders patiently wait for the completion of the process before they can attack their prey.

2. Squid

Squids are marine cephalopods. They possess two long tentacles and eight arms. An interesting fact about the squids is that their blood is blue. Furthermore, they have three hearts instead of one like other fish. The squids are uniquely beautiful and able to change color. They change color using chromatophores engraved in their skin. The purpose of changing color is to match the surface they are on so that they can avoid predators. The camouflage also acts as a hunting tactic since it enables them to hide away from their prey.

1. Cyanea Octopus

Known as the big blue octopus or the day octopus, octopus cyabea is found in the waters of the Indo-Pacific. It is known as the day octopus as it is most active during the daytime in contrast to most other octopus species. The cyanea octopus is especially adept at camouflage, able to not only frequently change the color of their skin, but also recreate patterns and textures. On the hunt for crabs, molluscs, shrimp, and fish, the cyanea octopus is able to quickly adapt its appearance to its surroundings, even mimicking moving shadows such as overhead clouds.

Color Change in Plants And Flowers

Color change in Leaves and Flowers

  • Chlorophyll – Green
  • Cartenoids – Xanthophylls – Yellow as in Corn
  • Cartenoids – Carotenes – Orange as in Carrots
  • Anthrocyanins – Blueberries and Cherries – Blue, purple, red, pink
  • Flavonols – Pale yellows and whites

Plants change colors

  • Change in Heat
  • Change in pH
  • During the Fall
  • During the day

Color Fading and Color Metamerism are also important problems but are not discussed in this post.

Source: The science behind why leaves change color in autumn

A rainbow of autumn colors

The green color of chlorophyll is so strong that it masks any other pigment. The absence of green in the fall lets the other colors come through. Leaves also contain the pigments called carotenoids; xanthophylls are yellow (such as in corn) and carotenes are orange (like in carrots). Anthocyanins (also found in blueberries, cherries) are pigments that are only produced in the fall when it is bright and cold. Because the trees cut off most contact with their leaves at this point, the trapped sugar in the leaves’ veins promotes the formation of anthocyanins, which are used for plant defense and create reddish colors.

However, trees in the fall aren’t just yellow and red: they are brown, golden bronze, golden yellow, purple-red, light tan, crimson, and orange-red. Different trees have different proportions of these pigments; the amount of chlorophyll left and the proportions of other pigments determine a leaf’s color. A combination of anthocyanin and chlorophyll makes a brown color, while anthocyanins plus carotenoids create orange leaves.

Source: The science behind why leaves change color in autumn

Source:https://www.gardeningknowhow.com/ornamental/flowers/hibiscus/hibiscus-turning-different-color.htm

Can Hibiscus Change Color: Reasons For Hibiscus Turning A Different Color

07/20/20

Can hibiscus change color? The Confederate Rose (Hibiscus mutabilis) is famous for its dramatic color changes, with flowers that can go from white to pink to deep red within one day. But almost all hibiscus varieties produce flowers that can change colors under certain circumstances. Read on to learn more.

Reasons for Color Changing in Hibiscus

If you’ve ever noticed the flowers on your hibiscus turning a different color, you’ve probably wondered what was behind the change. To understand why this happens, we need to look at what creates flower colors in the first place.

Three groups of pigments create the vibrant color displays of hibiscus flowers. Anthocyanins produce blue, purple, red, and pink colors, depending on the individual pigment molecule and the pH it is exposed to. Flavonols are responsible for pale yellow or white colors. Carotenoids create colors on the “warm” side of the spectrum – yellows, oranges, and reds.

Each hibiscus variety has its own genetics that determine what pigments, and what range of colors it can produce. However, within that range, temperature, sunlight, pH, and nutrition can all affect the levels of different pigments in a flower and what color they appear.

The blue- and red-colored anthocyanins are water-soluble pigments carried in plant sap. Meanwhile, the red, orange and yellow carotenoids are fat-soluble pigments created and stored in the plastids (compartments in plant cells similar to the chloroplasts that carry out photosynthesis). Therefore, anthocyanins are less protected and more sensitive to environmental changes, while carotenoids are more stable. This difference helps explain the color changes in hibiscus.

Anthocyanins exposed to hot conditions will often break down, causing flower colors to fade, while carotenoid-based colors hold up well in the heat. High temperatures and bright sunlight also enhance carotenoid production, leading to bright reds and oranges.

On the other hand, plants produce more anthocyanins in cold weather, and the anthocyanins they produce tend to be more red- and pink-colored as opposed to blue or purple. For this reason, some anthocyanin dependent hibiscus flowers will produce brilliant color displays during cool weather or in partial shade, but will fade in bright, hot sunlight.

Similarly, flavonols exposed to high temperatures will fade from yellow to white, while cold weather will cause an increase in production and a deepening of yellow flower colors.

Other Factors in Hibiscus Color Change

Some anthocyanin pigments will change color depending on the pH they’re exposed to within the flower. The pH doesn’t usually change over time within a hibiscus flower because it is determined genetically, but patches of different pH levels can lead to multiple colors occurring within one flower.

Nutrition is also a factor in color changes. Adequate sugar and protein in the sap are required for anthocyanin production. Making sure your plant has enough fertility and nutrients is important for vibrant colors in anthocyanin dependent flowers.

So, depending on its variety, your hibiscus changed color because of some combination of temperature, sunlight, nutrition, or pH has taken place. Can gardeners control this hibiscus color change? Yes, indirectly – by controlling the plant’s environment: shade or sun, good fertility, and protection from hot or cold weather.

Source: https://www.loc.gov/everyday-mysteries/botany/item/what-causes-flowers-to-have-different-colors/

What causes flowers to have different colors?

Answer

Anthocyanins and carotenoids… plus some other things.

Flowers come in all shapes and sizes, but what makes them truly stand apart from each other is their vibrant colors.  These colors are made up of pigments and, generally speaking, the fewer the pigments, the lighter the color.  The most common pigments in flowers come in the form of anthocyanins.  These pigments range in color from white to red to blue to yellow to purple and even black and brown.  A different kind of pigment class is made up of the carotenoids.  Carotenoids are responsible for some yellows, oranges, and reds.  (These little guys are what cause the brilliant colors of autumn leaves!)  While many flowers get their colors from either anthocyanins or carotenoids, there are some that can get their colors from a combination of both.

Anthocyanins and carotenoids are the main sources of flower coloration, but there are other factors that can affect how colors present themselves.  The amount of light flowers receive while they grow, the temperature of the environment around them, even the pH level of the soil in which they grow can affect their coloration.  Another factor is stress from the environment.  This stress can include a drought or a flood or even a lack of nutrition in the soil, all of which can dampen the coloration of flowers.  And then, of course, there is the visual that the eye and brain form together: humans can, for the most part, view all colors in the visible spectrum, BUT every human perceives color differently, so a red rose may appear more vibrant to one person while it appears more muted to another.  Beauty (and color!) is in the eye of the beholder.

My Related Posts

Digital Color and Imaging

Color and Imaging in Digital Video and Cinema

On Light, Vision, Appearance, Color and Imaging

On Luminescence: Fluorescence, Phosphorescence, and Bioluminescence

Key Sources of ResearCH

Photochromic and Thermochromic Colorants in Textile Applications

M. A. Chowdhury, M. Joshi and B. S. Butola

https://journals.sagepub.com/doi/pdf/10.1177/155892501400900113

THE CHEMISTRY & PHYSICS OF
SPECIAL EFFECT PIGMENTS & COLORANTS

A. NURHAN BECIDYAN

President
UNITED MINERAL & CHEMICAL CORPORATION

PHOTOLUMINESCENTS: FLUORESCENT AND PHOSPHORESCENT INKS AND PAINTS

Structural colour and iridescence in plants: the poorly studied relations of pigment colour

Beverley J. Glover1,* and  Heather M. Whitney2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850791/

Analysing photonic structures in plants 

Silvia Vignolini1,2, Edwige Moyroud3, Beverley J. Glover3 and Ullrich Steiner1

1Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK 2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 3Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK

The Mechanism of Color Change in the Neon Tetra Fish: a Light‐Induced Tunable Photonic Crystal Array

Dvir Gur 1 , Benjamin A Palmer 1 , Ben Leshem 2 , Dan Oron 2 , Peter Fratzl 3 , Steve Weiner 1 , Lia Addadi 4

First published: 27 April 2015

https://pubmed.ncbi.nlm.nih.gov/25914222/

10 Animals that can Change Colors

https://www.worldatlas.com/articles/10-animals-that-can-change-colors.html

How Octopuses and Squids Change Color

https://ocean.si.edu/ocean-life/invertebrates/how-octopuses-and-squids-change-color

Why color-changing animals alter their appearance

By Zach Fitzner

Earth.com staff writer

Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish

Hans Georg Frohnhöfer, Jana Krauss, Hans-Martin Maischein, Christiane Nüsslein-Volhard

Development  2013  140: 2997-3007;  doi: 10.1242/dev.096719

https://dev.biologists.org/content/140/14/2997.article-info

Magic Traits in Magic Fish: Understanding Color Pattern Evolution Using Reef Fish

Author links open overlay panelPaulineSalis1ThibaultLorin2VincentLaudet1BrunoFrédérich3

https://www.sciencedirect.com/science/article/abs/pii/S0168952519300162

Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish. 

https://www.x-mol.com/paper/959131

Rapid integumental color changes due to novel iridophores in the chameleon sand tilefish Hoplolatilus chlupatyi

Makoto Goda

First published: 13 February 2017 https://doi.org/10.1111/pcmr.12581

https://onlinelibrary.wiley.com/doi/abs/10.1111/pcmr.12581

Flashing Tilefish’s Color Changing Skin is Unique in the Animal World

Top 10 Colour Changing Animals Around the World

Chameleon-Inspired Variable Coloration Enabled by a Highly Flexible Photonic Cellulose Film

  • Ze-Lian Zhang, 
  • Xiu Dong, 
  • Yi-Ning Fan, 
  • Lu-Ming Yang, 
  • Lu He, 
  • Fei Song*
  • Xiu-Li Wang, and 
  • Yu-Zhong Wang*

Cite this: ACS Appl. Mater. Interfaces 2020, 12, 41, 46710–46718Publication Date:September 23, 2020

https://pubs.acs.org/doi/10.1021/acsami.0c13551

The secret to chameleon color change: Tiny crystals

By Robert F. ServiceMar. 10, 2015 

https://www.sciencemag.org/news/2015/03/secret-chameleon-color-change-tiny-crystals

Amazing Octopus Color Transformation | National Geographic

How do Octopuses Change Color?

Here’s everything you ever wanted to know about chromatophores.

Study demonstrates that octopus’s skin possesses same cellular mechanism for detecting light as its eyes do

by  University of California – Santa Barbara

https://phys.org/news/2015-05-octopus-skin-cellular-mechanism-eyes.html

Progress and Opportunities in Soft Photonics and Biologically Inspired Optics

Mathias KolleSeungwoo Lee

First published: 23 October 2017

https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201702669

https://pubmed.ncbi.nlm.nih.gov/29057519/

https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/adma.201702669

Bioinspired living structural color hydrogels

Fanfan Fu, Luoran Shang, Zhuoyue Chen, Yunru Yu, Yuanjin Zhao

Smart pigments with reactive nanocolors printed on paper and flexibles

2009 International Conference on Nanotechnology for the Forest Products Industry

Click to access 09nan23.pdf

Thermochromic Material

https://www.sciencedirect.com/topics/engineering/thermochromic-material

Color Changing Plastics for Food Packaging

By

Lizanel Feliciano
Ohio State University, Columbus, Ohio

Smart dyes for medical and other textiles

  • February 2007

DOI: 10.1533/9781845692933.1.123

Tatjana Rijavec, Sabina Bračko

University of Ljubljana

https://www.researchgate.net/publication/288402591_Smart_dyes_for_medical_and_other_textiles

Thermochromic colors in textiles

S. Periyasamy, Gaurav Khanna

https://www.fibre2fashion.com/industry-article/3059/thermochromic-colors-in-textiles

“Smart” fluorescent dyes change color in different solid states

Aug 21st, 2018

https://www.laserfocusworld.com/lasers-sources/article/16571232/smart-fluorescent-dyes-change-color-in-different-solid-states

Materials that Change Color

Smart Materials, Intelligent Design
  • Marinella Ferrara
  • Murat Bengisu

https://link.springer.com/book/10.1007%2F978-3-319-00290-3#about

Switching Colors with Electricity

BY  ROGER J. MORTIMER

American Scientist

JANUARY-FEBRUARY 2013

VOLUME 101, NUMBER 1

https://www.americanscientist.org/article/switching-colors-with-electricity

Smart textiles change colour on demand


Friday, 13 May 2016

https://portal.engineersaustralia.org.au/news/smart-textiles-change-colour-demand

Design Concepts for a Temperature-sensitive Environment Using Thermochromic Colour Change

Robert M Christie, Sara Robertson and Sarah Taylor

Colour: Design & Creativity (2007) 1 (1): 5, 1–11

Smart responsive phosphorescent materials for data recording and security protection

Huibin Sun1,2,􏰀, Shujuan Liu1,􏰀, Wenpeng Lin1, Kenneth Yin Zhang1, Wen Lv1, Xiao Huang2, Fengwei Huo2, Huiran Yang1, Gareth Jenkins1,2, Qiang Zhao1 & Wei Huang1,2

Received 21 Oct 2013 | Accepted 10 Mar 2014 | Published 7 April 2014

NATURE COMMUNICATIONS 

https://www.nature.com/articles/ncomms4601.pdf?origin=ppub

Anthocyanin food colorant and its application in pH-responsive color change indicator films

Swarup Roy & Jong-Whan Rhim (2020)

Critical Reviews in Food Science and Nutrition,

DOI: 10.1080/10408398.2020.1776211

Smart monitoring of gas/temperature changes within food packaging based on natural colorants

COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY

2020;19:2885–2931.

DOI: 10.1111/1541-4337.12635

https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1541-4337.12635

Smart textiles: an overview of recent progress on chromic textiles

Heloisa Ramlow Karina Luzia Andrade  & Ana Paula Serafini Immich 

Pages 152-171 | Received 20 Feb 2019, Accepted 24 Oct 2019, Published online: 29 Jun 2020

The Journal of The Textile Institute Volume 112, 2021 – Issue 1

https://www.tandfonline.com/doi/abs/10.1080/00405000.2020.1785071

Anthocyanin – A Natural Dye for Smart Food Packaging Systems

Suman Singh1, Kirtiraj K. Gaikwad2, and Youn Suk Lee3*

https://www.semanticscholar.org/paper/Anthocyanin-–-A-Natural-Dye-for-Smart-Food-Systems-Singh-Forestry/4f41ec48d77d61bc05decd7738a672f414f9b2db?p2df

Critical Review on Smart Chromic Clothing

Esraa El-Khodary1, Bahira Gebaly2, Eman Rafaat2, Ahmed AlSalmawy2

Colorimetric properties of reversible thermochromic printing inks

Rahela Kulcar a, Mojca Friskovec b, Nina Hauptman c, Alenka Vesel d, Marta Klanjsek Gunde

Dyes and Pigments 86 (2010) 271e277

Designing Smart Textiles Prints with Interactive Capability

Prof. Hoda Abdel Rahman Mohamed El-Hadi 1 ,Prof. Sherif Hassan Abdel Salam 2 Eng. Kholoud Hassan Mohamed Mahmoud

Smart Chromic Colorants Draw Wide Attention for the Growth of Future Intelligent Textile Materials

Amit Sengupta#& Jagadananda Behera

Wool Research Association, Thane, India

LEUCO DYE-BASED THERMOCHROMIC INKS: RECIPES AS A GUIDE FOR DESIGNING TEXTILE SURFACES

MARJAN KOOROSHNIA Swedish School of Textiles

Relation between colour- and phase changes of a leuco dye-based thermochromic composite

Scientific Reports volume 8, Article number: 5511 (2018)

https://www.nature.com/articles/s41598-018-23789-2

The Chemistry and Physics of Special-Effect Pigments and Colorants for Inks and Coatings

Paints and Coatings

2003

https://www.pcimag.com/articles/85016-the-chemistry-and-physics-of-special-effect-pigments-and-colorants-for-inks-and-coatings

THERMOCHROMIC MATERIAL MARKET

https://www.mordorintelligence.com/industry-reports/thermochromic-material-market

QCR Solutions Corp

OliKrom

The Effective Use of Interference and Polychromatic Colorants

https://www.pcimag.com/articles/102445-the-effective-use-of-interference-and-polychromatic-colorants

White reflection from cuttlefish skin leucophores

Cephalopod Camouflage: Cells and Organs of the Skin

https://www.nature.com/scitable/topicpage/cephalopod-camouflage-cells-and-organs-of-the-144048968/

Chromatophore Organs, Reflector Cells, Iridocytes and Leucophores in Cephalopods

RICHARD A. CLONEY AND STEVEN L. BROCCO

Mechanisms and behavioural functions of structural coloration in cephalopods

Lydia M. Ma ̈thger1,2,3,*,†, Eric J. Denton3,‡, N. Justin Marshall2 and Roger T. Hanlon1

J. R. Soc. Interface (2009) 6, S149–S163

Cephalopod Camouflage: Cells and Organs of the Skin

https://www.nature.com/scitable/topicpage/cephalopod-camouflage-cells-and-organs-of-the-144048968/

Chromatophore

https://en.wikipedia.org/wiki/Chromatophore

Leucophores are similar to xanthophores in their specification and differentiation processes in medaka

https://www.researchgate.net/publication/262111984_Leucophores_are_similar_to_xanthophores_in_their_specification_and_differentiation_processes_in_medaka

Identification and Characterization of Highly Fluorescent Pigment Cells in Embryos of the Arabian Killifish (Aphanius Dispar)

On leucophores and the chromatic unit of Octopus vulgaris

D. Froesch1J. B. Messenger2

https://zslpublications.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-7998.1978.tb03363.x

Adaptive camouflage helps blend into the environment 

Cuttlefish

https://asknature.org/strategy/adaptive-camouflage-helps-blend-into-the-environment/

Identification of kit-ligand a as the Gene Responsible for the Medaka Pigment Cell Mutant few melanophore

THE SECRET OF A SQUID’S ABILITY TO CHANGE COLORS MAY LIE IN AN UNEXPECTED SPARKLE ON ITS SKIN

INVISIBILITY IS (ALMOST) POSSIBLE WHEN HUMAN CELLS ARE MERGED WITH SQUID GENES

https://www.syfy.com/syfywire/human-cells-merged-with-squid-invisibility-trait

How Cephalopods Change Color

By Dr. James Wood and Kelsie Jackson

ELECTRONIC PAPER DISPLAYS: Kindles and cuttlefish: Biomimetics informs e-paper displays

https://www.laserfocusworld.com/detectors-imaging/article/16549524/electronic-paper-displays-kindles-and-cuttlefish-biomimetics-informs-epaper-displays

Skin paterning in Octopus vulgaris and its importance for camouflage

Iridophores and Not Carotenoids Account for Chromatic Variation of Carotenoid-Based Coloration in Common Lizards ( Lacerta vivipara ).

Biological vs. Electronic Adaptive Coloration: How Can One Inform the Other?

Eric Kreit1, Lydia M. Mäthger2, Roger T. Hanlon2, Patrick B. Dennis3, Rajesh R. Naik3, Eric Forsythe4 and Jason Heikenfeld1*

The Chemistry of Biological Camouflage

https://www.chemistryislife.com/the-chemistry-of-biological-camouflage

Mechanisms and behavioural functions of structural coloration in cephalopods

https://espace.library.uq.edu.au/view/UQ:170626

Sepiida algorithm for solving optimal reactive power problem

Are You Ready for Plants That Change Color?

Why Leaves Change Color

https://www.esf.edu/pubprog/brochure/leaves/leaves.htm

Can Hibiscus Change Color: Reasons For Hibiscus Turning A Different Color

https://www.gardeningknowhow.com/ornamental/flowers/hibiscus/hibiscus-turning-different-color.htm

What causes flowers to have different colors?

https://www.loc.gov/everyday-mysteries/botany/item/what-causes-flowers-to-have-different-colors/

The science behind why leaves change color in autumn

Why has my plant’s flower changed colour?

Why Does Cannabis Change Colors?

https://cannabis.net/blog/strains/why-does-cannabis-change-colors

A cyborg plant with color-changing leaves? Scientists just rose to the challenge.

https://www.washingtonpost.com/news/speaking-of-science/wp/2015/11/23/a-cyborg-plant-with-color-changing-leaves-scientists-just-rose-to-the-occasion/

Color-changing plants detect pollutants and explosives

https://newatlas.com/color-changing-plants-detect-pollutants-and-explosives/17915/

The Color Genes of Speciation in Plants

Daniel Ortiz-Barrientos1

Genetics. 2013 May; 194(1): 39–42.
doi: 10.1534/genetics.113.150466

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632479/

Guide to Fall Colors in Upstate New York

Donald J. Leopold
Chair, Department of Environmental and Forest Biology and Distinguished Teaching Professor
SUNY-ESF, Syracuse

The plants that change colour through the seasons

https://www.stuff.co.nz/life-style/home-property/nz-gardener/76979012/the-plants-that-change-colour-through-the-seasons

Colours of plants and animals

https://www.itp.uni-hannover.de/fileadmin/arbeitsgruppen/zawischa/static_html/botzooE.html

Recursion, Incursion, and Hyper-incursion

Recursion, Incursion, and Hyper-incursion

 

How do Past and Future inform the present?

What happens in the Present is not only determined by the Past but also by the Future.  Karma and Destiny both play a role as to what is going on in your life Now.

Key Terms

  • Recursion
  • Incursion
  • Hyper Incursion
  • Discrete Processes
  • Cellular Automata
  • Fractal Machine
  • Hypersets
  • Interpenetration
  • Turing Machine
  • Symmetry
  • Non Well Founded Set Theory
  • Sets as Graphs
  • Leela
  • Predetermined Future
  • Bhagya
  • Fate
  • Destiny
  • Karma
  • Anticipation
  • Four Causes of Aristotle
  • Material Cause
  • Formal Cause
  • Efficient Cause
  • Final Cause
  • Left Computer
  • Right Computer
  • Parallel Computing
  • Fifth and the Fourth in Music Theory
  • Bicameral Brain
  • Hemispheric Division of Brain
  • One, Two, Three.  Where is the Fourth?

From GENERATION OF FRACTALS FROM INCURSIVE AUTOMATA, DIGITAL DIFFUSION AND WAVE EQUATION SYSTEMS

The recursion consists of the computation of the future value of the variable vector X(t+l) at time t+l from the values of these variables at present and/or past times, t, t-l, t-2 ….by a recursive function :

X (t+ 1) =f(X(t), X(t-1) …p..)

where p is a command parameter vector. So, the past always determines the future, the present being the separation line between the past and the future.

Starting from cellular automata, the concept of Fractal Machines was proposed in which composition rules were propagated along paths in the machine frame. The computation is based on what I called “INclusive reCURSION”, i.e. INCURSION (Dubois, 1992a- b). An incursive relation is defined by:

X(t+l) =f(…, X (t+l), X(t), X(t-1) ..p..).

which consists in the computation of the values of the vector X(t+l) at time t+l from the values X(t-i) at time t-i, i=1, 2 …. , the value X(t) at time t and the value X(t+j) at time t+j, j=l, 2, …. in function of a command vector p. This incursive relation is not trivial because future values of the variable vector at time steps t+l, t+2 …. must be known to compute them at the time step t+ 1.

In a similar way to that in which we define hyper recursion when each recursive step generates multiple solutions, I define HYPERINCURSION. Recursive computational transformations of such incursive relations are given in Dubois and Resconi (1992, 1993a-b).

I have decided to do this for three reasons. First, in relativity theory space and time are considered as a four-vector where time plays a role similar to space. If time t is replaced by space s in the above definition of incursion, we obtain

X(s+ l) =f( …, X(s+ 1), X(s), X (s-l) …p.).

and nobody is astonished: a Laplacean operator looks like this. Second, in control theory, the engineers control engineering systems by defining goals in the future to compute their present state, similarly to our haman anticipative behaviour (Dubois, 1996a-b). Third, I wanted to try to do a generalisation of the recursive and sequential Turing Machine in looking at space-time cellular automata where the order in which the computations are made is taken into account with an inclusive recursion.

We have already proposed some methods to realise the design of any discrete systems with an extension of the recursion by the concept of incursion and hyperincursion based on the Fractal Machine, a new type of Cellular Automata, where time plays a central role. In this framework, the design of the model of any discrete system is based on incursion relations where past, present and future states variables are mixed in such a way that they define an indivisible wholeness invariant. Most incursive relations can be transformed in different sets of recursive algorithms for computation. In the same way, the hyperincursion is an extension of the hyper recursion in which several different solutions can be generated at each time step. By the hyperincursion, the Fractal Machine could compute beyond the theoretical limits of the Turing Machine (Dubois and Resconi, 1993a-b). Holistic properties of the hyperincursion are related to the Golden Ratio with the Fibonacci Series and the Fractal Golden Matrix (Dubois and Resconi, 1992). An incursive method was developed for the inverse problem, the Newton- Raphson method and an application in robotics (Dubois and Resconi, 1995). Control by incursion was applied to feedback systems (Dubois and Resconi, 1994). Chaotic recursions can be synchronised by incursion (1993b). An incursive control of linear, non- linear and chaotic systems was proposed (Dubois, 1995a, Dubois and Resconi, 1994, 1995). The hyperincursive discrete Lotka-Voiterra equations have orbital stability and show the emergence of chaos (Dubois, 1992). By linearisation of this non-linear system, hyperincursive discrete harmonic oscillator equations give stable oscillations and discrete solutions (Dubois, 1995). A general theory of stability by incursion of discrete equations systems was developed with applications to the control of the numerical instabilities of the difference equations of the Lotka-Volterra differential equations as well as the control of the fractal chaos in the Pearl-Verhulst equation (Dubois and Resconi, 1995). The incursion harmonic oscillator shows eigenvalues and wave packet like in quantum mechanics. Backward and forward velocities are defined in this incursion harmonic oscillator. A connection is made between incursion and relativity as well as the electromagnetic field. The foundation of a hyperincursive discrete mechanics was proposed in relation to the quantum mechanics (Dubois and Resconi, 1993b, 1995).

This paper will present new developments and will show that the incursion and hyper-incursion could be a new tool of research and development for describing systems where the present state of such systems is also a function of their future states. The anticipatory property of incursion is an incremental final cause which could be related to the Aristotelian Final Cause.

Aristotle identified four explicit categories of causation: 1. Material cause; 2. Formal cause; 3. Efficient cause; 4. Final cause. Classically, it is considered that modem physics and mechanics only deal with efficient cause and biology with material cause. Robert Rosen (1986) gives another interpretation and asks why a certain Newtonian mechanical system is in the state (phase) Ix(t) (position), v(t) (velocity)]:

1. Aristotle’s “material cause” corresponds to the initial conditions of the system [x(0), v(0)] at time t=0.

2. The current cause at the present time is the set of constraints which convey to the system an “identity”, allowing it to go by recursion from the given initial phase to the latter phase, which corresponds to what Aristotle called formal cause.

3. What we call inputs or boundary conditions are the impressed forces by the environment, called efficient cause by Aristotle.

As pointed out by Robert Rosen, the first three of Aristotle’s causal categories are tacit in the Newtonian formalism: “the introduction of a notion of final cause into the Newtonian picture would amount to allowing a future state or future environment to affect change of state in the present, and this would be incompatible with the whole Newtonian picture. This is one of the main reasons that the concept of Aristotelian finality is considered incompatible with modern science.

In modern physics, Aristotelian ideas of causality are confused with determinism, which is quite different…. That is, determinism is merely a mathematical statement of functional dependence or linkage. As Russell points out, such mathematical relations, in themselves, carry no hint as to which of their variables are dependent and which are independent.”

The final cause could impress the present state of evolving systems, which seems a key phenomenon in biological systems so that the classical mathematical models are unable to explain many of these biological systems. An interesting analysis of the Final Causation was made by Emst von Glasersfeld (1990). The self-referential fractal machine shows that the hyperincursive field dealing with the final cause could be also very important in physical and computational systems. The concepts of incursion and hyper-incursion deal with an extension of the recursive processes for which future states can determine present states of evolving systems. Incursion is defined as invariant functional relations from which several recursive models with interacting variables can be constructed in terms of diverse physical structures (Dubois & Resconi, 1992, 1993b). Anticipation, viewed as an Aristotelian final cause, is of great importance to explain the dynamics of systems and the semantic information (Dubois, 1996a-b). Information is related to the meaning of data. It is important to note that what is usually called Information Theory is only a communication theory dealing with the communication of coded data in channels between a sender and a receptor without any reference to the semantic aspect of the messages. The meaning of the message can only be understood by the receiver if he has the same cultural reference as the sender of the message and even in this case, nobody can be sure that the receiver understands the message exactly as the sender. Because the message is only a sequential explanation of a non-communicable meaning of an idea in the mind of the sender which can be communicated to the receiver so that a certain meaning emerges in his mind. The meaning is relative or subjective in the sense that it depends on the experiential life or imagination of each of us. It is well- known that the semantic information of signs (like the coding of the signals for traffic) are the same for everybody (like having to stop at the red light at a cross roads) due to a collective agreement of their meaning in relation to actions. But the semantic information of an idea, for example, is more difficult to codify. This is perhaps the origin of creativity for which a meaning of something new emerges from a trial to find a meaning for something which has no a priori meaning or a void meaning.

Mind dynamics seems to be a parallel process and the way we express ideas by language is sequential. Is the sequential information the same as the parallel information? Let us explain this by considering the atoms or molecules in a liquid. We can calculate the average velocity of the particles from in two ways. The first way is to consider one particular particle and to measure its velocity during a certain time. One obtains its mean velocity which corresponds to the mean velocity of any particle of the liquid. The sec- ond way is to consider a certain number of particles at a given time and to measure the velocity of each of them. This mean velocity is equal to the first mean velocity. So there are two ways to obtain the same information. One by looking at one particular element along the time dimension and the other by looking at many elements at the same time. For me, explanation corresponds to the sequential measure and understanding to the parallel measure. Notice that ergodicity is only available with simple physical systems, so in general we can say that there are distortions between the sequential and the parallel view of any phenomenon. Perhaps the brain processes are based on ergodicity: the left hemisphere works in a sequential mode while the right hemisphere works in a parallel mode. The left brain explains while the right brain understands. The two brains arecomplementary and necessary.

Today computer science deals with the “left computer”. Fortunately, the informaticians have invented parallel computers which are based on complex multiplication of Turing Machines. It is now the time to reconsider the problem of looking at the “right computer”. Perhaps it will be an extension of the Fractal Machine (Dubois & Resconi, 1993a).

I think that the sequential way deals with the causality principle while the parallel way deals with a finality principle. There is a paradox: causality is related to the successive events in time while finality is related to a collection of events at a simultaneous time, i.e. out of time.Causality is related to recursive computations which give rise to the local generation of patterns in a synchronic way. Finality is related to incursive or hyperincursive symmetry invariance which gives rise to an indivisible wholeness, a holistic property in a diachronic way. Recursion (and Hyper recursion) is defined in the Sets Theory and Incursion (and Hyperincursion) could be defined in the new framework of the Hypersets Theory (Aczel, 1987; Barwise, Moss, 1991).

If the causality principle is rather well acknowledged, a finality principle is still controversial. It would be interesting to re-define these principles. Causality is defined for sequential events. If x(t) represents a variable at time t, a causal rule x(t+l) = f(x(t)) gives the successive states of the variable x at the successive time steps t, t+l, t+2, … from the recursive functionf(x(t)), starting with an initial state x(0) at time t=0. Defined like this, the system has no degrees of freedom: it is completely determined by the function and the initial condition. No new things can happen for such a system: the whole future is completely determined by its past. It is not an evolutionary system but a developmental system. If the system tends to a stable point, x(t+l) = x(t) and it remains in this state for ever. The variable x can represent a vector of states as a generalisation.

In the same way, I think that determinism is confused with predictability, in modern physics. The recent fractal and deterministic chaos theory (Mandeibrot, 1982; Peitgen, Jurgens, Saupe, 1992) is a step beyond classical concepts in physics. If the function is non-linear, chaotic behaviour can appear, what is called (deterministic) chaos. In this case, determinism does not give an accurate prediction of the future of the system from its initial conditions, what is called sensitivity to initial conditions. A chaotic system loses the memory of its past by finite computation. But it is important to point out that an average value, or bounds within which the variable can take its values, can be known;

it is only the precise values at the successive steps which are not predictable. The local information is unpredictable while the global symmetry is predictable. Chaos can presents a fractai geometry which shows a self-similarity of patterns at any scale.

A well-known fractal is the Sierpinski napkin. The self-similarity of pattems at any scale can be viewed as a symmetry invariance at any scale. An interesting property of such fractals is the fact that the final global pattern symmetry can be completely independent of the local pattern symmetry given as the initial condition of the process from which the fractal is built. The symmetry of the fractal structure, a final cause, can be independent of the initial conditions, a material cause. The formal cause is the local symmetry of the generator of the fractal, independently of its material elements and the efficient cause can be related to the recursive process to generate the fractal. In this particular fractal geometry, the final cause is identical to the final cause. The efficient cause is the making of the fractal and the material cause is just a substrate from which the fractal emerges but this substrate doesn’t play a role in the making.

Finally, the concepts of incursion and hyperincursion can be related to the theory of hypersets which are defined as sets containing themselves. This theory of hypersets is an alternative theory to the classical set theory which presents some problems as the in- completeness of G6del: a formal system cannot explain all about itself and some propositions cannot be demonstrated as true or false (undecidability). Fundamental entities of systems which are considered as ontological could be explain in a non-ontological way by self-referential systems.

Please see my related posts

On Anticipation: Going Beyond Forecasts and Scenarios

Autocatalysis, Autopoiesis and Relational Biology

Key sources of Research

 

Computing Anticipatory Systems with Incursion and Hyperincursion

Daniel M. DUBOIS

 

Click to access cd554835f0ae367c3d3e3fa40f3e5e5f5f11.pdf

 

 

 

Anticipation in Social Systems:

the Incursion and Communication of Meaning

Loet Leydesdorff 

Daniel M. Dubois

Click to access casys03.pdf

 

 

 

GENERATION OF FRACTALS FROM INCURSIVE AUTOMATA, DIGITAL DIFFUSION AND WAVE EQUATION SYSTEMS

Daniel M. Dubois

 

Click to access dubois.pdf

 

 

 

Non-wellfounded Set Theory

https://plato.stanford.edu/entries/nonwellfounded-set-theory/

Hypersets

  • Jon Barwise &
  • Larry Moss

https://link.springer.com/article/10.1007/BF03028340

Non-well-founded set theory

https://en.wikipedia.org/wiki/Non-well-founded_set_theory

Knot Theory and Recursion: Louis H. Kauffman

Knot Theory and Recursion: Louis H. Kauffman

 

Some knots are tied forever.

 

Key Terms

  • Louis H Kauffman
  • Heinz Von Foerster
  • George Spencer Brown
  • Francisco Varela
  • Charles Sanders Peirce
  • Recursion
  • Reflexivity
  • Knots
  • Laws of Form
  • Shape of Process
  • Trefoil Knots
  • Triplicity
  • Nonduality
  • Self Reference
  • Eigen Form
  • Form Dynamics
  • Recursive Forms
  • Knot Logic
  • Bio Logic
  • Distinctions
  • Topology
  • Topological Recursion
  • Ganth
  • Granthi – Brahma, Vishnu, Rudra
  • Chakra
  • Braids
  • Bandhu
  • Mitra
  • Vishvamitra
  • Friend
  • Relation
  • Sambandh
  • Love
  • True Love
  • Its a Knotty problem.

 

http://mathworld.wolfram.com/Knot.html

In mathematics, a knot is defined as a closed, non-self-intersecting curve that is embedded in three dimensions and cannot be untangled to produce a simple loop (i.e., the unknot). While in common usage, knots can be tied in string and rope such that one or more strands are left open on either side of the knot, the mathematical theory of knots terms an object of this type a “braid” rather than a knot. To a mathematician, an object is a knot only if its free ends are attached in some way so that the resulting structure consists of a single looped strand.

A knot can be generalized to a link, which is simply a knotted collection of one or more closed strands.

The study of knots and their properties is known as knot theory. Knot theorywas given its first impetus when Lord Kelvin proposed a theory that atoms were vortex loops, with different chemical elements consisting of different knotted configurations (Thompson 1867). P. G. Tait then cataloged possible knots by trial and error. Much progress has been made in the intervening years.

Schubert (1949) showed that every knot can be uniquely decomposed (up to the order in which the decomposition is performed) as a knot sum of a class of knots known as prime knots, which cannot themselves be further decomposed (Livingston 1993, p. 5; Adams 1994, pp. 8-9). Knots that can be so decomposed are then known as composite knots. The total number (prime plus composite) of distinct knots (treating mirror images as equivalent) having k=0, 1, … crossings are 1, 0, 0, 1, 1, 2, 5, 8, 25, … (OEIS A086825).

Klein proved that knots cannot exist in an even-dimensional space >=4. It has since been shown that a knot cannot exist in any dimension >=4. Two distinct knots cannot have the same knot complement (Gordon and Luecke 1989), but two links can! (Adams 1994, p. 261).

Knots are most commonly cataloged based on the minimum number of crossings present (the so-called link crossing number). Thistlethwaite has used Dowker notation to enumerate the number of prime knots of up to 13 crossings, and alternating knots up to 14 crossings. In this compilation, mirror images are counted as a single knot type. Hoste et al. (1998) subsequently tabulated all prime knots up to 16 crossings. Hoste and Weeks subsequently began compiling a list of 17-crossing prime knots (Hoste et al. 1998).

Another possible representation for knots uses the braid group. A knot with n+1 crossings is a member of the braid group n.

There is no general algorithm to determine if a tangled curve is a knot or if two given knots are interlocked. Haken (1961) and Hemion (1979) have given algorithms for rigorously determining if two knots are equivalent, but they are too complex to apply even in simple cases (Hoste et al. 1998).

 

LH Kauffman with Trefoil Knot in the back.

LH Kauffman

 

From Reflexivity

A Knot

Screen Shot 2020-01-06 at 12.49.45 PM

 

Trefoil Knot

Tricoloring

 

Screen Shot 2020-01-07 at 6.32.04 AM

 

 

 

From Reflexivity

This slide show has been only an introduction to certain mathematical and conceptual points of view about reflexivity.

In the worlds of scientific, political and economic action these principles come into play in the way structures rise and fall in the play of realities that are created from (almost) nothing by the participants in their desire to profit, have power or even just to have clarity and understanding. Beneath the remarkable and unpredictable structures that arise from such interplay is a lambent simplicity to which we may return, as to the source of the world.

 

From Laws of Form and the Logic of Non-Duality

This talk will trace how a mathematics of distinction arises directly from the process of discrimination and how that language, understood rightly as an opportunity to join as well as to divide, can aid in the movement between duality and non-duality that is our heritage as human beings on this planet.The purpose of this talk is to express this language and invite your participation in it and to present the possiblity that all our resources physical, scientific, logical, intellectual, empathic are our allies in the journey to transcend separation.

From Laws of Form and the Logic of Non-Duality

True Love.  It is a knotty problem.

Screen Shot 2020-01-07 at 9.51.03 AM

 

Wikipedia on Knot Theory

Tabela_de_nós_matemáticos_01,_crop

 

 

Please see my related posts:

Reflexivity, Recursion, and Self Reference

Jay W. Forrester and System Dynamics

Steps to an Ecology of Mind: Recursive Vision of Gregory Bateson

Second Order Cybernetics of Heinz Von Foerster

Cybernetics Group: A Brief History of American Cybernetics

Cybernetics, Autopoiesis, and Social Systems Theory

Cyber-Semiotics: Why Information is not enough

Ratio Club: A Brief History of British Cyberneticians

Autocatalysis, Autopoiesis and Relational Biology

Feedback Thought in Economics and Finance

Increasing Returns and Path Dependence in Economics

Boundaries and Distinctions

Boundaries and Relational Sociology

Boundaries and Networks

Socio-Cybernetics and Constructivist Approaches

Society as Communication: Social Systems Theory of Niklas Luhmann

Semiotics, Bio-Semiotics and Cyber Semiotics

Meta Integral Theories: Integral Theory, Critical Realism, and Complex Thought

Networks and Hierarchies

 

Key Sources of Research:

 

Home Page of Louis H. Kauffman

http://homepages.math.uic.edu/~kauffman/

Recursive Distinctioning

By Joel Isaacson and Louis H. Kauffman

 

Click to access JSP-Spr-2016-8_Kauffman-Isaacson-Final-v2.pdf

 

 

Knot Logic – Logical Connection and Topological Connection

by Louis H. Kauffman

Click to access 1508.06028.pdf

 

 

KNOTS

by Louis H. Kauffman

 

Click to access KNOTS.pdf

 

 

 

BioLogic

Louis H. Kaufman, UIC

Click to access BioL.pdf

New Invariants in the Theory of Knots

Louis H. Kaufman, UIC

https://www.researchgate.net/publication/238648076_New_Invariants_in_the_Theory_of_Knots

 

 

 

Eigenform – An Introduction

by Louis H. Kauffman

Click to access 2007_813_Kauffman.pdf

 

 

Knot Logic and Topological Quantum Computing with Majorana Fermions

Louis H. Kauffman

 

Click to access arXiv%3A1301.6214.pdf

 

 

Reflexivity

by Louis H. Kauffman

Click to access videoLKss-slides.pdf

 

 

 

Eigenforms, Discrete Processes and Quantum Processes

Louis H Kauffman 2012 J. Phys.: Conf. Ser. 361 012034

https://iopscience.iop.org/article/10.1088/1742-6596/361/1/012034/pdf

 

 

 

Eigenforms — Objects as Tokens for Eigenbehaviors

by Louis H. Kauffman

Click to access 1817.pdf

 

 

 

Reflexivity and Eigenform The Shape of Process

Louis H. Kauffman A University of

 

Click to access ReflexPublished.pdf

 

 

 

FORMAL SYSTEMS

EigenForm

Louis H. Kauffman

 

Click to access Eigen.pdf

 

 

 

EigenForm

Louis H. Kauffman UIC, Chicago

 

Click to access Eigenform.pdf

 

 

Form Dynamics

Click to access FormDynamics.pdf

 

 

Arithmetics in the Form

Click to access ArithForm.pdf

 

 

 

Self Reference and Recursive Forms

Click to access SelfRefRecurForm.pdf

Click to access Relativity.pdf

 

 

 

Laws of Form and the Logic of Non-Duality

Louis H. Kauffman, UIC

 

Click to access KauffSAND.pdf

 

 

 

Laws of Form – An Exploration in Mathematics and Foundations

by Louis H. Kauffman UIC

 

Click to access Laws.pdf

 

 

 

The Mathematics of Charles Sanders Peirce

Louis H. Kauffman1

 

Click to access Peirce.pdf

 

 

 

A Recursive Approach to the Kauffman Bracket

Abdul Rauf Nizami, Mobeen Munir, Umer Saleem, Ansa Ramzan

Division of Science and Technology, University of Education, Lahore, Pakistan

https://www.scirp.org/html/11-7402327_50601.htm

 

What is Code Biology?

What is Code Biology?

 

 

 

Key Terms

  • Code Biology
  • Biosemiotics
  • Charles Sanders Peirce
  • Genetic Code
  • Musical Harmony
  • Symmetry
  • Jay Kappraff
  • Gary Adamson
  • Pythagorean Triples
  • Harmonic Laws
  • Numbers
  • Geometry
  • Matrices
  • Self, Culture, Nature
  • I, We, It, Its
  • Sergey V. Petoukhov
  • Codes
  • Meaning
  • Value
  • Marcello Barbieri
  • RNA, DNA, Proteins, Cells
  • Code Semiotics
  • Ferdinand D Saussure

 

What is Code Biology?

Codes and conventions are the basis of our social life and from time immemorial have divided the world of culture from the world of nature. The rules of grammar, the laws of government, the precepts of religion, the value of money, the rules of chess etc., are all human conventions that are profoundly different from the laws of physics and chemistry, and this has led to the conclusion that there is an unbridgeable gap between nature and culture. Nature is governed by objective immutable laws, whereas culture is produced by the mutable conventions of the human mind.

In this millennia-old framework, the discovery of the genetic code, in the early 1960s, came as a bolt from the blue, but strangely enough it did not bring down the barrier between nature and culture. On the contrary, a protective belt was quickly built around the old divide with an argument that effectively emptied the discovery of all its revolutionary potential. The argument that the genetic code is not a real code because its rules are the result of chemical affinities between codons and amino acids and are therefore determined by chemistry. This is the ‘Stereochemical theory’, an idea first proposed by George Gamow in 1954, and re-proposed ever since in many different forms (Pelc and Welton 1966; Dunnil 1966; Melcher 1974; Shimizu 1982; Yarus 1988, 1998; Yarus, Caporaso and Knight 2005). More than fifty years of research have not produced any evidence in favour of this theory and yet the idea is still circulating, apparently because of the possibility that stereochemical interactions might have been important at some early stages of evolution (Koonin and Novozhilov 2009). The deep reason is probably the persistent belief that the genetic code must have been a product of chemistry and cannot possibly be a real code. But what is a real code?

The starting point is the idea that a code is a set of rules that establish a correspondence, or a mapping, between the objects of two independent worlds (Barbieri 2003). The Morse code, for example, is a mapping between the letters of the alphabet and groups of dots and dashes. The highway code is a correspondence between street signals and driving behaviours (a red light means ‘stop’, a green light means ‘go’, and so on).

What is essential in all codes is that the coding rules, although completely compatible with the laws of physics and chemistry, are not dictated by these laws. In this sense they are arbitrary, and the number of arbitrary relationships between two independent worlds is potentially unlimited. In the Morse code, for example, any letter of the alphabet could be associated with countless combinations of dots and dashes, which means that a specific link between them can be realized only by selecting a small number of rules. And this is precisely what a code is: a small set of arbitrary rules selected from a potentially unlimited number in order to ensure a specific correspondence between two independent worlds.

This definition allows us to make experimental tests because organic codes are relationships between two worlds of organic molecules and are necessarily implemented by a third type of molecules, called adaptors, that build a bridge between them. The adaptors are required because there is no necessary link between the two worlds, and a fixed set of adaptors is required in order to guarantee the specificity of the correspondence. The adaptors, in short, are the molecular fingerprints of the codes, and their presence in a biological process is a sure sign that that process is based on a code.

This gives us an objective criterion for discovering organic codes and their existence is no longer a matter of speculation. It is, first and foremost, an experimental problem. More precisely, we can prove that an organic code exists, if we find three things: (1) two independents worlds of molecules, (2) a set of adaptors that create a mapping between them, and (3) the demonstration that the mapping is arbitrary because its rules can be changed, at least in principle, in countless different ways.

 

Two outstanding examples

The genetic code

In protein synthesis, a sequence of nucleotides is translated into a sequence of amino acids, and the bridge between them is realized by a third type of molecules, called transfer-RNAs, that act as adaptors and perform two distinct operations: at one site they recognize groups of three nucleotides, called codons, and at another site they receive amino acids from enzymes called aminoacyl-tRNA-synthetases. The key point is that there is no deterministic link between codons and amino acids since it has been shown that any codon can be associated with any amino acid (Schimmel 1987; Schimmel et al. 1993). Hou and Schimmel (1988), for example, introduced two extra nucleotides in a tRNA and found that that the resulting tRNA was carrying a different amino acid. This proved that the number of possible connections between codons and amino acids is potentially unlimited, and only the selection of a small set of adaptors can ensure a specific mapping. This is the genetic code: a fixed set of rules between nucleic acids and amino acids that are implemented by adaptors. In protein synthesis, in conclusion, we find all the three essential components of a code: (1) two independents worlds of molecules (nucleotides and amino acids), (2) a set of adaptors that create a mapping between them, and (3) the proof that the mapping is arbitrary because its rules can be changed.

 

The signal transduction codes

Signal transduction is the process by which cells transform the signals from the environment, called first messengers, into internal signals, called second messengers. First and second messengers belong to two independent worlds because there are literally hundreds of first messengers (hormones, growth factors, neurotransmitters, etc.) but only four great families of second messengers (cyclic AMP, calcium ions, diacylglycerol and inositol trisphosphate) (Alberts et al. 2007). The crucial point is that the molecules that perform signal transduction are true adaptors. They consists of three subunits: a receptor for the first messengers, an amplifier for the second messengers, and a mediator in between (Berridge 1985). This allows the transduction complex to perform two independent recognition processes, one for the first messenger and the other for the second messenger. Laboratory experiments have proved that any first messenger can be associated with any second messenger, which means that there is a potentially unlimited number of arbitrary connections between them. In signal transduction, in short, we find all the three essential components of a code: (1) two independents worlds of molecules (first messengers and second messengers), (2) a set of adaptors that create a mapping between them, and (3) the proof that the mapping is arbitrary because its rules can be changed (Barbieri 2003).

 

A world of organic codes

In addition to the genetic code and the signal transduction codes, a wide variety of new organic codes have come to light in recent years. Among them: the sequence codes (Trifonov 1987, 1989, 1999), the Hox code (Paul Hunt et al. 1991; Kessel and Gruss 1991), the adhesive code (Redies and Takeichi 1996; Shapiro and Colman 1999), the splicing codes (Barbieri 2003; Fu 2004; Matlin et al. 2005; Pertea et al. 2007; Wang and Burge 2008; Barash et al. 2010; Dhir et al. 2010), the signal transduction codes (Barbieri 2003), the histone code (Strahl and Allis 2000; Jenuwein and Allis 2001; Turner 2000, 2002, 2007; Kühn and Hofmeyr 2014), the sugar code (Gabius 2000, 2009), the compartment codes (Barbieri 2003), the cytoskeleton codes (Barbieri 2003; Gimona 2008), the transcriptional code (Jessell 2000; Marquard and Pfaff 2001; Ruiz i Altaba et al. 2003; Flames et al. 2007), the neural code (Nicolelis and Ribeiro 2006; Nicolelis 2011), a neural code for taste (Di Lorenzo 2000; Hallock and Di Lorenzo 2006), an odorant receptor code(Dudai 1999; Ray et al. 2006), a space code in the hippocampus (O’Keefe and Burgess 1996, 2005; Hafting et al. 2005; Brandon and Hasselmo 2009; Papoutsi et al. 2009), the apoptosis code (Basañez and Hardwick 2008; Füllgrabe et al. 2010), the tubulin code (Verhey and Gaertig 2007), the nuclear signalling code (Maraldi 2008), the injective organic codes (De Beule et al. 2011), the molecular codes (Görlich et al. 2011; Görlich and Dittrich 2013), the ubiquitin code (Komander and Rape 2012), the bioelectric code (Tseng and Levin 2013; Levin 2014), the acoustic codes (Farina and Pieretti 2014), the glycomic code (Buckeridge and De Souza 2014; Tavares and Buckeridge 2015) and the Redox code (Jones and Sies 2015).

The living world, in short, is literally teeming with organic codes, and yet so far their discoveries have only circulated in small circles and have not attracted the attention of the scientific community at large.

 

Code Biology

Code Biology is the study of all codes of life with the standard methods of science. The genetic code and the codes of culture have been known for a long time and represent the historical foundation of Code Biology. What is really new in this field is the study of all codes that came after the genetic code and before the codes of culture. The existence of these codes is an experimental fact – let us never forget this – but also more than that. It is one of those facts that have extraordinary theoretical implications.

The first is the role that the organic codes had in the history of life. The genetic code was a precondition for the origin of the first cells, the signal transduction codes divided the descendants of the common ancestor into the primary kingdoms of Archaea, Bacteria and Eukarya, the splicing codes were instrumental to the origin of the nucleus, the histone code provided the rules of chromatin, and the cytoskeleton codes allowed the Eukarya to perform internal movements, including those of mitosis and meiosis (Barbieri 2003, 2015). The greatest events of macroevolution, in other words, were associated with the appearance of new organic codes, and this gives us a completely new understanding of the history of life.

The second great implication is the fact that the organic codes have been highly conserved in evolution, which means that they are the great invariants of life, the sole entities that have been perpetuated while everything else has been changed. Code Biology, in short, is uncovering a new history of life and bringing to light new fundamental concepts. It truly is a new science, the exploration of a vast and still largely unexplored dimension of the living world, the real new frontier of biology.

 

References

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular Biology of the Cell. 5th Ed. Garland, New York.

Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencow BJ and Frey BJ (2010). Deciphering the splicing code. Nature, Vol 465, 53-59.

Barbieri M (2003) The Organic Codes. An Introduction to Semantic Biology. Cambridge University Press, Cambridge, UK.

Barbieri M (2015) Code Biology. A New Science of Life. Springer, Dordrecht.

Basañez G and Hardwick JM (2008) Unravelling the Bcl-2 Apoptosis Code with a Simple Model System. PLoS Biol 6(6): e154. Doi: 10.137/journal.pbio.0060154.

Berridge M (1985) The molecular basis of communication within the cell. Scientific American, 253, 142-152.

Brandon MP and Hasselmo ME (2009) Sources of the spatial code within the hippocampus. Biology Reports, 1, 3-7.

Buckeridge MS and De Souza AP (2014) Breaking the “Glycomic Code” of cell wall polysaccharides may improve second-generation bioenergy production from biomass. BioEnergy Research, 7, 1065-1073.

De Beule J, Hovig E and Benson M (2011) Introducing Dynamics into the Field of Biosemiotics. Biosemiotics, 4(1), 5-24.

Dhir A, Buratti E, van Santen MA, Lührmann R and Baralle FE, (2010). The intronic splicing code: multiple factors involved in ATM pseudoexon definition. The EMBO Journal, 29, 749–760.

Di Lorenzo PM (2000) The neural code for taste in the brain stem: Response profiles. Physiology and Behaviour, 69, 87-96.

Dudai Y (1999) The Smell of Representations. Neuron 23: 633-635.

Dunnill P (1966) Triplet nucleotide-amino-acid pairing; a stereochemical basis for the division between protein and non-protein amino-acids. Nature, 210, 1267-1268.

Farina A and Pieretti N (2014) Acoustic Codes in Action in a Soundscape Context. Biosemiotics, 7(2), 321–328.

Flames N, Pla R, Gelman DM, Rubenstein JLR, Puelles L and Marìn O (2007) Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes. The Journal of Neuroscience, 27, 9682–9695.

Fu XD (2004) Towards a splicing code. Cell, 119, 736–738.

Füllgrabe J, Hajji N and Joseph B (2010) Cracking the death code: apoptosis-related histone modifications. Cell Death and Differentiation, 17, 1238-1243.

Gabius H-J (2000) Biological Information Transfer Beyond the Genetic Code: The Sugar Code. Naturwissenschaften, 87, 108-121.

Gabius H-J (2009) The Sugar Code. Fundamentals of Glycosciences. Wiley-Blackwell.

Gamow G (1954) Possible relation between deoxyribonucleic acid and protein structures. Nature, 173, 318.

Gimona M (2008) Protein linguistics and the modular code of the cytoskeleton. In: Barbieri M (ed) The Codes of Life: The Rules of Macroevolution. Springer, Dordrecht, pp 189-206.

Görlich D, Artmann S, Dittrich P (2011) Cells as semantic systems. Biochim Biophys Acta, 1810 (10), 914-923.

Görlich D and Dittrich P (2013) Molecular codes in biological and chemical reaction networks. PLoS ONE 8(1):e54,694, DOI 10.1371/journal.pone.0054694.

Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801-806.

Hallock RM and Di Lorenzo PM (2006) Temporal coding in the gustatory system. Neuroscience and Behavioral Reviews, 30, 1145-1160.

Hou Y-M and Schimmel P (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333, 140-145.

Hunt P, Whiting J, Nonchev S, Sham M-H, Marshall H, Graham A, Cook M, Alleman R, Rigby PW and Gulisano M (1991) The branchial Hox code and its implications for gene regulation, patterning of the nervous system and head evolution. Development, 2, 63-77.

Jenuwein T and Allis CD (2001) Translating the histone code. Science, 293, 1074-1080.

Jessell TM (2000) Neuronal Specification in the Spinal Cord: Inductive Signals and Transcriptional Codes. Nature Genetics, 1, 20-29.

Jones DP and Sies H (2015) The Redox Code. Antioxidants and Redox Signaling, 23 (9), 734-746.

Kessel M and Gruss P (1991) Homeotic Tansformation of Murine Vertebrae and Concomitant Alteration of Hox Codes induced by Retinoic Acid. Cell, 67, 89-104.

Komander D and Rape M (2012), The Ubiquitin Code. Annu. Rev. Biochem. 81, 203–29.

Koonin EV and Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life. 61(2), 99-111.

Kühn S and Hofmeyr J-H S (2014) Is the “Histone Code” an organic code? Biosemiotics, 7(2), 203–222.

Levin M (2014) Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. Journal of Physiology, 592.11, 2295–2305.

Maraldi NM (2008) A Lipid-based Code in Nuclear Signalling. In: Barbieri M (ed) The Codes of Life: The Rules of Macroevolution. Springer, Dordrecht, pp 207-221.

Marquard T and Pfaff SL (2001) Cracking the Transcriptional Code for Cell Specification in the Neural Tube. Cell, 106, 651–654.

Matlin A, Clark F and Smith C (2005) Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol., 6, 386-398.

Melcher G (1974) Stereospecificity and the genetic code. J. Mol. Evol., 3, 121-141.

Nicolelis M (2011) Beyond Boundaries: The New Neuroscience of Connecting Brains with Machines and How It Will Change Our Lives.Times Books, New York.

Nicolelis M and Ribeiro S (2006) Seeking the Neural Code. Scientific American, 295, 70-77.

O’Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature, 381, 425-428.

O’Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus, 15, 853-866.

Papoutsi M, de Zwart JA, Jansma JM, Pickering MJ, Bednar JA and Horwitz B (2009) From Phonemes to Articulatory Codes: An fMRI Study of the Role of Broca’s Area in Speech Production. Cerebral Cortex,19, 2156 – 2165.

Pelc SR and Weldon MGE (1966) Stereochemical relationship between coding triplets and amino-acids. Nature, 209, 868-870.

Pertea M, Mount SM, Salzberg SL (2007) A computational survey of candidate exonic splicing enhancer motifs in the model plant Arabidopsis thaliana. BMC Bioinformatics, 8, 159.

Ray A, van der Goes van Naters W, Shiraiwa T and Carlson JR (2006) Mechanisms of Odor Receptor Gene Choice in Drosophila. Neuron, 53, 353-369.

Redies C and Takeichi M (1996) Cadherine in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Developmental Biology, 180, 413-423.

Ruiz i Altaba A, Nguien V and Palma V (2003) The emergent design of the neural tube: prepattern, SHH morphogen and GLI code.Current Opinion in Genetics & Development, 13, 513–521.

Schimmel P (1987) Aminoacyl tRNA synthetases: General scheme of structure-function relationship in the polypeptides and recognition of tRNAs. Ann. Rev. Biochem., 56, 125-158.

Schimmel P, Giegé R, Moras D and Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proceedings of the National Academy of Sciences USA, 90, 8763-8768.

Shapiro L and Colman DR (1999) The Diversity of Cadherins and Implications for a Synaptic Adhesive Code in the CNS. Neuron, 23, 427-430.

Shimizu M (1982) Molecular basis for the genetic code. J. Mol. Evol., 18, 297-303.

Strahl BD and Allis D (2000) The language of covalent histone modifications. Nature, 403, 41-45.

Tavares EQP and Buckeridge MS (2015) Do plant cells have a code? Plant Science, 241, 286-294.

Trifonov EN (1987) Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequence. Journal of Molecular Biology, 194, 643-652.

Trifonov EN (1989) The multiple codes of nucleotide sequences. Bulletin of Mathematical Biology, 51: 417-432.

Trifonov EN (1999) Elucidating Sequence Codes: Three Codes for Evolution. Annals of the New York Academy of Sciences, 870, 330-338.

Tseng AS and Levin M (2013) Cracking the bioelectric code. Probing endogenous ionic controls of pattern formation. Communicative & Integrative Biology, 6(1), 1–8.

Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays, 22, 836–845.

Turner BM (2002) Cellular memory and the Histone Code. Cell, 111, 285-291.

Turner BM (2007) Defining an epigenetic code. Nature Cell Biology, 9, 2-6.

Verhey KJ and Gaertig J (2007) The Tubulin Code. Cell Cycle, 6 (17), 2152-2160.

Wang Z and Burge C (2008) Splicing regulation: from a part list of regulatory elements to an integrated splicing code. RNA, 14, 802-813.

Yarus M (1988) A specific amino acid binding site composed of RNA. Science, 240, 1751-1758.

Yarus M (1998) Amino acids as RNA ligands: a direct-RNA-template theory for the code’s origin. J. Mol. Evol.,47(1), 109–117.

Yarus M, Caporaso JG, and Knight R (2005) Origins of the Genetic Code: The Escaped Triplet Theory. Annual Review of Biochemistry, 74,179-198.

 

CODE BIOLOGY, PEIRCEAN BIOSEMIOTICS, AND ROSEN’S RELATIONAL BIOLOGY

The classical theories of the genetic code claimed that its coding rules were determined by chemistry—either by stereochemical affinities or by metabolic reactions—but the experimental evidence has revealed a totally different reality: it has shown that any codon can be associated with any amino acid, thus proving that there is no necessary link between them. The rules of the genetic code, in other words, obey the laws of physics and chemistry but are not determined by them. They are arbitrary, or conventional, rules. The result is that the genetic code is not a metaphorical entity, as implied by the classical theories, but a real code, because it is precisely the presence of arbitrary rules that divides a code from all other natural processes. In the past 20 years, furthermore, various independent discoveries have shown that many other organic codes exist in living systems, which means that the genetic code has not been an isolated case in the history of life. These experimental facts have one outstanding theoretical implication: they imply that in addition to the concept of information we must introduce in biology the concept of meaning, because we cannot have codes without meaning or meaning without codes. The problem is that at present we have two different theoretical frameworks for that purpose: one is Code Biology, where meaning is the result of coding, and the other is Peircean biosemiotics, where meaning is the result of interpretation. Recently, however, a third party has entered the scene, and it has been proposed that Robert Rosen’s relational biology can provide a bridge between Code Biology and Peircean biosemiotics.

 

 

Please see my related posts

Semiotics, Bio-Semiotics and Cyber Semiotics

Autocatalysis, Autopoiesis and Relational Biology

Geometry of Consciousness

Mind, Consciousness and Quantum Entanglement

 

 

Key Sources of Research:

 

Code Biology

http://www.codebiology.org

 

What is Code Biology?

Marcello Barbieri

https://www.researchgate.net/publication/320332986_What_is_Code_Biology

Code Biology, Peircean Biosemiotics, and Rosen’s Relational Biology

Marcello Barbieri

 

 

 

Why Biosemiotics? An Introduction to Our View on the Biology of Life Itself

Kalevi Kull, Claus Emmeche and Jesper Hoffmeyer

 

 

 

BIOSEMIOTICS AND SELF-REFERENCE FROM PEIRCE TO ROSEN

Eliseo Fernández

Click to access PRfinal.pdf

 

 

 

What Does it Take to Produce Interpretation? Informational, Peircean and Code-Semiotic Views on Biosemiotics

Søren Brier & Cliff Joslyn

https://www.researchgate.net/publication/255813854_What_Does_It_Take_to_Produce_Interpretation_Informational_Peircean_and_Code-Semiotic_Views_on_Biosemiotics

Naturalizing semiotics: The triadic sign of Charles Sanders Peirce as a systems property

https://www.ncbi.nlm.nih.gov/pubmed/26276466

 

 

 

BIOSEMIOSIS AND CAUSATION: DEFENDING BIOSEMIOTICS THROUGH ROSEN’S THEORETICAL BIOLOGY OR INTEGRATING BIOSEMIOTICS AND ANTICIPATORY SYSTEMS THEORY1

Arran Gare

http://cosmosandhistory.org/index.php/journal/article/viewFile/806/1396

 

 

 

GENERALIZED GENOMIC MATRICES, SILVER MEANS, AND PYTHAGOREAN TRIPLES

Jay Kappraff

Gary W. Adamson

 

Click to access report0809-12.pdf

https://pdfs.semanticscholar.org/f641/6a1d093e77df80173ed76add159b452924b1.pdf?_ga=2.121727499.1841123216.1571671914-1769689123.1571671914

 

 

The genetic code, 8-dimensional hypercomplex numbers and dyadic shifts

 

Sergey V. Petoukhov

 

Click to access 1102.3596.pdf

 

 

 

A Fresh Look at Number

Jay Kappraff

Gary Adomson

Click to access bridges2000-255.pdf

 

 

 

SYMMETRIES IN MOLECULAR-GENETIC SYSTEMS AND MUSICAL HARMONY

G. Darvas, A.A. Koblyakov, S.V.Petoukhov, I.V.Stepanian

 

Click to access GENETIC_CODE_AND_MUSICAL_HARMONY_2012_PETOUKHOV.pdf

 

 

 

On the Semio-Mathematical Nature of Codes

Yair Neuman & Ophir Nave

Click to access On-the-Semio-Mathematical-Nature-of-Codes.pdf

 

 

GENETIC CODE AS A HARMONIC SYSTEM

Miloje M. Rakočević

 

Click to access 0610044.pdf

 

 

 

Genetic Code Table: A note on the three splittings into amino acid classes

Miloje M. Rakočević

 

Click to access 0903.4110.pdf

 

 

 

GENETIC CODE AS A HARMONIC SYSTEM: THREE SUPPLEMENTS

Miloje M. Rakočević

 

Click to access 0703011.pdf

 

 

THE GENETIC CODE INVARIANCE: WHEN EULER AND FIBONACCI MEET

Tidjani Négadi

 

Click to access 1305.5103.pdf

 

 

 

Genetic Code as a Coherent System

Miloje Rakočević

 

Click to access Genetic-Code-as-a-Coherent-System.pdf

 

 

 

A NEW GENETIC CODE TABLE

Miloje M. Rakočević

 

Click to access A-New-Genetic-Code-Table.pdf

 

 

 

Harmonically Guided Evolution

Richard Merrick

 

Click to access a084ad5ca081cf5ac00c82c77d5857795745.pdf

 

 

 

Golden and Harmonic Mean in the Genetic Code

Miloje M. Rakočević

Click to access 35c07d4f0e09a12acc2d6822a16407a14ccd.pdf

 

Systems Biology: Biological Networks, Network Motifs, Switches and Oscillators

Systems Biology: Biological Networks, Network Motifs, Switches and Oscillators

 

 

From Biological switches and clocks

The living cell receives signals from its environment and its own internal state, processes the information, and initiates appropriate responses in terms of changes in gene expression, cell movement, and cell growth or death. Like a digital computer, information processing within cells is carried out by a complex network of switches and oscillators, but instead of being fabricated from silicon transistors and quartz crystals, the cell’s computer is an evolved network of interacting genes and proteins. In the same way that computer design was made possible by a sophisticated theory of electronic circuitry, a basic understanding of cellular regulatory mechanisms will require a relevant theory of biomolecular circuitry. Although the ‘engineering mindset’ is sorely needed to make sense of the cell’s circuitry, the squishy, sloppy, massively parallel, analogue nature of biochemistry is so different from the solid-state, precise, sequential, digital nature of computers that the mathematical tools and intellectual biases of the solid-state physicist/electrical engineer are not entirely appropriate to unravelling the molecular logic of cell physiology. New modelling paradigms and software tools are evolving to meet the challenges of the new ‘systems biology’ of the living cell.

 

 

System Biology includes study of the following among other areas.

  • Biological Networks
  • Network Motifs
  • Switches
  • Oscillators

 

 

Biological Networks

  • Protein–protein interaction networks
  • Gene regulatory networks (DNA–protein interaction networks)
  • Gene co-expression networks (transcript–transcript association networks)
  • Metabolic networks
  • Signaling networks
  • Neuronal networks
  • Between-species interaction networks
  • Within-species interaction networks

 

Network Motifs:

  • Coherent Feedforward Loop (FFL)
  • Incoherent Feedforward Loop
  • Feedback Loop
  • Scaffold Motifs
  • Bi Fan
  • Multi Input Motifs (MIM)
  • Regulator Chains
  • Bi-Parallel
  • Single Input Module (SIM)
  • Dense Overlapping Regulon (DOR)

 

Biological Switches

  • Ultrasensitivity
  • Switches (Bistability)

 

Biological Oscillators

  • Clocks
  • Negative Feedback Only Oscillators
    • Repressilator
    • Pentilator
    • Goodwin Oscillator
    • Frazilator
    • Metabolator
  • Negative + Positive Feedback Oscillators
    • Meyer and Strayer model of Calcium Oscillations
    • van der Pol Oscillator
    • Fitzhugh-Nagumo Oscillator
    • Cyanobacteria Circadian Oscillator
  • Negative + Negative Feedback Oscillator
  • Negative and Positive + Negative Feedback cell cycle Oscillator
  • Fussenegger Oscillators
  • Smolen Oscillator
  • Amplified Negative Feedback Oscillators
  • Variable link Oscillators

 

Synthetic Biology study design of networks, switches, and oscillators.

 

From The dynamics and robustness of Network Motifs in transcription networks

Network Motifs

Even though biological systems are extremely complex, some of its complexity could be simplified. The study of a complex system in its entirety could prove impossible with current theories and technology. However, mathematical modelling has sought to distil the essence of complexity into concepts readily understandable by today’s science. One of such approaches has been reported by means of the study of pathways of interaction of biological networks. By concentrating on similar features that biological networks share, it has been recently discovered that at a cellular level, regulation and transcription Networks display certain patterns of connectivity at a much higher rate than expected in an equivalent randomized network. These recurring patterns of interaction, or network “Motifs”, can help us define bread classes of networks and their types of functional elements. In the same way, they can reveal the evolutionary aim by which they have been developed. Network Motifs can be interpreted as structures that have emerged as direct a reflection of the constraints under which the network has evolved. These network Motifs have been found in the biological networks of many systems, suggesting that they are the building blocks of transcription networks [4]. It has been suggested that in biological networks, these recurrent Network Motifs are responsible for carrying out key information processing tasks in the organism [5].

 

From Coupling oscillations and switches in genetic networks.

Switches (bistability) and oscillations (limit cycle) are omnipresent in biological networks. Synthetic genetic networks producing bistability and oscillations have been designed and constructed experimentally. However, in real biological systems, regulatory circuits are usually interconnected and the dynamics of those complex networks is often richer than the dynamics of simple modules. Here we couple the genetic Toggle switch and the Repressilator, two prototypic systems exhibiting bistability and oscillations, respectively. We study two types of coupling. In the first type, the bistable switch is under the control of the oscillator. Numerical simulation of this system allows us to determine the conditions under which a periodic switch between the two stable steady states of the Toggle switch occurs. In addition we show how birhythmicity characterized by the coexistence of two stable small-amplitude limit cycles, can easily be obtained in the system. In the second type of coupling, the oscillator is placed under the control of the Toggleswitch. Numerical simulation of this system shows that this construction could for example be exploited to generate a permanent transition from a stable steady state to self-sustained oscillations (and vice versa) after a transient external perturbation. Those results thus describe qualitative dynamical behaviors that can be generated through the coupling of two simple network modules. These results differ from the dynamical properties resulting from interlocked feedback loops systems in which a given variable is involved at the same time in both positive and negative feedbacks. Finally the models described here may be of interest in synthetic biology, as they give hints on how the coupling should be designed to get the required properties.

 

From Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops

To test the generality of the idea that positive feedback enables an oscillator to have a tunable frequency and constant amplitude, we examined several other oscillator models, including five negative feedback–only models: (i) the Goodwin oscillator, a well-studied model relevant to circadian oscillations (18, 19); (ii) the Repressilator, a transcriptional triple-negative feedback loop constructed in Escherichia coli (20); (iii) the “Pentilator,” a Repressilator with five (rather than three) repressors; (iv) the Metabolator (21), a synthetic metabolic oscillator; and (v) the Frzilator, amodel of the control of gliding motions in myxobacteria (22). In four of the cases (Goodwin, Repressilator, Pentilator, and Metabolator), the amplitude/frequency curves were inverted U-shaped curves similar to that seen for the negative feedback–only cell cycle model (Figs. 1B and 3A). In the case of the Frzilator, the legs of the curve were truncated; the oscillator had a nonzero minimal amplitude (Fig. 3A). For all five of the negative feedback–only models, the oscillators functioned over only a narrow range of frequencies (Fig. 3A).

We also examined four positive-plus-negative feedback oscillators: (i) the van der Pol oscillator, inspired by studies of vacuum tubes (12); (ii) the Fitzhugh-Nagumo model of propagating action potentials (23, 24); (iii) the Meyer-Stryer model of calcium oscillations (25); and (iv) a model of circadian oscillations in the cyanobacterial KaiA/B/C system (26–28). In each case, we obtained a flat, wide amplitude/frequency curve (Fig. 3B). Thus, a tunable frequency plus constant amplitude can be obtained from many different positive-plusnegative feedback models; this feature is not peculiar to one particular topology or parameterization.

These findings rationalize why the positiveplus- negative feedback design might have been selected through evolution in cases where a tunable frequency and constant amplitude are important, such as heartbeats and cell cycles. However, it is not clear that an adjustable frequency would be advantageous for circadian oscillations, because frequency is fixed at one cycle per day. Nevertheless, the cyanobacterial circadian oscillator appears to rely on positive feedback (26), and positive feedback loops have been postulated for other circadian oscillators as well (Table 1). This raises the question of whether the positiveplus- negative feedback design might offer additional advantages.

One possibility is that the positive-plusnegative feedback design permits oscillations over a wider range of enzyme concentrations and kinetic constant values, making the oscillator easier to evolve and more robust to variations in its imperfect components. We tested this idea through a Monte Carlo approach.We formulated three simple oscillatormodels: (i) a three-variable triple negative feedback loop with no additional feedback (Fig. 4A), (ii) one with added positive feedback (Fig. 4B), or (iii) one with added negative feedback (Fig. 4C). We generated random parameter sets for the models and then for each set determined whether the model produced limit cycle oscillations.We continued generating parameter sets until we had amassed 500 that gave oscillations.

 

From Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops

Sysbio

 

 

Key Terms:

  • Ultra-sensitivity
  • Bi-stability
  • Positive Feedback Loop
  • Negative Feedback Loop
  • Biological Oscillators
  • Biological Switches
  • Biological Networks
  • Network Motifs
  • Regulation Networks
  • Signalling Networks
  • Communication Networks
  • Biological Clocks
  • Circadian Rhythms
  • Harmonic Oscillators
  • Van der Pol Oscillator (Limit Cycle)
  • FitzHugh–Nagumo oscillators (Neural)
  • Limit Cycle Oscillator
  • Cell Cycle
  • Systems Biology
  • Synthetic Biology
  • Gene Regulatory Networks
  • Kuramoto Oscillators
  • Phase Coupled Oscillators
  • Cardic Pacemaker
  • Biochemical Networks
  • Synchronization
  • Goodwin Oscillator
  • Repressilators
  • Fussenegger Oscillators
  • Smolen Oscillators
  • Variable Link Oscillators
  • Metabolators
  • Amplified Negative Feedback Oscillators

 

 

 

Key Sources of Research:

 

 

Ultrasensitivity Part I: Michaelian responses and zero-order ultrasensitivity

James E. Ferrell Jr. and Sang Hoon Ha

Click to access nihms-629459.pdf

 

 

 

 

Ultrasensitivity Part II: Multisite phosphorylation, stoichiometric inhibitors, and positive feedback

James E. Ferrell Jr. and Sang Hoon Ha

 

Click to access nihms686079.pdf

 

 

 

Ultrasensitivity part III: cascades, bistable switches, and oscillators

James E. Ferrell Jr and Sang Hoon Ha

 

Click to access nihms635216.pdf

 

 

 

Robust Network Topologies for Generating Switch-Like Cellular Responses

Najaf A. Shah1, Casim A. Sarkar

Click to access pcbi.1002085.pdf

 

 

 

 

Feedback Loops Shape Cellular Signals in Space and Time

Onn Brandman1 and Tobias Meyer

 

Click to access nihms101299.pdf

 

 

 

Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions

Onn Brandman, James E. Ferrell Jr, Rong Li2,3,4, and Tobias Meyer

Click to access nihms180881.pdf

 

 

 

Positive feedback in cellular control systems

Alexander Y. Mitrophanov and Eduardo A. Groisman

Click to access nihms-58057.pdf

 

 

 

Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle

Claude Gerard, Didier Gonze and Albert Goldbeter

 

http://onlinelibrary.wiley.com/store/10.1111/j.1742-4658.2012.08585.x/asset/j.1742-4658.2012.08585.x.pdf?v=1&t=j0i1rfq0&s=54814f48d70da4b93bd1632677765a1a5673c8d6

 

 

Design Principles of Biochemical Oscillators

Béla Novak and John J. Tyson

 

 

 

Design principles underlying circadian clocks

D. A. Rand1,†, B. V. Shulgin1, D. Salazar1,2 and A. J. Millar

 

 

 

Positive Feedback Promotes Oscillations in Negative Feedback Loops

Bharath Ananthasubramaniam*, Hanspeter Herzel

 

 

 

Efficient Switches in Biology and Computer Science

Luca Cardelli1,2, Rosa D. Hernansaiz-Ballesteros3, Neil Dalchau1, Attila Csika ́sz-Nagy

Click to access pcbi.1005100.pdf

 

 

 

Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops

Tony Yu-Chen Tsai,1* Yoon Sup Choi,1,2* Wenzhe Ma,3,4 Joseph R. Pomerening,5 Chao Tang,3,4 James E. Ferrell Jr

https://www.researchgate.net/publication/5253202_Robust_Tunable_Biological_Oscillations_from_Interlinked_Positive_and_Negative_Feedback_Loops?el=1_x_8&enrichId=rgreq-3a45d550364998e0f57384dda12a695f-XXX&enrichSource=Y292ZXJQYWdlOzI0MTY5NjI3MjtBUzoxMzEyODEwMTg5NTM3MjhAMTQwODMxMTI0MjY2OQ==

 

 

 

Biological switches and clocks

John J. Tyson1,*, Reka Albert2, Albert Goldbeter3, Peter Ruoff4 and Jill Sibl

 

Click to access 2008_Tyson_J_R_Soc_Interface.pdf

https://www.kitp.ucsb.edu/activities/bioclocks07

http://online.kitp.ucsb.edu/online/bioclocks07/

 

 

 

Network thinking in ecology and evolution

Stephen R. Proulx1, Daniel E.L. Promislow2 and Patrick C. Phillips

 

Click to access 65601ed2a5c67143b6d4be7193c02235a279.pdf

 

 

 

Networks in ecology

Jordi Bascompte

 

Click to access Bascompte%202007.pdf

 

 

 

Network structure and the biology of populations

Robert M. May

 

Click to access may.pdf

 

 

 

Biological networks: Motifs and modules

 

Click to access BMIF310_network_B_Motifs_2009.pdf

 

 

 

Analysis of Biological Networks: Network Motifs

 

Click to access lec04.pdf

 

 

 

Regulatory networks & Functional motifs

Didier Gonze

 

Click to access network_motifs.pdf

 

 

 

Structure and function of the feed-forward loop network motif

S. Mangan and U. Alon

 

Click to access 11980.full.pdf

 

 

 

Network Motifs: Simple Building Blocks of Complex Networks

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon

 

Click to access MiloAlon2002.pdf

 

 

 

The dynamics and robustness of Network Motifs in transcription networks

Arturo Araujo

Click to access Network_Motifs.pdf

 

 

 

Formation of Regulatory Patterns During Signal Propagation in a Mammalian Cellular Network

Avi Ma’ayan, Sherry L. Jenkins, Susana Neves, Anthony Hasseldine, Elizabeth Grace, Benjamin Dubin-Thaler, Narat J. Eungdamrong, Gehzi Weng, Prahlad T. Ram, J. Jeremy Rice, Aaron Kershenbaum, Gustavo A. Stolovitzky, Robert D. Blitzer, and Ravi Iyengar

 

Click to access nihms266526.pdf

 

 

 

Toward Predictive Models of Mammalian Cells

Avi Ma’ayan, Robert D. Blitzer, and Ravi Iyengar

Click to access nihms266522.pdf

 

 

 

Modeling Cell Signaling Networks

Narat J. Eungdamrong and Ravi Iyengar

Click to access nihms453834.pdf

 

 

 

Bistability in Biochemical Signaling Models

Eric A. Sobie

Click to access nihms-332970.pdf

 

 

An Introduction to Dynamical Systems

Eric A. Sobie

 

Click to access nihms-332968.pdf

 

 

 

Computational approaches for modeling regulatory cellular networks

Narat J. Eungdamrong and Ravi Iyengar

Click to access nihms-453838.pdf

 

 

Systems Biology—Biomedical Modeling

Eric A. Sobie,* Young-Seon Lee, Sherry L. Jenkins, and Ravi Iyengar

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188945/

 

 

 

Network analyses in systems pharmacology

 

Seth I. Berger and Ravi Iyengar

Click to access btp465.pdf

 

 

Biological Networks: The Tinkerer as an Engineer

U Alon

 

Click to access Biological%20Networks%20The%20Tinkerer%20as%20an%20Engineer.pdf

 

 

Cell Biology: Networks, Regulation and Pathways

GAŠPER TKACˇ IK , WILLIAM BIALEK

 

Click to access tkacik+bialek_09b.pdf

 

 

 

Coupling oscillations and switches in genetic networks

Didier Gonze

 

Click to access d29052b34bc3fe43649c826fd9fd0506e445.pdf

 

 

 

Biological Oscillators and Switches

 

Click to access Murray-Math-Biol-ch7.pdf

 

 

 

Design principles of biological oscillators

 

Didier Gonze

 Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos

 

Irving R. Epstein

Kenneth Showalter

 

 

Modelling biological oscillations

 

Shan He

 

A comparative analysis of synthetic genetic oscillators

 

Oliver Purcell1,*, Nigel J. Savery3, Claire S. Grierson4 and Mario di Bernardo2,5

 

Hierarchy Theory in Biology, Ecology and Evolution

Hierarchy Theory in Biology, Ecology and Evolution

 

I have always been intrigued by multi-level thinking whether it is in organizations, biology, ecology, and evolutionary theory.

  • Plant – Division – Corporate – Industry – Macro-economy
  • Molecules – Organelles – Cells – Tissue – Organs – Whole body
  • Organism – Populations – Communities – Ecosystem –  Bio-Sphere

 

How does human body forms from Molecules?  Is it all evolutionary?  or is there a role for Vitalism?

How to integrate decision making in organizations at multi levels?  From Corporate level to Plant Level.

How does an Individual fits in Groups, Communities, Society, and Ecosystem?

What is the role of fractals thinking in Evolutionary Biology?

 

A SUMMARY OF THE PRINCIPLES OF HIERARCHY THEORY

The Hierarchy theory is a dialect of general systems theory. It has emerged as part of a movement toward a general science of complexity. Rooted in the work of economist, Herbert Simon, chemist, Ilya Prigogine, and psychologist, Jean Piaget, hierarchy theory focuses upon levels of organization and issues of scale. There is significant emphasis upon the observer in the system.

Hierarchies occur in social systems, biological structures, and in the biological taxonomies. Since scholars and laypersons use hierarchy and hierarchical concepts commonly, it would seem reasonable to have a theory of hierarchies. Hierarchy theory uses a relatively small set of principles to keep track of the complex structure and a behavior of systems with multiple levels. A set of definitions and principles follows immediately:

Hierarchy: in mathematical terms, it is a partially ordered set. In less austere terms, a hierarchy is a collection of parts with ordered asymmetric relationships inside a whole. That is to say, upper levels are above lower levels, and the relationship upwards is asymmetric with the relationships downwards.

Hierarchical levels: levels are populated by entities whose properties characterize the level in question. A given entity may belong to any number of levels, depending on the criteria used to link levels above and below. For example, an individual human being may be a member of the level i) human, ii) primate, iii) organism or iv) host of a parasite, depending on the relationship of the level in question to those above and below.

Level of organization: this type of level fits into its hierarchy by virtue of set of definitions that lock the level in question to those above and below. For example, a biological population level is an aggregate of entities from the organism level of organization, but it is only so by definition. There is no particular scale involved in the population level of organization, in that some organisms are larger than some populations, as in the case of skin parasites.

Level of observation: this type of level fits into its hierarchy by virtue of relative scaling considerations. For example, the host of a skin parasite represents the context for the population of parasites; it is a landscape, even though the host may be seen as belonging to a level of organization, organism, that is lower than the collection of parasites, a population.

The criterion for observation: when a system is observed, there are two separate considerations. One is the spatiotemporal scale at which the observations are made. The other is the criterion for observation, which defines the system in the foreground away from all the rest in the background. The criterion for observation uses the types of parts and their relationships to each other to characterize the system in the foreground. If criteria for observation are linked together in an asymmetric fashion, then the criteria lead to levels of organization. Otherwise, criteria for observation merely generate isolated classes.

The ordering of levels: there are several criteria whereby other levels reside above lower levels. These criteria often run in parallel, but sometimes only one or a few of them apply. Upper levels are above lower levels by virtue of: 1) being the context of, 2) offering constraint to, 3) behaving more slowly at a lower frequency than, 4) being populated by entities with greater integrity and higher bond strength than, and 5), containing and being made of – lower levels.

Nested and non-nested hierarchies: nested hierarchies involve levels which consist of, and contain, lower levels. Non-nested hierarchies are more general in that the requirement of containment of lower levels is relaxed. For example, an army consists of a collection of soldiers and is made up of them. Thus an army is a nested hierarchy. On the other hand, the general at the top of a military command does not consist of his soldiers and so the military command is a non-nested hierarchy with regard to the soldiers in the army. Pecking orders and a food chains are also non-nested hierarchies.

Duality in hierarchies: the dualism in hierarchies appears to come from a set of complementarities that line up with: observer-observed, process-structure, rate-dependent versus rate-independent, and part-whole. Arthur Koestler in his “Ghost in The Machine” referred to the notion of holon, which means an entity in a hierarchy that is at once a whole and at the same time a part. Thus a holon at once operates as a quasi-autonomous whole that integrates its parts, while working to integrate itself into an upper level purpose or role. The lower level answers the question “How?” and the upper level answers the question, “So what?”

Constraint versus possibilities: when one looks at a system there are two separate reasons behind what one sees. First, it is not possible to see something if the parts of the system cannot do what is required of them to achieve the arrangement in the whole. These are the limits of physical possibility. The limits of possibility come from lower levels in the hierarchy. The second entirely separate reason for what one sees is to do with what is allowed by the upper level constraints. An example here would be that mammals have five digits. There is no physical reason for mammals having five digits on their hands and feet, because it comes not from physical limits, but from the constraints of having a mammal heritage. Any number of the digits is possible within the physical limits, but in mammals only five digits are allowed by the biological constraints. Constraints come from above, while the limits as to what is possible come from below. The concept of hierarchy becomes confused unless one makes the distinction between limits from below and limits from above. The distinction between mechanisms below and purposes above turn on the issue of constraint versus possibility. Forget the distinction, and biology becomes pointlessly confused, impossibly complicated chemistry, while chemistry becomes unwieldy physics.

Complexity and self-simplification: Howard Pattee has identified that as a system becomes more elaborately hierarchical its behavior becomes simple. The reason is that, with the emergence of intermediate levels, the lowest level entities become constrained to be far from equilibrium. As a result, the lowest level entities lose degrees of freedom and are held against the upper level constraint to give constant behavior. Deep hierarchical structure indicates elaborate organization, and deep hierarchies are often considered as complex systems by virtue of hierarchical depth.

Complexity versus complicatedness: a hierarchical structure with a large number of lowest level entities, but with simple organization, offers a low flat hierarchy that is complicated rather than complex. The behavior of structurally complicated systems is behaviorally elaborate and so complicated, whereas the behavior of deep hierarchically complex systems is simple.

Hierarchy theory is as much as anything a theory of observation. It has been significantly operationalized in ecology, but has been applied relatively infrequently outside that science. There is a negative reaction to hierarchy theory in the social sciences, by virtue of implications of rigid autocratic systems or authority. When applied in a more general fashion, even liberal and non-authoritarian systems can be described effectively in hierarchical terms. There is a politically correct set of labels that avoid the word hierarchy, but they unnecessarily introduce jargon into a field that has enough special vocabulary as it is.

A SHORT ANNOTATED BIBLIOGRAPHY OF HIERARCHY THEORY.

This bibliography is in chronological order, so that the reader can identify the early classics as opposed to the later refinements. If you must choose just one book to read, turn to the last reference in this bibliography, Ahl and Allen, 1996. Simon, H.. A. 1962. The architecture of complexity. Proceedings of the American philosophical society 106: 467-82. This is the foundation paper of hierarchy theory originating from an economist. It was a re-published in “Sciences of the Artificial” by Simon. It introduces the idea of near-decomposability. If systems were completely decomposable, then there would be no emergent whole, because the parts would exist only separately. The “near” in near-decomposable allows the upper level to emerge from the fact that the parts anre not completely separate.

Koestler, Arthur. 1967. The ghost in the machine. Macmillan, New York. This is a long hard look at human social structure in hierarchical terms. The notion of holon first occurs in this work. This is a classic work, but is easily accessible to the lay public.

Whyte, L.. L.., A. G. Wilson and D. Wilson (eds.). 1969. Hierarchical structures. American Elsevier, New York. This is a classic collection of early scholarly works by some of the founders of hierarchical thinking.

Pattee, H.. H. (ed.) 1973. Hierarchy theory: the challenge or complex systems. Braziller, New York. This edited volume has some classic articles by Pattee, Simon and others.

Allen, T. F. H. and T. B. Starr. 1982. Hierarchy: perspectives for ecological complexity. University Chicago Press. This book has a significant ecological component but is much more generally about hierarchical structure. It is abstract and a somewhat technical treatment but has been the foundation work for the application of hierarchy theory in ecology and complex systems theory at large.

Salthe, S. 1985. Evolving Hierarchical Systems: their structure and representation. Columbia University Press, New York. This book has a strong structural bias, in contrast to the process oriented approach of Allen and the other ecologists in this bibliography. Salthe introduces the notion of the Triadic, where there is a focus on 1) the system as both a whole above the levels below and 2) a part belonging to another level above, 3) not forgetting the level of the structure itself in between. While much biological hierarchy theory takes an anti-realist point view, or is at least reality-agnostic, wherein the ultimate reality of hierarchical arrangement is left moot, Salthe’s version of hierarchy theory is concerned with the ultimate reality of structure. The anti-realist view of structure is that it is imposed by the observer, and may or may not correspond to any ultimate reality. If structure does correspond to ultimate, external reality, we could never know that to be so. Salthe’s logic is consistent but always takes a structural and ontological position.

O’Neill, R. V., D. DeAngelis, J. Waide and T. F. H. Allen. 1986. A hierarchical concept of ecosystems. Princeton University Press. This is a distinctly ecological application of hierarchy theory, making the critical distinction between process functional ecosystem approaches as opposed to population and community relationships. It is an application of hierarchy theory to ecosystem analysis.

Allen T. F. H. and T. Hoekstra. 1992. Toward a unified ecology. Columbia University Press. This book turns on hierarchy theory, but is principally a book about ecology. It goes beyond the O’Neill et al book, in that it makes the distinction between many types of ecology (landscape, ecosystem, community, organism, population, and biomes) on the one hand, and scale of ecology on the other hand. It ends with practical applications of hierarchy theory and ecological management.

Ahl, V. and T. F. H. Allen. 1996. Hierarchy theory, a vision, vocabulary and epistemology. Columbia University Press. This slim a volume is an interdisciplinary account of a hierarchy theory, and represents the shallow end of the pool. It is the primer version of Allen and Starr 1982. It is full of graphical images to ease the reader into a hierarchical perspective. It makes the distinction between levels of organization and levels of observation. It takes a moderate anti-realist point of view, wherein there may be an external reality, but it is not relevant to the discourse. We only have access to experience, which must of necessity involve observer values and subjectivity. There are examples from a wide discussion of many disciplines. Included are examples from psychology, ecology, the law, political systems and philosophy. It makes reference to the global and technological problems facing humanity, and offers hierarchy theory as one tool in the struggle. The summary of hierarchy theory in the opening paragraphs above comes from this book.

This summary was compiled by

Timothy F. Allen, Professor of Botany,
University of Wisconsin Madison,
Madison Wisconsin 53706 — 1381.
Email – tfallen@facstaff.wisc.edu

 

 

Key People:

  • James Grier Miller
  • Howard Pattee
  • Stanley Salthe
  • T F Allen
  • Herbert Simon
  • NILES ELDREDGE
  • CS Holling

 

 

Key Sources of Research:

 

A SUMMARY OF THE PRINCIPLES OF HIERARCHY THEORY

T Allen

http://www.isss.org/hierarchy.htm

http://www.botany.wisc.edu/allenlab/AllenLab/Hierarchy.html

 

 

Hierarchy Theory

Paweł Leśniewski

 

Click to access 2006-06-28_-_Hierarchy_Theory.pdf

 

 

Summary of the Principles of Hierarchy Theory

S.N. Salthe

 

Click to access Summary_of_the_Principles_o.pdf

 

 

HOWARD PATTEE’S THEORETICAL BIOLOGY:

A RADICAL EPISTEMOLOGICAL STANCE TO APPROACH LIFE, EVOLUTION ANDCOMPLEXITY.

Jon Umerez

 

Click to access umerez.pdf

 

 

 

Hierarchy Theory as the Formal Basis of Evolutionary Theory

 

Click to access HierarchyTheoryastheFormalBasisofEvolutionaryTheory.pdf

 

 

The Concept of Levels of Organization in the Biological Sciences

 

PhD Thesis Submitted August 2014 Revised June 2015

Daniel Stephen Brooks

 

http://d-nb.info/1082033960/34

 

 

A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications

Jianguo Wu , John L. David

 

Click to access Wu_David_2002.PDF

 

 

What is the Hierarchy Theory of Evolution?

 

Click to access What-Is-The-Hierarchy-Theory.pdf

 

 

HIERARCHICAL ORGANIZATION OF ECOSYSTEMS

Jackson R. Webster

 

Click to access 274.pdf

 

 

Ecological hierarchies and self-organisation – Pattern analysis, modelling and process integration across scales

Hauke Reutera,, Fred Jopp, José M. Blanco-Morenod, Christian Damgaarde, Yiannis Matsinosf, Donald L. DeAngelis

 

Click to access Reuter_etal_BAAE%202010.pdf

 

 

Levels of organization in biology: on the nature and nomenclature of ecology’s fourth level

William Z. Lidicker, Jr

 

Click to access Artigo4.pdf

 

 

Chapter 24

Hierarchy Theory: An Overview

Jianguo Wu

 

 

 

Recent progress in systems ecology

Sven E. Jørgensena, Søren Nors Nielsenb, Brian D. Fath

Click to access 55f1782708ae199d47c2624c.pdf

 

Click to access Jorgensen%20et%20al%202016.pdf

 

 

Heterarchies: Reconciling Networks and Hierarchies

Graeme S. Cumming

https://www.researchgate.net/publication/303508940_Heterarchies_Reconciling_Networks_and_Hierarchies

 

 

Evolutionary Theory

A HIERARCHICAL PERSPECTIVE

EDITED BY NILES ELDREDGE, TELMO PIEVANI, EMANUELE SERRELLI, AND ILYA TEMKIN

 

 

Holons, creaons, genons, environs, in hierarchy theory: Where we have gone

Timothy Allen, Mario Giampietro

http://www.sciencedirect.com/science/article/pii/S0304380014002993

 

 

The Evolutionary Foundations of Hierarchy: Status, Dominance, Prestige, and Leadership

Mark van Vugt & Joshua M. Tybur

Click to access Handbook_of_Evolutionary_Psychologymvv2014rev.pdf

 

 

The Microfoundations of Macroeconomics: An Evolutionary Perspective

Jeroen C.J.M. van den Bergh

John M. Gowdy

 

Click to access 00021.pdf

 

 

Understanding the complexity of Economic, Ecological, and Social Systems

C S Holling

Click to access Holling_Complexity-EconEcol-SocialSys_2001.pdf

 

 

Hierarchical Structures

Stanley N. Salthe

 

Click to access 5768411408ae7f0756a2248c.pdf

 

 

Two Frameworks for Complexity Generation in Biological Systems

Stanley N. Salthe

 

Click to access A-life_Conf_paper_Word.pdf

Click to access _publ_classified_by_topic.pdf

 

 

Spatial scaling in ecology

J. A. WIENS

 

Click to access Spatial%20scaling%20in%20ecology%20v3%20n4.pdf

 

 

The Spirit of Evolution

by Roger Walsh

An overview of Ken Wilber’s book Sex, Ecology, Spirituality: The Spirit of Evolution (Shambhala, 1995).

http://cogweb.ucla.edu/CogSci/Walsh_on_Wilber_95.html

On Anticipation: Going Beyond Forecasts and Scenarios

On Anticipation: Going Beyond Forecasts and Scenarios

 

From Anticipation.Info of Mihai Nadin

A Second Cartesian Revolution

For about 400 years, humankind, or at least the western world, has let itself be guided by the foundation set by Descartes and Newton. The cause-and-effect, deterministic model of the machine became so powerful that every thing and every being came to be considered a machine. As a description of the material world and as an expression of the laws governing its functioning, deterministic-based physics and Cartesian reductionism (of the whole to its parts) proved to be extremely powerful instruments in the overall progress of humankind. But neither Descartes nor Newton, nor most of their followers, could have envisioned the spectacular development of science in its current depth and breadth.

The physicist Erwin Schrödinger concluded that organisms are subject to “a new physics,” which he did not produce, but rather viewed as necessary. This new physics might well be the domain of anticipation. Indeed, from within physics itself—that is, quantum mechanics—a possible understanding of some aspects of anticipation can be derived.

The realization that the world is the unity of reaction and anticipation is not new. What is new is the awareness of the limits of our understanding a dynamics of change that transcends the deterministic view. The urgent need for such an understanding is probably best expressed in the spectacular development of the life sciences.

The perspective of the world that anticipation opens justifies the descriptor “a second Cartesian Revolution.” Instead of explaining complexity away, we will have to integrate it into our existence as the informational substratum of rich forms through which anticipatory processes take place.

 

From Anticipation.Info of Mihai Nadin

Anticipation: Why is it a subject of research?

Anticipation occurs in all spheres of life. It complements the physics of reaction with the pro-active quality of the living. Nature evolves in a continuous anticipatory fashion targeted at survival. The dynamics of stem cells demonstrate this mechanism. Through entailment from a basic stem cell an infinite variety of biological expression becomes possible.

Sometimes we humans are aware of anticipation, as when we plan. Often, we are not aware of it, as when processesembedded in our body and mind take place before we realize their finality. In tennis, for example, the return of a professional serve can be successful only through anticipatory mechanisms. A conscious reaction takes too long to process. Anticipation is the engine driving the stock market. Creativity in art and design are fired by anticipation.

“The end is where we start from,” T. S. Eliot once wrote. Before the archer draws his bow, his mind has already hit the target. Motivation mechanisms in learning, the arts, and all types of research are dominated by the underlying principle that a future state—the result—controls present action, aimed at success. The entire subject of prevention entails anticipatory mechanisms.

 

From Anticipation.Info of Mihai Nadin

Research into anticipation revealed various aspects that suggested a number of definitions.

Robert Rosen, Mihai Nadin, Daniel Dennett and others who approached particular aspects of anticipation contributed to some of these definitions. Mihai Nadin (cf. Anticipation – A Spooky Computation) attempted an overview of the various angles from which anticipation can be approached if the focus is on computation. This overview is continued and expanded in the integrated publication (book+dvd+website) to which this website belongs. The following 12 definitions, or descriptions, of anticipation should be understood as working hypotheses. It is hoped and expected that the knowledge community of those interested in anticipation will eventually refine these definitions and suggest new ones in order to facilitate a better understanding of what anticipation is and its importance for the survival of living systems.

  • An anticipatory system is a system whose current state is determined by a future state. “The cause lies in the future,”. (cf. Robert Rosen, Heinz von Foerster)
  • Anticipation is the generation of a multitude of dynamic models of human actions and the resolution of their conflict. (cf. Mihai Nadin)
  • An anticipatory system is a system containing a predictive model of itself and/or of its environment that allows it to change state at an instant in accord with the model’s predictions pertaining to a later instant. (cf. Robert Rosen)
  • Anticipation is a process of co-relation among factors pertaining to the present, past and future of a system. (cf. Mihai Nadin)
  • Anticipation is an expression of the connectedness of the world, in particular of quantum non-locality. (cf. Mihai Nadin)
  • Anticipation is the expression of natural entailment. (cf. Robert Rosen)
  • Anticipation is a mechanism of synchronization and integration. (cf. Mihai Nadin)
  • Anticipation is an attractor within dynamic systems. (cf. Mihai Nadin)
  • Anticipation is a recursive process described through the functioning of a mechanism whose past, present, and future states allow it to evolve from an initial to a final state that is implicitly embedded in the mechanism. (cf. Mihai Nadin)
  • Anticipation is a realization within the domain of possibilities. (cf. Mihai Nadin)
  • Anticipatory mechanisms can be reinforced through feedback. Feedforward and inverse kinetics are part of the integrated mechanism of anticipation. (cf. Daniel Dennett, Daniel Wolpert, Nadin)
  • Anticipation is a power law-based long-range interaction. (cf. Mihai Nadin)

 

From An Introduction to the Ontology of Anticipation

Recent years have witnessed the growth of significant interest in theories and methodologies which seek to foresee the future development of relevant situations. Studies of the future fall under many different denominations, and they employ a huge variety of techniques, ranging from forecasting to simulation, from planning to trend extrapolation, from future studies and scenarios to anticipatory systems. Widely different conceptualisations and formalisations have been proposed as well.1 This remarkable variety may be partly simplified by making explicit the main underlying assumptions of at least some of them. Two of these assumptions are that (1) the future is at least partly governed by the past, and (2) the future can be better confronted by opening our minds and learning to consider different viewpoints. According to (1) the future is part of a structured story whose past and present are at least partially known. The claim is defended that the forces that have shaped past and present situations will still be valid while the situation under consideration unfolds. The core thesis is that the future is embedded in the past; it is the projection of the past through the present. Time series analysis, trend extrapolation, and forecasting pertain to this family. Any of the mentioned methodologies may be further supplemented by computer-based simulations. On the other hand, instead of directly addressing the problem of searching for the seeds of the future in the past, (2) considers the different problem of preparing for the unforeseeable novelties awaiting us in the future. Learning about widely different outcomes is now the issue: one must be ready to consider and address possibly unfamiliar or alien scenarios. The main outcome of this exercise is an increased capacity to distinguish among possible, probable, and preferred future scenarios. These activities come under the heading of future studies, while scenario construction is the best known methodology adopted by practitioners. For now on I shall refer to (1) and (2) as respectively the forecasting and the scenario viewpoints. Forecasts and scenarios are not contradictory one to the other. They may and usually do coexist, since they address the future from two different standpoints. Furthermore, experience shows that both are useful. This paper introduces a third, different viewpoint, here termed the viewpoint of anticipatory systems, which can be profitably synthesized with forecasts and scenarios; i.e. it is not contradictory with the claims of either the forecasting or scenario viewpoint. Recent years have witnessed the growth of significant interest in anticipation.2 Anticipatory theories have been proposed in fields as different as physics, biology, physiology, neurobiology, psychology, sociology, economy, political science, computer science and philosophy. Unfortunately, no systematic comparison among the different viewpoints has so far been developed. It is therefore fair to claim that currently no general theory of anticipation is available. Generally speaking, anticipation concerns the capacity exhibited by some systems to tune their behaviour according to a model of the future evolution of the environment in which they are embedded. Generally speaking, the thesis is defended that “An anticipatory system is a system containing a predictive model of itself and/or its enviroment, which allows it to change state at an instant in accord with the model‟s predictions pertaining to a later instant” (Rosen [19: 341]). The main difference between forecasting and scenarios on the one hand, and anticipation on the 1 See, among many others, Adam [1], Bell [4], Cornish [5], Godet [7], Lindgren and Bandhold [8], Retzbach [16], Slaughter [22], Woodgate and Pethrick [23]. 2 Starting from the seminal Rosen [19]. See also [20], [21]. 2 other, is that the latter is a property of the system, intrinsic to its functioning, while the former are cognitive strategies that a system A develops in order to understand the future of some other system B (of which A may or may not be a component element).

 

 

Key Terms

  • Hyper Sets
  • Hyper Incursion
  • Hyper Recursion
  • Recursion
  • Incursion
  • Anticipatory Systems
  • Weak Anticipation
  • Strong Anticipation

 

Key People

  • Roberto Poli
  • Mihai Nadin
  • Riel Miller
  • Robert Rosen
  • John J Kineman
  • Daniel M Dubois
  • John Collier
  • Loet Leydesdorff

 

 

Key Sources of Research:

 

Systems and models with anticipation in physics and its applications

A Makarenko

http://iopscience.iop.org/article/10.1088/1742-6596/394/1/012024/pdf

 

 

Anticipatory Viable Systems

Maurice Yolles

Daniel Dubois

 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.195.2167&rep=rep1&type=pdf

Click to access 92666ab431a3f68df0ce8139d594aaeb3f87.pdf

 

 

Anticipatory Kaldor-Kalecki Model of Business Cycle

Daniel M. Dubois

 

Click to access emcsr2004_Daniel-Dubois.pdf

 

 

An Introduction to the Ontology of Anticipation

Roberto Poli

 

Click to access read_Poli-An-Introduction-to-the-Ontology-of-Anticipation.pdf

 

 

Towards an anticipatory view of design

Theodore Zamenopoulos and Katerina Alexiou

 

Click to access anticipation.pdf

 

 

The role of anticipation in cognition

Alexander Riegler

Click to access Riegler%20A.%20(2001)%20The%20role%20of%20anticipation%20in%20cognition.pdf

Click to access 7d5ded82973e081a572c79bd76f8188b0ed5.pdf

 

 

SDA: System Dynamics Simulation of Inter Regional Risk Management

Using a Multi-Layered Model with Delays and Anticipation

Daniel M Dubois1, Stig C Holmberg

2012

 

Click to access P1374.pdf

 

 

Anticipatory Modeling and Simulation for Inter Regional Security

Daniel M. Dubois, Viveca Asproth, Stig C. Holmberg

Ulrica Löfstedt, and Lena-Maria Öberg

 

Click to access dubois-C-EMCSR-2012.pdf

 

 

Attentional and Semantic Anticipations in Recurrent Neural Networks

Frédéric Lavigne1 and Sylvain Denis

 

Click to access lavigne-denis-2001.pdf

 

 

Not Everything We Know We Learned

Mihai Nadin

 

http://www.nadin.name/index.html?/publications/articles_b0.html

 

 

Anticipation in the Constructivist Theory of Cognition

Ernst von Glasersfeld

 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.1971&rep=rep1&type=pdf

 

 

The Communication of Meaning in Anticipatory Systems: A Simulation Study of the Dynamics of Intentionality in Social Interactions

Loet Leydesdorff

Click to access 0911.1448.pdf

 

 

Information Systems and the Theory of Categories: Is Every Model an Anticipatory System?

M. A. Heather, B. N. Rossiter

 

Click to access Rossiter_Information%20systems%20and%20the%20theory%20of%20categories.pdf

 

 

Anticipation.Info of Mihai Nadin

http://www.anticipation.info

http://www.nadin.name/index.html?/publications/articles_b0.html

 

 

Institute for Research in Anticipatory Systems

http://www.anteinstitute.org

 

 

Robert Rosen’s anticipatory systems

A.H. Louie

 

Click to access 09e4150cdd961e4a87000000.pdf

 

 

Computing Anticipatory Systems with Incursion and Hyperincursion

Daniel M. DUBOIS

Click to access 559558fe08ae99aa62c720f3.pdf

 

 

Anticipatory Systems: Philosphical Methematical and Methodological Foundations.

Rosen R.

Springer; 2014.

 

 

ROBERT ROSEN’S ANTICIPATORY SYSTEMS THEORY: THE ART AND SCIENCE OF THINKING AHEAD

Judith Rosen

 

http://journals.isss.org/index.php/proceedings53rd/article/viewFile/1249/410

 

 

The Many Aspects of Anticipation

Roberto Poli

University of Trento

Click to access 9b480ac8cd96999f281892caba100baacc79.pdf

 

 

Being Without Existing: The Futures Community at a Turning Point? A Comment on Jay Ogilvy’s “Facing the Fold”

By Riel Miller

Click to access Being-without-existing-The-futures-community-at-a-turning-point-A-comment-on-Jay-Ogilvys-Facing-the-fold.pdf

 

 

THE COMPLEXITY OF ANTICIPATION

Roberto Poli

Balkan Journal of Philosophy. 2009;1(1):19-29.

 

 

The Discipline of Anticipation: Exploring Key Issues

Riel Miller, Roberto Poli and Pierre Rossel